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SOME INEQUALITIES FOR WEIGHTED HARMONIC AND
ARITHMETIC OPERATOR MEANS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we establish some upper and lower bounds for the dif-
ference between the weighted arithmetic and harmonic operator means under
various assumption for the positive invertible operators A, B. Some applica-
tions when A, B are bounded above and below by positive constants are given
as well.

1. INTRODUCTION

Throughout this paper A, B are positive invertible operators on a complex
Hilbert space (H, (-,-)). We use the following notations for operators

AV,B:=(1-v)A+vB,
the weighted operator arithmetic mean,
Ap, B = A2 (A’1/2BA’1/2)VA1/27
the weighted operator geometric mean and
ALB = ((1-v) A B!

the weighted operator harmonic mean, where v € [0,1].
When v = %, we write AVB, A§{B and A!B for brevity, respectively.

The following fundamental inequality between the weighted arithmetic, geomet-
ric and harmonic operator means holds

(1.1) Al,B < A#,B < AV, B

for any v € [0,1].

For various recent inequalities between these means we recommend the recent
papers [2]-[5], [7]-[10] and the references therein.

In this paper we establish some upper and lower bounds for the difference
AV,B — Al,B for v € [0,1] under various assumption for the positive invertible
operators A, B. Some applications when A, B are bounded above and below by
positive constants are given as well.
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2. MAIN RESULTS

We have the following result:

Theorem 1. Let A, B be positive invertible operators. Then for any v € [0,1] we
have

(2.1) rA(B—A)A"'(B-—A)(B+A)'A
< AV,B - Al B

<RA(B-A)A ' (B-A)(B+A) A,
where r = min {v,1 — v} and R = max{v,1 —v}.

Proof. Recall the following result obtained by Dragomir in 2006 [6] that provides a
refinement and a reverse for the weighted Jensen’s discrete inequality:

(2.2 n_min g} |y e e |23

je{1,2,...,n} e =1
n n
< F;qu)(x])—@ Fnj:1pjxj
1< 1<
< nje{{ryl;?n} {pj} - z:: - ; zi |,

where ® : C' — R is a convex function defined on convex subset C of the linear space
X, {zj}je{l 5.} are vectors in C' and {pj}je{1 5,..n} are nonnegative numbers
with P, = Z;;lpj > 0.

For n = 2, we deduce from (2.2) that

(2:3) 2min {v,1 - }{ (z >+‘I’( )_¢<$+y)}
<ve(@)+(1-v) @(y) [Vx+(1—y)y]
< 2max {r,1 — [‘I’(”” ¢<x+y>}

for any z,y € C and v € [0, 1].

If we write the inequality (2.3) for the convex function ®(z) = 1, # > 0, then
we have

1,1
T 2 1-— 1
(2.4) 2 v <y
2 T4y x Y ve+(1—v)y

1 1
,+,
§2R<”’ y 2 )
2 T+y

for any z, y > 0 where r = min{v,1 — v} and R = max {v,1 —v}.
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If we take y = 1, 2 = 1 in (2.4), then we have
a

(2.5) 2r (b—;a—lil) <vb+(1-v)a-— (yb—1+(1—u)a—1)71

b
b+a 2
SQR( T 1>
2 5ty

for any a, b > 0 and v € [0, 1] where r = min {v,1 — v} and R = max {v,1 —v}.
Since

2 _bt+a 2ab _l(b—a)2
2 14172 b+a 2 a+b

hence by (2.5) we have

(b—a)2 -1 -1
(2.6) - <vb+(l1-v)a—(wb '+ (1-v)a™') <R

for any a, b > 0 and v € [0, 1].
This is an inequality of interest in itself.
If we take a = 1 and b =t in (2.6), then we get

27) rt—12t+1) " <vt+l—v— (it H1—v)  <R(E-1)2(t+1)7"
for any t > 0.

If we use the continuous functional calculus for the positive invertible operator
X we get

1

28) r(X-D*X+D ' <vX+(Q-v)[-@X P+ 1A-v)I)"
<SR X-D*(X+ID"".

If we write the inequality (2.8) for X = A=1/2BA~'/2, then we get

(2.9) r (A—l/?BA—l/2 - 1)2 (A‘l/QBA‘l/Q + 1)71
<vATVIBATVZ 4 (1—y) I — <y (14-1/23,4—1/2)_1 +(1-v) 1) -
<R(A72BATV2 - 1)2 (a7/2Ba~v2 4 1) -

If we multiply the inequality (2.9) both sides with A'/2, then we get

(210)  rAV2(A72BATY - 1)2 (a=/2pA~2 4 1)71 AV

1 1
<I/B—|—(1—I/)A—A1/2(Z/(A_I/QBA_UQ) +(1—u)1> AL/2

< RAV/? (A’1/2BA’1/2 B 1)2 (A’l/zBA’l/z +I)_1 Al/2.
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Since
AL/2 (y ( /254 1/2) +(1-v) I) A1/2
= A2 (pAVRETIAYE L (L) D) AV
— ALl/2 (A1/2 ,/B + V) A~ 1) A1/2) AL/2
_ Al/2 (A1/2 (VB +( 1) A1/2> AL/2
— A2 4-1/2 (Z/B +(1-v) 1) 1 A2 4172 AlLB
and

AL/2 (A71/2BA71/2 - 1)2 (Afl/ZBAfl/Q _‘_1)71 AL/2

— Al/2 (A’I/Q (B — A) 1471/2)2 (A’l/Q (B + A) A’1/2>_1 AL/2
— AV2A Y2 (B - A) ATV2 AV (B - A) ATV2AY2 (B 4 A) T AV2 AL
—AB-A)A (B-—A)(B+A) "4,
then by (2.10) we get the desired result (2.1). O
Remark 1. Since, as above,
2(AVB—AIB)=A(B—-A) A" (B—A)(B+A)'A
then (2.1) can be written as
(2.11) 2r (AVB — AlB) < AV, B - Al,B <2R(AVB — AlB)
The first inequality in (2.11) was obtained in [10].

We observe that, if v = 4, (2.1) becomes equality.
When some boundedness conditions are known, then we have the following result
as well.

Theorem 2. Let A, B be positive invertible operators and M > m > 0 such that
(2.12) MA> B >mA.

Then for any v € [0,1] we have

(2.13) rk(m,M)A < AV,B— A!l,B < RK (m,M) A

where v = min{v,1 —v}, R = max{v,1 —v} and the bounds K (m,M) and
k(m, M) are given by

(2.14) K (m, M)
(m—1)>(m+1)"" if M <1,

= max{(m— D2 (m+1)71, (M —1)° (M+1)*1} fm<1<M,

(M-1)*(M+1)"" ifi<m
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and

(M -1 (M+1)"" if M <1,
(2.15) k(m,M):={ 0ifm<1<M,

(m—1)7(m+1)"" if 1 <m.
In particular,
(2.16) %k (m, M)A < AVB— AIB < %K (m, M) A.
Proof. As in the proof of Theorem 1 we have

(2.17) ro(t) <vt+1—v— (vt —|—1—V)71 < Ry (t)

for any ¢ > 0, where ¢ (t) = (t —1)> (t+1)"".
If we take the derivative of ¢, we have
) = 20—+ =+ 2 (t-1)°
= =1+ 220 +1) —(t—1)
= (t-1)(t+1)(2t+3)
for any ¢t > 0.
We observe that the function ¢ is decreasing on (0,1) and increasing on (1,00) .

We have ¢ (0) =1, ¢ (1) = 0 and lim; o ¢ () = 0.
Using the properties of the function ¢ we have

p(m) if M <1,
r{laﬁ]w(tb max {¢ (m), o (M)} f m<1<M, =K(m,M)
te|m,

e (M) if 1 <m,

and
(M) if M <1,

min p(t)=4¢ 0ifm<1<M, =k(m,M).
te[m,M]

p(m) if 1 <m,
From (2.17) we have
(2.18) rk(m,M)gvt—i—l—u—(ut_l—l—l—u)ASRK(m,M)

for all t € [m, M].
If we use the continuous functional calculus for the positive invertible operator
X with mI < X < MI, then we have

(2.19)  rk(m, M)T<vX +(1—v)T— WX '+ (1 —v)I)"" <RK (m,M)I.

If we multiply (2.12) both sides by A=Y/2 we get MI > A=Y/2BAY/2 > mI.
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By writing the inequality (2.19) for X = A='/2BA~1/2 we obtain
(2.20) rk(m,M)I

. -1
<VATYVIBATYZ 4 (1 )T — (y (A*l/QBA*W) +(1-v) I)
< RK (m,M)1I.
Finally, if we multiply both sides of (2.20) by A'/? we get the desired result (2.13).
(]
Remark 2. Since ¢ (t) € [0,1] fort € [0,1], then B < A implies that
(0 <) AV, B — Al,B < RA
for any v € [0,1]. In particular,

(0<)AVEB — AIB < %A.
We also have:

Theorem 3. Let A, B be positive invertible operators. Then for any v € [0,1] we
have
(221) (0<)AV,B—AL,B<v(l-v)(B-—A)A ' (B-A)(B'+A )4

< % (B-A) AN (B-A) (B +47) A

Proof. In [1] we obtained the following reverse of Jensen’s inequality:

(2.22) 0<A—v)fe)+vf(z) - f(Q-v)z+vr)
<v(A-v)(y—a)lf () - f ()]

for any z, y € I and v € [0,1], provided the function f : T C R — R is a

differentiable convex function on I , the interior of the interval I.
If we write the inequality (2.22) for the convex function ®(z) = £, # > 0, then
we have

v 1—v 1

(2.23) s _ xgy(l_y)(y_m)<1_1>

x vy+ (1—v) x? oy

for any z, y > 0.
If we take y = ¢ and z = + with a,b > 0 in (2.23), then we get

vb+(1—v)a— (z/bflJr(lfy)a*l)_l <v(l-v) (ll) - ClL) (a® — %)
namely,
(2.24) vb+(1—v)a— (wb™' +(1—-v) cfl)i1 <v(l-v) a;;)b (b—a)’

for any a, b > 0 and v € [0,1].
This is an inequality of interest in itself.
If we take a =1 and b =t in (2.24), then we get

l/t—i—l—u—(yt*l—&—l—u)_l§V(1—1/)(t—1)2(1—|—t71)
for any t > 0.
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If we use the continuous functional calculus for the positive invertible operator
X we get

(225) vX+(1=)I— WX ' +(1=)) " <v(l-v)(X =D (X' +1).
If we write the inequality (2.8) for X = A=1/2BA~1/2, then we get

1 -1
(2.26)  vATV2BATYV2 4 (1-w)I— <u <A*1/QBA*1/2) +(1—-v) I>

<v(l-v) (A—l/QBA—l/2 . 1)2 ((A‘”QBA‘”?)I + 1) ,

and v € [0,1].
If we multiply the inequality (2.9) both sides with A'/2, then we get

(2.27) AV,B- Al B
<v(l—v) A2 (4712 pAT12 - 1)2 ((14—1/2314—1/2)1 + I) A2,
and since
AL/2 <A71/2BA71/2 _ I>2 (<A1/2BA1/2)_1 T I) AL/2
— AV2ZATV2(B _ A) ATY2ATV2 (B - A) A1/2 41/ (B~1+47Y) AL/2 7172
=(B-AA'B-AB'+AHA

hence from (2.27) we get the desired result (2.21).
The last part is obvious from the fact that v (1 —v) < 1, v €0,1]. O

We also have:

Theorem 4. Let A, B be positive invertible operators and M > m > 0 such that
the condition (2.12) is valid. Then for any v € [0,1] we have

(2.28) (0<)AV,B—-Al,B<v(l—v)L(m,M)A
where
(2.29) L(m,M)

(m—-1)2(1+m™1) if M <1,

= max{(m—1)2(1+m_1)7(M—1)2(1+M_1)} ifm<1<M,
(M—=1)°(1+M1) if L <m.
In particular,
(2.30) (0<)AVB — AIB < iL (m, M) A.
Proof. As in the proof of Theorem 3 we have
(2.31) viAl—v—(t +1—0) " <v(l—v)y(t)

for any ¢ > 0 and v € [0,1], where t (t) = (t — 1)° (1+t71).
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If we take the derivative of 1, we have
W) =20t-1) 1+t —(t—1)*t2
=@t-D@@+2t7 =t +t) =t -1 2+t +¢7?)
for any ¢t > 0.
We observe that the function 1 is decreasing on (0, 1) and increasing on (1, 00) .

We have lim;_,04 9 (t) = 00, ¢ (1) = 0 and lim;_,+ ¢ () = oc.
Using the properties of the function v we have

W (m) if M < 1,
max v (t) = ¢ max{y(m), v (M)} fm<1<M, =L(m,M).
telm,M] W (M) if 1 <m,

Therefore, by (2.31) we have
vt+1—v— (yt_1+1—y)71 <v(l-v)L(m,M)

for all ¢ € [m, M] and v € [0,1].
By utilizing a similar argument to the one in the proof of Theorem 2 we deduce
the desired result (2.29). O

3. APPLICATIONS

For two positive invertible operators A, B and positive real numbers m, m’, M,
M’ assume that one of the following conditions (i) 0 < mI < A < m/I < M'T <
B<MIand (ii))0<mI < B<m'I<MI<A<MI, holds. Put h := % and
h = Aﬂ{,/ We observe that h, b’ > 1 and if either of the condition (i) or (ii) holds,
then h > h'.

If (i) is valid, then we have

/
(3.1) A<h’A:%/A§B§%A:hA,
m m
while, if (ii) is valid, then we have
1 1
2 —A<B<-A<A.
(3.2) FASB< A<

Proposition 1. Let A, B positive invertible operators and positive real numbers
m, m', M, M' such that the condition (i) holds. Then for any v € [0,1] we have

(3.3) r(h =1 (W +1)"A<AV,B—AL,B<R(h—1)72(h+1)""A4,

where r = min{v,1 — v}, R =max{v,1 — v} and

(3.4) AV,B—ALB<v(1-v)(h—1)°(1+hr71) A
In particular, we have
(3.5) % (W =12 (W +1)" A< AVB - AIB < % (h=12(h+1)" A,
and
(3.6) AVB — AIB < i (h—1)° (1+r71) A

The proof follows by utilizing the inequality (3.1), Theorem 2 and Theorem 4.
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Proposition 2. Let A, B positive invertible operators and positive real numbers
m, m', M, M’ such that the condition (ii) holds. Then for any v € [0,1] we have
(3.7)

r( =12 +1) (W) TA<AV,B—ALB<R(h—1)>*(h+1)""h 14,

and

(3.8) AV,B—ALB<v(1-v)(h—1)°(1+hr1)r A,
In particular, we have
(3.9) % (W =1 +1)" (W) 'A< AVB - AIB < % (h—=1)*(h+1)" " rtA,
and
(3.10) AVB - AIB < % (h—1)° (1+h"Y)h LA

The proof follows by utilizing the inequality (3.2), Theorem 2 and Theorem 4.
If we consider the function D (z,y) : [1,10] x [0,1] — R,

D(z,y)=y(1—-y) (1+27") —max{y,1 —y} (z+1)""
then the plot of this function in Figure 1 shows that it take both positive and

negative values, meaning that some time the upper bound for the quantity AV, B —
Al, B provided by (3.3) is better and other time worse than the one from (3.7).

0.2 a1

04 32
0.6 6 5 4
vy g0 87 °

X

FIGURE 1. Plot of the difference function D (z,y)
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