SOME MULTIPLICATIVE INEQUALITIES FOR HEINZ OPERATOR MEAN

S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper we obtain some new multiplicative inequalities for Heinz operator mean.

1. Introduction

Throughout this paper A, B are positive invertible operators on a complex Hilbert space $(H, \langle \cdot, \cdot \rangle)$. We use the following notations for operators and $\nu \in [0, 1]$

$$A\nabla_{\nu}B := (1 - \nu)A + \nu B,$$

the weighted operator arithmetic mean, and

$$A\sharp_{\nu}B:=A^{1/2}\left(A^{-1/2}BA^{-1/2}\right)^{\nu}A^{1/2},$$

the weighted operator geometric mean [14]. When $\nu = \frac{1}{2}$ we write $A\nabla B$ and $A\sharp B$ for brevity, respectively.

Define the *Heinz operator mean* by

$$H_{\nu}(A,B) := \frac{1}{2} (A \sharp_{\nu} B + A \sharp_{1-\nu} B).$$

The following interpolatory inequality is obvious

$$(1.1) A\sharp B \le H_{\nu}(A,B) \le A\nabla B$$

for any $\nu \in [0,1]$.

We recall that Specht's ratio is defined by [16]

(1.2)
$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln\left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty), \\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0,1) and increasing on $(1,\infty)$.

The following result provides an upper and lower bound for the Heinz mean in terms of the operator geometric mean $A\sharp B$:

Theorem 1 (Dragomir, 2015 [6]). Assume that A, B are positive invertible operators and the constants M > m > 0 are such that

$$(1.3) mA \le B \le MA.$$

1

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A30, 15A60, 26D15, 26D10.

Key words and phrases. Young's Inequality, Real functions, Arithmetic mean-Geometric mean inequality, Heinz means.

Then we have

(1.4)
$$\omega_{\nu}(m, M) A \sharp B \leq H_{\nu}(A, B) \leq \Omega_{\nu}(m, M) A \sharp B,$$

where

(1.5)
$$\Omega_{\nu}(m, M) := \begin{cases} S(m^{|2\nu-1|}) & \text{if } M < 1, \\ \max\{S(m^{|2\nu-1|}), S(M^{|2\nu-1|})\} & \text{if } m \le 1 \le M, \\ S(M^{|2\nu-1|}) & \text{if } 1 < m \end{cases}$$

and

(1.6)
$$\omega_{\nu}(m,M) := \begin{cases} S\left(M^{\left|\nu - \frac{1}{2}\right|}\right) & \text{if } M < 1, \\ 1 & \text{if } m \leq 1 \leq M, \\ S\left(m^{\left|\nu - \frac{1}{2}\right|}\right) & \text{if } 1 < m, \end{cases}$$

where $\nu \in [0,1]$.

We consider the Kantorovich's constant defined by

(1.7)
$$K(h) := \frac{(h+1)^2}{4h}, \ h > 0.$$

The function K is decreasing on (0,1) and increasing on $[1,\infty)$, $K(h) \ge 1$ for any h > 0 and $K(h) = K(\frac{1}{h})$ for any h > 0.

We have:

Theorem 2 (Dragomir, 2015 [7]). Assume that A, B are positive invertible operators and the constants M > m > 0 are such that the condition (1.3) is valid. Then for any $\nu \in [0,1]$ we have

$$(1.8) \qquad (A\sharp B \le) H_{\nu}(A,B) \le \exp\left[\Theta_{\nu}(m,M) - 1\right] A\sharp B$$

where

$$(1.9) \qquad \Theta_{\nu}\left(m,M\right) := \left\{ \begin{array}{l} K\left(m^{|2\nu-1|}\right) \ \ if \ M < 1, \\ \\ \max\left\{K\left(m^{|2\nu-1|}\right), K\left(M^{|2\nu-1|}\right)\right\} \ \ if \ m \leq 1 \leq M, \\ \\ K\left(M^{|2\nu-1|}\right) \ \ if \ 1 < m \end{array} \right.$$

and

$$(1.10) (0 \le) H_{\nu}(A, B) - A \sharp B \le \frac{1}{4m^{1-\nu}} \max_{x \in [m, M]} D(x^{2\nu-1}) A,$$

where the function $D:(0,\infty)\to[0,\infty)$ is defined by $D(x)=(x-1)\ln x$.

The following bounds for the Heinz mean $H_{\nu}\left(A,B\right)$ in terms of $A\nabla B$ are also valid:

Theorem 3 (Dragomir, 2015 [7]). With the assumptions of Theorem 4 we have

$$(1.11) (0 \le) A \nabla B - H_{\nu}(A, B) \le \nu (1 - \nu) \Upsilon(m, M) A,$$

where

(1.12)
$$\Upsilon(m, M) := \left\{ \begin{array}{l} (m-1) \ln m \ \ if \ M < 1, \\ \\ \max \left\{ (m-1) \ln m, (M-1) \ln M \right\} \ \ if \ m \le 1 \le M, \\ \\ (M-1) \ln M \ \ if \ 1 < m \end{array} \right.$$

and

(1.13)
$$A\nabla B \exp\left[-4\nu (1-\nu) \left(F(m,M)-1\right)\right] \le H_{\nu}(A,B) (\le A\nabla B)$$

where

(1.14)
$$F(m, M) := \begin{cases} K(m) & \text{if } M < 1, \\ \max \{K(m), K(M)\} & \text{if } m \le 1 \le M, \\ K(M) & \text{if } 1 < m. \end{cases}$$

For other recent results on operator geometric mean inequalities, see [2]-[13], [15] and [17]-[18].

Motivated by the above results, we establish in this paper some multiplicative inequalities providing bounds for $H_{\nu}(A,B)$ in terms of $A\sharp B$ and $A\nabla B$ under various assumptions for positive invertible operators A, B.

2. Bounds for $H_{\nu}(A,B)$ in Terms of $A\sharp B$

For $\nu \in (0,1) \setminus \left\{\frac{1}{2}\right\}$ we consider the following function $d_{\nu}: (0,\infty) \to [1,\infty)$ defined by

(2.1)
$$d_{\nu}(x) = \frac{x^{\nu} + x^{1-\nu}}{2\sqrt{x}}.$$

The properties of this function are collected in the following lemma.

Lemma 1. For any $\nu \in (0,1) \setminus \left\{ \frac{1}{2} \right\}$ we have that $\lim_{x\to 0+} d_{\nu}(x) = \lim_{x\to\infty} d_{\nu}(x) =$ ∞ , the function is decreasing on (0,1), increasing on $(1,\infty)$, $d_{\nu}(1)=1$ and $d_{\nu}\left(\frac{1}{x}\right) = d_{\nu}\left(x\right) \text{ for any } x \in (0, \infty).$

Proof. We have

$$d_{\nu}(x) = \frac{x^{\nu} + x^{1-\nu}}{2\sqrt{x}} = \frac{1}{2} \left(x^{\nu - \frac{1}{2}} + x^{\frac{1}{2} - \nu} \right)$$

for any $x \in (0, \infty)$ and any $\nu \in (0, 1) \setminus \left\{ \frac{1}{2} \right\}$.

By taking the derivative we have

$$d'_{\nu}(x) = \frac{1}{2} \left(\left(\nu - \frac{1}{2} \right) x^{\nu - \frac{3}{2}} + \left(\frac{1}{2} - \nu \right) x^{-\nu - \frac{1}{2}} \right)$$
$$= \frac{1}{2} \left(\nu - \frac{1}{2} \right) \left(x^{\nu - \frac{3}{2}} - x^{-\nu - \frac{1}{2}} \right)$$
$$= \frac{1}{2} \left(\nu - \frac{1}{2} \right) x^{-\nu - \frac{1}{2}} \left(x^{2\nu - 1} - 1 \right)$$

for any $x \in (0, \infty)$ and any $\nu \in (0, 1) \setminus \left\{\frac{1}{2}\right\}$. If $\nu > \frac{1}{2}$ then $x^{2\nu-1} - 1$ is negative for $x \in (0, 1)$ and positive for $x \in (1, \infty)$ giving that $d'_{\nu}(x)$ is negative for $x \in (0,1)$ and positive for $x \in (1,\infty)$.

If $\nu < \frac{1}{2}$ then $x^{2\nu-1} - 1$ is positive for $x \in (0,1)$ and negative for $x \in (1,\infty)$ giving that $d'_{\nu}(x)$ is negative for $x \in (0,1)$ and positive for $x \in (1,\infty)$.

These imply that d_{ν} is decreasing on (0,1) and increasing on $(1,\infty)$. The rest is obvious.

Theorem 4. Let A, B be positive invertible operators and the constants M > m > 0such that

$$(2.2) mA < B < MA.$$

If for $\nu \in (0,1) \setminus \left\{\frac{1}{2}\right\}$ we defin

If for
$$\nu \in (0,1) \setminus \left\{ \frac{1}{2} \right\}$$
 we define
$$(2.3) \qquad \Lambda_{\nu} (m,M) := \left\{ \begin{array}{l} \frac{m^{\nu} + m^{1-\nu}}{2\sqrt{m}} \text{ if } M < 1, \\ \max \left\{ \frac{m^{\nu} + m^{1-\nu}}{2\sqrt{m}}, \frac{M^{\nu} + M^{1-\nu}}{2\sqrt{M}} \right\} \text{ if } m \leq 1 \leq M, \\ \frac{M^{\nu} + M^{1-\nu}}{2\sqrt{M}} \text{ if } 1 < m \end{array} \right.$$

and

(2.4)
$$\lambda_{\nu}(m, M) := \begin{cases} \frac{M^{\nu} + M^{1-\nu}}{2\sqrt{M}} & \text{if } M < 1, \\ 1 & \text{if } m \le 1 \le M, \\ \frac{m^{\nu} + m^{1-\nu}}{2\sqrt{m}} & \text{if } 1 < m, \end{cases}$$

then we have the double inequality

(2.5)
$$\lambda_{\nu}\left(m,M\right)A\sharp B \leq H_{\nu}\left(A,B\right) \leq \Lambda_{\nu}\left(m,M\right)A\sharp B,$$
 for $\nu \in (0,1) \setminus \left\{\frac{1}{2}\right\}.$

Proof. By the properties of function d_{ν} we have

By the properties of function
$$d_{\nu}$$
 we have
$$\begin{cases} d_{\nu}\left(M\right) \text{ if } M < 1, \\ 1 \text{ if } m \leq 1 \leq M, & \leq \frac{x^{\nu} + x^{1-\nu}}{2\sqrt{x}} \\ d_{\nu}\left(m\right) \text{ if } 1 < m, \end{cases}$$

$$\leq \begin{cases} d_{\nu}\left(m\right) \text{ if } M < 1, \\ \max\left\{d_{\nu}\left(m\right), d_{\nu}\left(M\right)\right\} \text{ if } m \leq 1 \leq M, \\ d_{\nu}\left(M\right) \text{ if } 1 < m \end{cases}$$

for any $x \in [m, M]$ and any $\nu \in (0, 1) \setminus \left\{\frac{1}{2}\right\}$

This is equivalent to

(2.6)
$$\lambda_{\nu}\left(m,M\right)\sqrt{x} \leq \frac{x^{\nu} + x^{1-\nu}}{2} \leq \Lambda_{\nu}\left(m,M\right)\sqrt{x}$$

for any $x \in [m, M]$ and any $\nu \in (0, 1) \setminus \left\{\frac{1}{2}\right\}$.

Using the continuous functional calculus, we have for any operator X with $mI \leq$ $X \leq MI$ that

(2.7)
$$\lambda_{\nu}(m,M) X^{1/2} \leq \frac{X^{\nu} + X^{1-\nu}}{2} \leq \Lambda_{\nu}(m,M) X^{1/2}$$

for any $\nu \in (0,1) \setminus \left\{ \frac{1}{2} \right\}$.

Now, if we multiply both sides of (2.2) by $A^{-1/2}$ we have $mI \le A^{-1/2}BA^{-1/2} \le MI$ and by writing the inequality (2.7) for $X = A^{-1/2}BA^{-1/2}$ we get

$$(2.8) \quad \lambda_{\nu}\left(m,M\right) \left(A^{-1/2}BA^{-1/2}\right)^{1/2} \leq \frac{\left(A^{-1/2}BA^{-1/2}\right)^{\nu} + \left(A^{-1/2}BA^{-1/2}\right)^{1-\nu}}{2} \\ \leq \Lambda_{\nu}\left(m,M\right) \left(A^{-1/2}BA^{-1/2}\right)^{1/2}$$

for any $\nu \in (0,1) \setminus \left\{ \frac{1}{2} \right\}$.

Finally, if we multiply both sides of (2.8) by $A^{1/2}$, then we get the desired result (2.5).

Corollary 1. Let A, B be two positive operators. For positive real numbers $m, m', M, M', put <math>h := \frac{M}{m}, h' := \frac{M'}{m'}$ and let $\nu \in (0,1) \setminus \left\{\frac{1}{2}\right\}$. If either of the following conditions

- (i) If $0 < mI \le A \le m'I < M'I \le B \le MI$,
- (ii) If $0 < mI \le B \le m'I < M'I \le A \le MI$, hold, then

(2.9)
$$\frac{(h')^{\nu} + (h')^{1-\nu}}{2\sqrt{h'}} A \sharp B \le H_{\nu} (A, B) \le \frac{h^{\nu} + h^{1-\nu}}{2\sqrt{h}} A \sharp B.$$

Proof. If the condition (i) is valid, then we have

$$I < h'I = \frac{M'}{m'}I \le A^{-1/2}BA^{-1/2} \le \frac{M}{m}I = hI,$$

which implies, by (2.5) that

$$d_{\nu}(h') A \sharp B \leq H_{\nu}(A, B) \leq d_{\nu}(h) A \sharp B$$

and the inequality (2.9) is proved.

If the condition (ii) is valid, then we have

$$0 < \frac{1}{h}I \le A^{-1/2}BA^{-1/2} \le \frac{1}{h'}I < I,$$

which, by (2.5) gives

$$d_{\nu}\left(\frac{1}{h'}\right)A\sharp B \le H_{\nu}\left(A,B\right) \le d_{\nu}\left(\frac{1}{h}\right)A\sharp B.$$

Since

$$d_{\nu}\left(\frac{1}{h'}\right) = d_{\nu}\left(h'\right) \text{ and } d_{\nu}\left(\frac{1}{h}\right) = d_{\nu}\left(h\right),$$

then the inequality (2.9) is also valid.

3. Bounds for $H_{\nu}(A,B)$ in Terms of $A\nabla B$

We introduce the function $c_{\nu}:(0,\infty)\to[1,\infty)$ defined by

(3.1)
$$c_{\nu}(x) = \frac{x+1}{x^{\nu} + x^{1-\nu}},$$

where $\nu \in (0,1) \setminus \left\{ \frac{1}{2} \right\}$.

The properties of this function are as follows:

Lemma 2. For any $\nu \in (0,1) \setminus \left\{ \frac{1}{2} \right\}$ we have that $\lim_{x \to 0+} c_{\nu}(x) = \lim_{x \to \infty} c_{\nu}(x) = \infty$, the function is decreasing on (0,1), increasing on $(1,\infty)$, $c_{\nu}(1) = 1$ and $c_{\nu}(\frac{1}{x}) = c_{\nu}(x)$ for any $x \in (0,\infty)$.

Proof. Taking the derivative of c_{ν} , we have

$$\begin{split} c_{\nu}'\left(x\right) &= \frac{\left(x+1\right)'\left(x^{\nu}+x^{1-\nu}\right)-\left(x+1\right)\left(x^{\nu}+x^{1-\nu}\right)'}{\left(x^{\nu}+x^{1-\nu}\right)^{2}} \\ &= \frac{x^{\nu}+x^{1-\nu}-\left(x+1\right)\left(\nu x^{\nu-1}+\left(1-\nu\right)x^{-\nu}\right)}{\left(x^{\nu}+x^{1-\nu}\right)^{2}} \\ &= \frac{x^{\nu}+x^{1-\nu}-\nu x^{\nu}-\left(1-\nu\right)x^{1-\nu}-\nu x^{\nu-1}-\left(1-\nu\right)x^{-\nu}}{\left(x^{\nu}+x^{1-\nu}\right)^{2}} \\ &= \frac{\left(1-\nu\right)x^{\nu}+\nu x^{1-\nu}-\nu x^{\nu-1}-\left(1-\nu\right)x^{-\nu}}{\left(x^{\nu}+x^{1-\nu}\right)^{2}} \\ &= \frac{\left(1-\nu\right)\left(x^{\nu}-x^{-\nu}\right)+\nu\left(x^{1-\nu}-x^{\nu-1}\right)}{\left(x^{\nu}+x^{1-\nu}\right)^{2}} \end{split}$$

for any $x \in (0, \infty)$ and $\nu \in (0, 1) \setminus \left\{\frac{1}{2}\right\}$.

Consider the function $\ell_{\nu}:(0,\infty)\to\mathbb{R}$ defined by

$$\ell_{\nu}(x) := (1 - \nu) \left(x^{\nu} - x^{-\nu} \right) + \nu \left(x^{1-\nu} - x^{\nu-1} \right)$$

$$= (1 - \nu) \left(x^{\nu} - \frac{1}{x^{\nu}} \right) + \nu \left(x^{1-\nu} - \frac{1}{x^{1-\nu}} \right)$$

$$= (1 - \nu) \left(\frac{x^{2\nu} - 1}{x^{\nu}} \right) + \nu \left(\frac{x^{2(1-\nu)} - 1}{x^{1-\nu}} \right).$$

We also have

$$\ell_{\nu}'(x) = (1 - \nu) \left(\nu x^{\nu - 1} + \nu x^{-\nu - 1} \right) + \nu \left((1 - \nu) x^{-\nu} + (1 - \nu) x^{\nu - 2} \right)$$
$$= (1 - \nu) \nu \left(x^{\nu - 1} + x^{-\nu - 1} + x^{-\nu} + x^{\nu - 2} \right)$$

for any $x \in (0, \infty)$ and $\nu \in (0, 1) \setminus \left\{\frac{1}{2}\right\}$.

Since $\ell'_{\nu}(x) > 0$ for any $x \in (0, \infty)$ and $\nu \in (0, 1) \setminus \left\{\frac{1}{2}\right\}$ it follows that the equation $\ell_{\nu}(x) = 0$ has a unique solution on $(0, \infty)$, namely x = 1 and $\ell'_{\nu}(x) < 0$ for $x \in (0, 1)$ and $\ell'_{\nu}(x) > 0$ for $x \in (1, \infty)$.

These show that the function c_{ν} is decreasing on (0,1) and increasing on $(1,\infty)$. The rest of properties are obvious.

We have:

Theorem 5. Let A, B be positive invertible operators and the constants M > m > 0 such that the condition (2.2) holds. If for $\nu \in (0,1) \setminus \left\{\frac{1}{2}\right\}$ we define

(3.2)
$$\Phi_{\nu}(m, M) := \begin{cases} \frac{M^{\nu} + M^{1-\nu}}{M+1} & \text{if } M < 1, \\ 1 & \text{if } m \le 1 \le M, \\ \frac{m^{\nu} + m^{1-\nu}}{m+1} & \text{if } 1 < m, \end{cases}$$

and

$$(3.3) \qquad \phi_{\nu}\left(m,M\right) := \left\{ \begin{array}{l} \frac{m^{\nu} + m^{1-\nu}}{m+1} \ \ if \ M < 1, \\ \\ \min\left\{\frac{m^{\nu} + m^{1-\nu}}{m+1}, \frac{M^{\nu} + M^{1-\nu}}{M+1}\right\} \ \ if \ m \leq 1 \leq M, \\ \\ \frac{M^{\nu} + M^{1-\nu}}{M+1} \ \ if \ 1 < m, \end{array} \right.$$

then we have the double inequality

(3.4)
$$\phi_{\nu}\left(m,M\right)A\nabla B \leq H_{\nu}\left(A,B\right) \leq \Phi_{\nu}\left(m,M\right)A\nabla B,$$

$$for \ \nu \in (0,1) \setminus \left\{\frac{1}{2}\right\}.$$

Proof. From Lemma 2 we have

$$\begin{cases} \frac{M+1}{M^{\nu}+M^{1-\nu}} & \text{if } M < 1, \\ 1 & \text{if } m \le 1 \le M, \\ \frac{m+1}{m^{\nu}+m^{1-\nu}} & \text{if } 1 < m, \\ \le \frac{x+1}{x^{\nu}+x^{1-\nu}} & \\ \begin{cases} \frac{m+1}{m^{\nu}+m^{1-\nu}} & \text{if } M < 1, \\ \max\left\{\frac{m+1}{m^{\nu}+m^{1-\nu}}, \frac{M+1}{M^{\nu}+M^{1-\nu}}\right\} & \text{if } m \le 1 \le M, \\ \frac{M+1}{M^{\nu}+M^{1-\nu}} & \text{if } 1 < m, \end{cases} \end{cases}$$

which implies that

$$\frac{1}{M^{\nu} + M^{1-\nu}} \text{ if } 1 < m,$$
 ies that
$$\frac{x+1}{2} \times \begin{cases} \frac{m^{\nu} + m^{1-\nu}}{m+1} \text{ if } M < 1, \\ \min\left\{\frac{m^{\nu} + m^{1-\nu}}{m+1}, \frac{M^{\nu} + M^{1-\nu}}{M+1}\right\} \text{ if } m \leq 1 \leq M, \\ \frac{M^{\nu} + M^{1-\nu}}{M+1} \text{ if } 1 < m \end{cases}$$

$$\leq \frac{x^{\nu} + x^{1-\nu}}{2}$$

$$\leq \frac{x+1}{2} \times \begin{cases} \frac{M^{\nu} + M^{1-\nu}}{M+1} \text{ if } M < 1, \\ 1 \text{ if } m \leq 1 \leq M, \\ \frac{m^{\nu} + m^{1-\nu}}{m+1} \text{ if } 1 < m, \end{cases}$$

namely

$$\phi_{\nu}(m, M) \frac{x+1}{2} \le \frac{x^{\nu} + x^{1-\nu}}{2} \le \Phi_{\nu}(m, M) \frac{x+1}{2}$$

for any $x \in (0, \infty)$ and $\nu \in (0, 1) \setminus \left\{\frac{1}{2}\right\}$.

Using the continuous functional calculus, we have for any operator X with $mI \le X < MI$ that

$$\phi_{\nu}\left(m,M\right)\frac{X+I}{2} \leq \frac{X^{\nu} + X^{1-\nu}}{2} \leq \Phi_{\nu}\left(m,M\right)\frac{X+I}{2}$$

for any $\nu \in (0,1) \setminus \left\{\frac{1}{2}\right\}$.

Now, if we multiply both sides of (2.2) by $A^{-1/2}$ we have $mI \le A^{-1/2}BA^{-1/2} \le MI$ and by writing the inequality (3.5) for $X = A^{-1/2}BA^{-1/2}$ we get

$$(3.6) \quad \phi_{\nu}\left(m,M\right) \frac{A^{-1/2}BA^{-1/2} + I}{2} \leq \frac{\left(A^{-1/2}BA^{-1/2}\right)^{\nu} + \left(A^{-1/2}BA^{-1/2}\right)^{1-\nu}}{2} \\ \leq \Phi_{\nu}\left(m,M\right) \frac{A^{-1/2}BA^{-1/2} + I}{2}$$

for any $\nu \in (0,1) \setminus \left\{ \frac{1}{2} \right\}$.

Finally, if we multiply both sides of (3.6) with $A^{1/2}$, then we get the desired result (3.4).

Finally, we have:

Corollary 2. Let A, B be two positive operators. For positive real numbers $m, m', M, M', put <math>h := \frac{M}{m}, h' := \frac{M'}{m'}$ and let $\nu \in (0,1) \setminus \left\{\frac{1}{2}\right\}$. If either of the following conditions

- (i) If $0 < mI \le A \le m'I < M'I \le B \le MI$,
- (ii) If $0 < mI \le B \le m'I < M'I \le A \le MI$, hold, then

(3.7)
$$\frac{h^{\nu} + h^{1-\nu}}{h+1} A \nabla B \le H_{\nu} (A, B) \le \frac{(h')^{\nu} + (h')^{1-\nu}}{h'+1} A \nabla B.$$

REFERENCES

- [1] S. S. Dragomir, Some new reverses of Young's operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 130. [http://rgmia.org/papers/v18/v18a130.pdf].
- [2] S. S. Dragomir, On new refinements and reverses of Young's operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 135. [http://rgmia.org/papers/v18/v18a135.pdf].
- [3] S. S. Dragomir, Some inequalities for operator weighted geometric mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 139. [http://rgmia.org/papers/v18/v18a139.pdf].
- [4] S. S. Dragomir, Refinements and reverses of Hölder-McCarthy operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 143. [http://rgmia.org/papers/v18/v18a143.pdf].
- [5] S. S. Dragomir, Some reverses and a refinement of Hölder operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 147. [http://rgmia.org/papers/v18/v18a147.pdf].
- [6] S. S. Dragomir, Some inequalities for Heinz operator mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 163. [Online http://rgmia.org/papers/v18/v18a163.pdf].
- [7] S. S. Dragomir, Further inequalities for Heinz operator mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 167. [Online http://rgmia.org/papers/v18/v18a167.pdf].
- [8] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
- [9] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
- [10] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [11] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Lin. Multilin. Alg., 59 (2011), 1031-1037.

- [12] F. Kittaneh, M. Krnić, N. Lovričević and J. Pečarić, Improved arithmetic-geometric and Heinz means inequalities for Hilbert space operators, *Publ. Math. Debrecen*, 2012, 80(3-4), 465–478.
- [13] M. Krnić and J. Pečarić, Improved Heinz inequalities via the Jensen functional, Cent. Eur. J. Math. 11 (9) 2013,1698-1710.
- [14] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 264 (1980), 205-224.
- [15] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [16] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
- [17] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.H.
- [18] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

URL: http://rgmia.org/dragomir

 2 School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa