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Abstract. In this paper we establish some upper and lower bounds for the dif-
ference between the weighted arithmetic and harmonic operator means under
various assumption for the positive invertible operators A; B: Some applica-
tions when A; B are bounded above and below by positive constants are given
as well.

1. Introduction

Throughout this paper A; B are positive invertible operators on a complex
Hilbert space (H; h�; �i) : We use the following notations for operators

Ar�B := (1� �)A+ �B;

the weighted operator arithmetic mean,

A]�B := A1=2
�
A�1=2BA�1=2

��
A1=2;

the weighted operator geometric mean and

A!�B :=
�
(1� �)A�1 + �B�1

��1
the weighted operator harmonic mean, where � 2 [0; 1] :
When � = 1

2 , we write ArB; A]B and A!B for brevity, respectively.
The following fundamental inequality between the weighted arithmetic, geomet-

ric and harmonic operator means holds

(1.1) A!�B � A]�B � Ar�B

for any � 2 [0; 1] :
For various recent inequalities between these means we recommend the recent

papers [2]-[5], [7]-[10] and the references therein.
In this paper we establish some upper and lower bounds for the di¤erence

Ar�B � A!�B for � 2 [0; 1] under various assumption for the positive invertible
operators A; B: Some applications when A; B are bounded above and below by
positive constants are given as well.
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2. Main Results

We have the following result:

Theorem 1. Let A; B be positive invertible operators. Then for any � 2 [0; 1] we
have

rA (B �A)A�1 (B �A) (B +A)�1A(2.1)

� Ar�B �A!�B
� RA (B �A)A�1 (B �A) (B +A)�1A;

where r = min f�; 1� �g and R = max f�; 1� �g :

Proof. Recall the following result obtained by Dragomir in 2006 [6] that provides a
re�nement and a reverse for the weighted Jensen�s discrete inequality:

n min
j2f1;2;:::;ng

fpjg

24 1
n

nX
j=1

� (xj)� �

0@ 1
n

nX
j=1

xj

1A35(2.2)

� 1

Pn

nX
j=1

pj� (xj)� �

0@ 1

Pn

nX
j=1

pjxj

1A
� n max

j2f1;2;:::;ng
fpjg

24 1
n

nX
j=1

� (xj)� �

0@ 1
n

nX
j=1

xj

1A35 ;
where � : C ! R is a convex function de�ned on convex subset C of the linear space
X; fxjgj2f1;2;:::;ng are vectors in C and fpjgj2f1;2;:::;ng are nonnegative numbers
with Pn =

Pn
j=1 pj > 0.

For n = 2, we deduce from (2.2) that

2min f�; 1� �g
�
�(x) + �(y)

2
� �

�
x+ y

2

��
(2.3)

� �� (x) + (1� �) � (y)� � [�x+ (1� �) y]

� 2max f�; 1� �g
�
�(x) + �(y)

2
� �

�
x+ y

2

��
for any x; y 2 C and � 2 [0; 1].
If we write the inequality (2.3) for the convex function �(x) = 1

x ; x > 0; then
we have

2r

 
1
x +

1
y

2
� 2

x+ y

!
� �

x
+
1� �
y

� 1

�x+ (1� �) y(2.4)

� 2R
 

1
x +

1
y

2
� 2

x+ y

!

for any x; y > 0 where r = min f�; 1� �g and R = max f�; 1� �g :
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If we take y = 1
a , x =

1
b in (2.4), then we have

2r

�
b+ a

2
� 2

1
b +

1
a

�
� �b+ (1� �) a�

�
�b�1 + (1� �) a�1

��1
(2.5)

� 2R
�
b+ a

2
� 2

1
b +

1
a

�
for any a; b > 0 and � 2 [0; 1] where r = min f�; 1� �g and R = max f�; 1� �g :
Since

b+ a

2
� 2

1
b +

1
a

=
b+ a

2
� 2ab

b+ a
=
1

2

(b� a)2

a+ b

hence by (2.5) we have

(2.6) r
(b� a)2

a+ b
� �b+ (1� �) a�

�
�b�1 + (1� �) a�1

��1 � R
(b� a)2

a+ b

for any a; b > 0 and � 2 [0; 1] :
This is an inequality of interest in itself.
If we take a = 1 and b = t in (2.6), then we get

(2.7) r (t� 1)2 (t+ 1)�1 � �t+ 1� � �
�
�t�1 + 1� �

��1 � R (t� 1)2 (t+ 1)�1

for any t > 0:
If we use the continuous functional calculus for the positive invertible operator

X we get

r (X � I)2 (X + I)
�1 � �X + (1� �) I �

�
�X�1 + (1� �) I

��1
(2.8)

� R (X � I)2 (X + I)
�1
:

If we write the inequality (2.8) for X = A�1=2BA�1=2, then we get

r
�
A�1=2BA�1=2 � I

�2 �
A�1=2BA�1=2 + I

��1
(2.9)

� �A�1=2BA�1=2 + (1� �) I �
�
�
�
A�1=2BA�1=2

��1
+ (1� �) I

��1
� R

�
A�1=2BA�1=2 � I

�2 �
A�1=2BA�1=2 + I

��1
:

If we multiply the inequality (2.9) both sides with A1=2, then we get

rA1=2
�
A�1=2BA�1=2 � I

�2 �
A�1=2BA�1=2 + I

��1
A1=2(2.10)

� �B + (1� �)A�A1=2
�
�
�
A�1=2BA�1=2

��1
+ (1� �) I

��1
A1=2

� RA1=2
�
A�1=2BA�1=2 � I

�2 �
A�1=2BA�1=2 + I

��1
A1=2:
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Since

A1=2
�
�
�
A�1=2BA�1=2

��1
+ (1� �) I

��1
A1=2

= A1=2
�
�A1=2B�1A1=2 + (1� �) I

��1
A1=2

= A1=2
�
A1=2

�
�B�1 + (1� �)A�1

�
A1=2

��1
A1=2

= A1=2
�
A1=2

�
�B�1 + (1� �)A�1

�
A1=2

��1
A1=2

= A1=2A�1=2
�
�B�1 + (1� �)A�1

��1
A�1=2A1=2 = A!�B

and

A1=2
�
A�1=2BA�1=2 � I

�2 �
A�1=2BA�1=2 + I

��1
A1=2

= A1=2
�
A�1=2 (B �A)A�1=2

�2 �
A�1=2 (B +A)A�1=2

��1
A1=2

= A1=2A�1=2 (B �A)A�1=2A�1=2 (B �A)A�1=2A1=2 (B +A)�1A1=2A1=2

= A (B �A)A�1 (B �A) (B +A)�1A;

then by (2.10) we get the desired result (2.1). �

Remark 1. Since, as above,

2 (ArB �A!B) = A (B �A)A�1 (B �A) (B +A)�1A

then (2.1) can be written as

(2.11) 2r (ArB �A!B) � Ar�B �A!�B � 2R (ArB �A!B)

The �rst inequality in (2.11) was obtained in [10].

We observe that, if � = 1
2 ; (2.1) becomes equality.

When some boundedness conditions are known, then we have the following result
as well.

Theorem 2. Let A; B be positive invertible operators and M > m > 0 such that

(2.12) MA � B � mA:

Then for any � 2 [0; 1] we have

(2.13) rk (m;M)A � Ar�B �A!�B � RK (m;M)A

where r = min f�; 1� �g, R = max f�; 1� �g and the bounds K (m;M) and
k (m;M) are given by

K (m;M)(2.14)

:=

8>>>>><>>>>>:

(m� 1)2 (m+ 1)
�1 if M < 1;

max
n
(m� 1)2 (m+ 1)�1 ; (M � 1)2 (M + 1)

�1
o
if m � 1 �M;

(M � 1)2 (M + 1)
�1 if 1 < m
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and

(2.15) k (m;M) :=

8>>>><>>>>:
(M � 1)2 (M + 1)

�1 if M < 1;

0 if m � 1 �M;

(m� 1)2 (m+ 1)�1 if 1 < m:

In particular,

(2.16)
1

2
k (m;M)A � ArB �A!B � 1

2
K (m;M)A:

Proof. As in the proof of Theorem 1 we have

(2.17) r' (t) � �t+ 1� � �
�
�t�1 + 1� �

��1 � R' (t)

for any t > 0; where ' (t) = (t� 1)2 (t+ 1)�1 :
If we take the derivative of ', we have

'0 (t) = 2 (t� 1) (t+ 1)�1 � (t+ 1)�2 (t� 1)2

= (t� 1) (t+ 1)�2 [2 (t+ 1)� (t� 1)]
= (t� 1) (t+ 1)�2 (2t+ 3)

for any t > 0:
We observe that the function ' is decreasing on (0; 1) and increasing on (1;1) :

We have ' (0) = 1; ' (1) = 0 and limt!1 ' (t) =1:
Using the properties of the function ' we have

max
t2[m;M ]

' (t) =

8>>>><>>>>:
' (m) if M < 1;

max f' (m) ; ' (M)g if m � 1 �M;

' (M) if 1 < m;

= K (m;M)

and

min
t2[m;M ]

' (t) =

8>>>><>>>>:
' (M) if M < 1;

0 if m � 1 �M;

' (m) if 1 < m;

= k (m;M) :

From (2.17) we have

(2.18) rk (m;M) � �t+ 1� � �
�
�t�1 + 1� �

��1 � RK (m;M)

for all t 2 [m;M ] :
If we use the continuous functional calculus for the positive invertible operator

X with mI � X �MI; then we have

(2.19) rk (m;M) I � �X + (1� �) I �
�
�X�1 + (1� �) I

��1 � RK (m;M) I:

If we multiply (2.12) both sides by A�1=2 we get MI � A�1=2BA�1=2 � mI:
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By writing the inequality (2.19) for X = A�1=2BA�1=2 we obtain

rk (m;M) I(2.20)

� �A�1=2BA�1=2 + (1� �) I �
�
�
�
A�1=2BA�1=2

��1
+ (1� �) I

��1
� RK (m;M) I:

Finally, if we multiply both sides of (2.20) by A1=2 we get the desired result (2.13).
�

Remark 2. Since ' (t) 2 [0; 1] for t 2 [0; 1] ; then B � A implies that

(0 �)Ar�B �A!�B � RA

for any � 2 [0; 1] : In particular,

(0 �)ArB �A!B � 1

2
A:

We also have:

Theorem 3. Let A; B be positive invertible operators. Then for any � 2 [0; 1] we
have

(0 �)Ar�B �A!�B � � (1� �) (B �A)A�1 (B �A)
�
B�1 +A�1

�
A(2.21)

� 1

4
(B �A)A�1 (B �A)

�
B�1 +A�1

�
A:

Proof. In [1] we obtained the following reverse of Jensen�s inequality:

0 � (1� �) f (x) + �f (x)� f ((1� �)x+ �x)(2.22)

� � (1� �) (y � x) [f 0 (y)� f 0 (x)] :

for any x; y 2 �I and � 2 [0; 1] ; provided the function f : I � R ! R is a
di¤erentiable convex function on �I; the interior of the interval I:
If we write the inequality (2.22) for the convex function �(x) = 1

x ; x > 0; then
we have

(2.23)
�

y
+
1� �
x

� 1

�y + (1� �)x � � (1� �) (y � x)
�
1

x2
� 1

y2

�
for any x; y > 0:
If we take y = 1

b and x =
1
a with a; b > 0 in (2.23), then we get

�b+ (1� �) a�
�
�b�1 + (1� �) a�1

��1 � � (1� �)
�
1

b
� 1

a

��
a2 � b2

�
namely,

(2.24) �b+ (1� �) a�
�
�b�1 + (1� �) a�1

��1 � � (1� �) a+ b
ab

(b� a)2

for any a; b > 0 and � 2 [0; 1] :
This is an inequality of interest in itself.
If we take a = 1 and b = t in (2.24), then we get

�t+ 1� � �
�
�t�1 + 1� �

��1 � � (1� �) (t� 1)2
�
1 + t�1

�
for any t > 0:
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If we use the continuous functional calculus for the positive invertible operator
X we get

(2.25) �X + (1� �) I �
�
�X�1 + (1� �) I

��1 � � (1� �) (X � I)2
�
X�1 + I

�
:

If we write the inequality (2.8) for X = A�1=2BA�1=2, then we get

�A�1=2BA�1=2 + (1� �) I �
�
�
�
A�1=2BA�1=2

��1
+ (1� �) I

��1
(2.26)

� � (1� �)
�
A�1=2BA�1=2 � I

�2��
A�1=2BA�1=2

��1
+ I

�
;

and � 2 [0; 1] :
If we multiply the inequality (2.9) both sides with A1=2, then we get

Ar�B �A!�B(2.27)

� � (1� �)A1=2
�
A�1=2BA�1=2 � I

�2��
A�1=2BA�1=2

��1
+ I

�
A1=2;

and since

A1=2
�
A�1=2BA�1=2 � I

�2��
A�1=2BA�1=2

��1
+ I

�
A1=2

= A1=2A�1=2 (B �A)A�1=2A�1=2 (B �A)A�1=2A1=2
�
B�1 +A�1

�
A1=2A1=2

= (B �A)A�1 (B �A)
�
B�1 +A�1

�
A

hence from (2.27) we get the desired result (2.21).
The last part is obvious from the fact that � (1� �) � 1

4 ; � 2 [0; 1] : �

We also have:

Theorem 4. Let A; B be positive invertible operators and M > m > 0 such that
the condition (2.12) is valid. Then for any � 2 [0; 1] we have

(2.28) (0 �)Ar�B �A!�B � � (1� �)L (m;M)A

where

L (m;M)(2.29)

:=

8>>>>><>>>>>:

(m� 1)2
�
1 +m�1� if M < 1;

max
n
(m� 1)2

�
1 +m�1� ; (M � 1)2

�
1 +M�1�o if m � 1 �M;

(M � 1)2
�
1 +M�1� if 1 < m:

In particular,

(2.30) (0 �)ArB �A!B � 1

4
L (m;M)A:

Proof. As in the proof of Theorem 3 we have

(2.31) �t+ 1� � �
�
�t�1 + 1� �

��1 � � (1� �) (t)

for any t > 0 and � 2 [0; 1] ; where  (t) = (t� 1)2
�
1 + t�1

�
:
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If we take the derivative of  , we have

 0 (t) = 2 (t� 1)
�
1 + t�1

�
� (t� 1)2 t�2

= (t� 1)
�
2 + 2t�1 � t�1 + t�2

�
= (t� 1)

�
2 + t�1 + t�2

�
for any t > 0:
We observe that the function  is decreasing on (0; 1) and increasing on (1;1) :

We have limt!0+  (t) =1; ' (1) = 0 and limt!1 ' (t) =1:
Using the properties of the function  we have

max
t2[m;M ]

 (t) =

8<:  (m) if M < 1;
max f (m) ;  (M)g if m � 1 �M;
 (M) if 1 < m;

= L (m;M) :

Therefore, by (2.31) we have

�t+ 1� � �
�
�t�1 + 1� �

��1 � � (1� �)L (m;M)

for all t 2 [m;M ] and � 2 [0; 1] :
By utilizing a similar argument to the one in the proof of Theorem 2 we deduce

the desired result (2.29). �

3. Applications

For two positive invertible operators A; B and positive real numbers m; m0; M;
M 0 assume that one of the following conditions (i) 0 < mI � A � m0I < M 0I �
B � MI and (ii) 0 < mI � B � m0I < M 0I � A � MI; holds. Put h := M

m and
h0 := M 0

m0 : We observe that h; h0 > 1 and if either of the condition (i) or (ii) holds,
then h � h0:
If (i) is valid, then we have

(3.1) A < h0A =
M 0

m0 A � B � M

m
A = hA;

while, if (ii) is valid, then we have

(3.2)
1

h
A � B � 1

h0
A < A:

Proposition 1. Let A; B positive invertible operators and positive real numbers
m; m0; M; M 0 such that the condition (i) holds. Then for any � 2 [0; 1] we have

(3.3) r (h0 � 1)2 (h0 + 1)�1A � Ar�B �A!�B � R (h� 1)2 (h+ 1)�1A;

where r = min f�; 1� �g, R = max f�; 1� �g and

(3.4) Ar�B �A!�B � � (1� �) (h� 1)2
�
1 + h�1

�
A:

In particular, we have

(3.5)
1

2
(h0 � 1)2 (h0 + 1)�1A � ArB �A!B � 1

2
(h� 1)2 (h+ 1)�1A;

and

(3.6) ArB �A!B � 1

4
(h� 1)2

�
1 + h�1

�
A:

The proof follows by utilizing the inequality (3.1), Theorem 2 and Theorem 4.
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Proposition 2. Let A; B positive invertible operators and positive real numbers
m; m0;M; M 0 such that the condition (ii) holds. Then for any � 2 [0; 1] we have
(3.7)
r (h0 � 1)2 (h0 + 1)�1 (h0)�1A � Ar�B �A!�B � R (h� 1)2 (h+ 1)�1 h�1A;

and

(3.8) Ar�B �A!�B � � (1� �) (h� 1)2
�
1 + h�1

�
h�1A:

In particular, we have

(3.9)
1

2
(h0 � 1)2 (h0 + 1)�1 (h0)�1A � ArB �A!B � 1

2
(h� 1)2 (h+ 1)�1 h�1A;

and

(3.10) ArB �A!B � 1

4
(h� 1)2

�
1 + h�1

�
h�1A:

The proof follows by utilizing the inequality (3.2), Theorem 2 and Theorem 4.
If we consider the function D (x; y) : [1; 10]� [0; 1]! R,

D (x; y) = y (1� y)
�
1 + x�1

�
�max fy; 1� yg (x+ 1)�1

then the plot of this function in Figure 1 shows that it take both positive and
negative values, meaning that some time the upper bound for the quantity Ar�B�
A!�B provided by (3.3) is better and other time worse than the one from (3.7).

Figure 1. Plot of the di¤erence function D (x; y)
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