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ADDITIVE INEQUALITIES FOR WEIGHTED HARMONIC AND
ARITHMETIC OPERATOR MEANS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we establish some new upper and lower bounds for
the difference between the weighted arithmetic and harmonic operator means
under various assumption for the positive invertible operators A, B. Some
applications when A, B are bounded above and below by positive constants
are given as well.

1. INTRODUCTION

Throughout this paper A, B are positive invertible operators on a complex
Hilbert space (H, (-,-)). We use the following notations for operators

AV,B:=(1-v)A+vB,
the weighted operator arithmetic mean,
Af, B = A'/? (A_l/QBA_l/Q)D A2,
the weighted operator geometric mean and
ALB:=(1=v) A +vB )7

the weighted operator harmonic mean, where v € [0,1].

When v = %, we write AVB, A{B and A!B for brevity, respectively.

The following fundamental inequality between the weighted arithmetic, geomet-
ric and harmonic operator means holds

(1.1) Al,B < A#,B < AV, B

for any v € [0,1].

For various recent inequalities between these means we recommend the recent
papers [3]-[6], [8]-[12] and the references therein.

In the recent work [7] we obtained between others the following result:

Theorem 1. Let A, B be positive invertible operators and M > m > 0 such that
(1.2) MA > B > mA.
Then for any v € [0,1] we have
(1.3) rk(m,M)A < AV,B — Al,B < RK (m,M) A,
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2 S.S. DRAGOMIRY2

where r = min{v,1 — v}, R = max{v,1 —v} and the bounds K (m,M) and
k(m, M) are given by

(14) K (m, M)
(m—12(m+1)"" if M <1,

= max{(m— D2 (m+1)7", (M = 1) (M+1)‘1} ifm<1< M,

M-1*M+1)"" ifl<m
and
(M -1 (M+1)"" if M <1,

(1.5) E(m,M):=<¢ 0ifm<1<M,

(m—-1>%*m+1)"" if 1 <m.

In particular,
(1.6) %k (m,M)A < AVB — AIB < %K(m,M) A.

Let A, B positive invertible operators and positive real numbers m, m’, M, M’
such that the condition 0 < mI < A <m'I < M'I < B < MI holds. Put h := %

’
and b/ = M

m'’

then for any v € [0, 1] we have [7]
(1.7) r(h =1 (W +1)"A<AV,B—AL,B<R(h—1)72(h+1)""A,
where r = min{v,1 — v}, R = max {v,1 — v} and, in particular,

1 ’ 2,0 -1 1 2 -1
(1.8) i(hfl) (h' +1) AgAVBfA!Bgi(hfl) (h+1)"" A

Let A, B positive invertible operators and positive real numbers m, m’, M, M’
such that the condition 0 < mI < B <m/I < M'I < A< MI holds. Then for any
v € [0,1] we also have [7]

(1.9) r(h —1)° (W +1)""(h) 'A< AV, B - AlB
<R(h-1)2Mh+1)""h A,
and, in particular,
(1.10) % (W =12 (W +1)" () 'A< AVB — AIB
1 _
<5 (h- D2 (h+1)" A

Motivated by the above facts, in this paper we establish some new upper and
lower bounds for the difference AV, B—A!, B for v € [0, 1] under various assumption
for the positive invertible operators A, B. Some applications when A, B are bounded
above and below by positive constants are given as well.
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2. MAIN RESULTS
We have:

Theorem 2. Let A, B be positive invertible operators and M > m > 0 such that
the condition (1.2) is valid. Then for any v € [0,1] we have

(2.1) v (1 —v)min{1,m*} (AB"' = 1)* A< AV, B - Al,B
<v(1—v)max {1, M?} (AB"' = 1) A.

In particular, we have
1
(2.2) pmin {L,m’} (AB™ —1)° A < AVB - AIB

1 _ 2
< Zmax{l,M?’} (AB ! —I) A.

Proof. Let f: 1 C R — R be a twice differentiable function on the interval I , the
interior of I. If there exists the constants d, D such that

(2.3) d< f"(t)<Dforanytel,

then [3]

(2.4) %V(lfy)d(bfa)Q < =v)f(a)+vfd)—f((1—v)a+uvh)
< %V(l—l/)D(b—a)z

for any a, belandve [0,1].
Let f : (0,00) — (0,00) with f (£) = 7. Then f” (t) = % and if ¢ € [min {a, b} ,max {a, b}]
where a, b > 0, then we have
2 2
S N
max3 {a,b} ~ O min® {a, b}

Using the inequality (2.4) we have

(2.5) V(ly)Mg(lu)iJrui((11/)a+1/b)1
(b—a)’
=0 )

for any a, b > 0 and v € [0,1].

If we take a = % and b = i in (2.5) with z, y > 0, then we get

(2.6) v(1—v) (min{zx, y})3

(ac—y)2 <(1-v)z+vy-— ((1 —v)z? —&-l/y_l)71

l'2y2 —
2
(r —y)
x2y2

< v (1 —v)(max {z,y})*
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Since
(@ —y)°
(max {z,y} min {z, y})2
(x—y)°
(min {z, y})*
2
= max {z,y} (max{x,y} - 1)

min {z, y}

(e i) 2 — (e ()

= max {z,y}

and, similarly
2 i 2
. 3 (z—y) ; min {z, y}
- 27 — L=—
(min {z,y}) 2y min {x, y} ( max {z,y} )

for any z, y > 0.
Then (2.6) is equivalent to

(2.7) v (1 —v) min {z,y} (1 _ min{”f’y}>2

max {z,y}

<(A-v)r+vy— ((1 —v)z! —|—yy—1)71
< max {z,y} (max{x,y} - 1) )

min {z,y}
for any x, y > 0 and v € [0, 1].
Now, if we take = 1 in (2.6) then we get
(2.8)  v(1-wv)(min{l,y})’ (y"' — 1)2 <l-v4wvy—(1-v+ zzy’l)_1
<v(—v)(max{Ly})’ (s - 1)°,

for any y > 0 and v € [0,1].
If y € [m, M] then min {1,y} > min {1, m} and max {1,y} < max {1, M} and by
(2.8) we get
(290 v —v)min{l,m*} (y~' - 1)2 <l-v4wvy—(1-v+ Vyil)_l
<v(l-v)max{1l,M*} (y ' - 1)2,
for any y € [m, M] and v € [0,1].

If we use the continuous functional calculus for the positive invertible operator
X with mI < X < M1, then we have

(2.10) v (1 —v)min {1,m?} (X! - 1)

<= I+vX - (A=) I+vx )"
<v(l—v)max {1, M?*} (X! *I)Qa

for any v € [0,1].
If we multiply (1.2) both sides by A~'/2 we get MI > A='/2BA~1/2 > mI.
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By writing the inequality (2.10) for X = A=Y/2BA~1/2 we obtain
(2.11) v (1= v)min {1,m?} (A1/23*1A1/2 f1>2
< (=) T+vA 2BATY2 = (=) T+ uAl/2B*1Al/2)_1
<v(1-v)max {1, M} (41251 4Y2 - 1)2,

for any v € [0,1].
If we multiply the inequality (2.11) both sides with A/2, then we get

2
(2.12) v(1—v)min{1,m?} Al/? (/11/23_1141/2 - I) Al/?
—1
<(1-v)A+vB— A (VA1/2B*1A1/2 (- 1) AL/
2
<v(1-v)max {1, M?} A1/ (AWB”AW f I) A2,

for any v € [0,1].
Observe that

B -1
A2 (u (A*1/2BA*1/2> - I) A2
_ AL/ (A1/2 (VB—l t(1-v) A—l) Al/g)*l A1/2

_ Al/2 (Al/z (VBfl F(1-v) A*l) Al/g)*l A1/2

— AV24-1/2 (VBfl +(1-v) A’l)_l A~L/2 412 Al B

and
AL/2 (Al/zB’lAl/Q _ I)2A1/2
= AVZAV2 (B=1 _ A1) AV241/2 (B0 A71) A2 A1/
=AB'-AHAB'-A"HA
— (AB'—1)*A.
From (2.12) we then get the desired result (2.1). O

We define the weighted arithmetic and geometric means
A, (a,b) := (1 —v)a+vband G, (a,b) := a*7"b"

where v € [0,1] and a, b > 0. If v = 3, then we write for brevity A (a,b) and
G (a,b), respectively.

Lemma 1. Let M, m € R with M > m and ® : I C (0,00) — R a twice differen-
tiable function on I such that

(2.13) m < 20" (t) < M,
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for any t € I. Then for anya, b € I andv e [0,1] we have

(2.14) mln <m> <(1-v)®(a)+v® (D) —P((1—-v)a+vd)
A, (a,b)
< Mln (Gu (a,b)) .

In particular,

() £ o(110) s (f2).

Proof. Since m < t2®" (t) for any t € I, then ®,, := ® + m1n is convex on I since
o, )=o) = T e
By the definition of convexity, we have
®((1-v)a+vb)+minA, (a,b) < (1—-v)[®(a)+mlna] + v [P (b) + mInd]
=1-v)®(a)+v®(b)+ (1 —v)mlna+vmlnb
=1-v)®(a)+v®(b)+mInG, (a,b)

for any a, b € JTand v e 0,1], that is equivalent to
n———=<(1-v)®(a)+v® () —P((1—-v)a+vd)

for any a, b € I and v € [0,1] and the first inequality in (2.1) is proved.
Similarly, by the convexity of @5 := —M In —® we get the second part of (2.1).
O

We recall that Specht’s ratio is defined by

— b i h e (0,1) U (1,00),

1
1
eln(hh*1>

lifh=1.

It is well known that lim,_; S (h) =1, S(h) = S(#) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).

The following inequality provides a refinement and a multiplicative reverse for
Young’s inequality

orr ((2)) = e < ().

where a, b > 0, v € [0,1], r = min {1 — v,v}.
The second inequality in (1.3) is due to Tominaga [11] while the first one is due
to Furuichi [8].

(2.16) S (h) :=

Corollary 1. With the assumptions of Lemma 1 we have
(2.18) mln S ((%)) <(1=)®(a) +v®(b) —d((1—v)a+vh)

ngnS(%)
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for any a, b€ I and v € [0,1], where r = min {1 — v, v}.
In particular,

(2.19) mln S (ﬂ) < q)(“);q)(b) By (“;b> < Mms (%),

We consider the Kantorovich’s ratio defined by

(h+1)?
4h

The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (1) for any h > 0.

The following multiplicative refinement and reverse of Young’s inequality in
terms of Kantorovich’s ratio holds

(2.21) K" (%) < m < K" (%) :

where a, b > 0, v € [0,1], r = min {1 — v,v} and R = max{l —v,v}.
The first inequality in (2.21) was obtained by Zou et al. in [12] while the second
by Liao et al. [10].

(2.20) K (h) :=  h>0.

Corollary 2. With the assumptions of Lemma 1 we have
(2.22) mrIn K (%) <(1—v)®(a) +v®(b) — & ((1—v)a+vbh)

< MRInK (%)

for anya,bel andv e [0,1], where r = min{1 —v,v} and R =max {1l —v,v}.
In particular,

(2.23) %man(%) <W—q><a;b> g%Man(%).

In the recent paper [2] we obtained the following multiplicative reverse of Young’s
inequality

(2.24) qldzvatvb o [41/ 1-v) (K (9) - 1)] ,

a].fl/bl/

where a, b > 0, v € [0, 1].
Using this inequality we can state:

Corollary 3. With the assumptions of Lemma 1 we have
(2.25) (0<) (1 —=v)®(a) +v®(b) — @ ((1 —v)a+ vb)
a
< _ 2 =
< AMv(1—v) (K (b) 1)

for any a, b € I andve [0,1], where K is Kantorovich’s ratio.
In particular,

(2.26) w-@(“?)gM(K(Z)-Q.

2
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In the recent paper [3] we established the following refinement and reverse of
multiplicative Young’s inequality:

221) e [;m (1~ mntai) ] -t

max {a,b} al=vpv
1 max {a, b} 2
< Sy(l-v) (2T g
= &Xp [QV( Z/)<min{a,b} > ‘|
for any a, b> 0 and v € [0,1].
Corollary 4. With the assumptions of Lemma 1 we have
1 min {a, b} \”
<(1-v)P(a)+vP(()—P((1—v)a+rvd)
2
< 11/(1 -—v)M 7ma.mx{a,b} -1
2 min {a, b}

for any a, b € I andve [0,1], where K is Kantorovich’s ratio.
In particular,

(2.29) ém (1 _ Eai{{;iif - @(a);@(b) e (a;—b)
< éM (mly

We can state now the following result concerning upper and lower bounds for
the difference between the weighted arithmetic and harmonic means:

Lemma 2. Let a, b > 0 then we have
G, (a,b)

(2.30) 2min {a, b} In (H,,(ab)

) < A, (a,b) — H, (a,b)
< 2max {a, b} In (%)

for any v € [0,1], where H, (a,b) := ((1—v)a™' + z/b_l)f1 is the weighted har-
Monic mean.
In particular,

: G (a,b)
. < _
(2.31) 2min {a, b} In ( (a,b)) < A(a,b) — H (a,b)
G (a,b)
<
< 2max{a,b}In < (a,b)) ,
where H (a,b) = —31% is the harmonic mean.

Proof. Let x, y > 0 with  # y and ¢ € [min {z,y} , max {z, y}]. Consider

® : [min {z,y},max {z,y}] — (0,00), P (t) %



ADDITIVE INEQUALITIES

Then ®” (t) = & and

2
— <P () < ———
max {z,y} ~ ) < min {z, y}
for any t € [min{z,y},max {z,y}].

Writing the inequality (2.14) for the function ® ()

(232) — ?z,y} In (é” (x’y)) <

v (T,y)

%, we have

11 .
1—v) = +v——((1-
(1=1) 3 4vs = (=24 )
2 (A (z,9) ’
min {z,y}  \ Gy (z,y)
% with a, b > 0. Then by (2.32) we get

A, (21
(2.33) max{Ql,; In (GVE? Zi)
-1

<(1—V)a+yb—((1—l/)(1z+1/ll))

11
< — 21 1 hl(AU (?7?)>,
min o, 5 Gy (gr3)

for any v € [0, 1], which is equivalent to the desired result, since

(2.34) Ay (5:3) _ Gu(a,b)

G, (13) " Ho(@b)

for any =, y > 0 and v € [0, 1].
Letx:%,y:

By using (2.30), (2.17), (2.21), (2.24) and (2.27) we get

(2.35) 2 min {a, b} In S ((2)) < A, (a,b) — H, (a,b)

camactattin(s(2)).

(2.36) 2 min {a, b} In K (Z) < A, (a,) — H, (a,b)
< 2Rmax {a,b} In K (2) :
(2.37) A, (a,b) — H, (a,b) < 8max {a,b} v (1 — v) (K (Z) - 1) ,
and

(2.38) v (1—v)min{a,b} (1 — m> <A, (a,b)— H, (a,b)

<v(1 - v)max {a,b} <maX{a’b}—1>2,

min {a, b}
for any a, b > 0 and v € [0, 1] where r = min {1 — v,v} and R = max {1 —v,v}.
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We have the following upper and lower bounds in terms of Specht’s ratio.

Theorem 3. Let A, B be positive invertible operators and M > m > 0 such that
the condition (1.2) is valid. Then for any v € [0,1] we have
(2.39) 2u, (m, M)A < AV,B— Al,B<2U (m,M)A

where
mlnS(M") if M <1,

uy, (m, M) :=¢ 0ifm<1<M,

InS(m”) if 1 <m

and
InS(m) if M <1,

U(m,M):=<¢ Mmax{InS(m),InS(M)} ifm<1<M,

MInS (M) if 1 <m.
Proof. By taking a =1 and b =2 > 0 in (2.35) we get
(2.40) 2min{1,2}InS (z") <1—v+vz — (l—y—l—yx_l)il
<2max{1,z}1In (S (z)),

for any v € [0,1].

Ifz € [m, M] C (0,00) then min {1,2} > min {1, m} and max {1,z2} < max {1, M}.
By using the inequality (2.40) we get
(2.41) 2min {1, m} r[ninM} InS(@")<l-v+ve—(1-v+ l/xfl)_l

xe|m,
<2max{l,M} max In(S(z)),
x€[m,M]

for any v € [0,1].

If we use the continuous functional calculus for the positive invertible operator
X with mI < X < MI, then by (2.41) we have

(2.42) 2min{l,m} r[ninM] InS@)I<(1-v)I+vX—-(1-v)I+ VX_l)f1
FAS

s

< 2max {1, M} IFa)iw]ln(S(x))I,
xrxe(m,

for any v € [0,1].
Now, by a similar argument to the one from Theorem 2 we conclude that
2min{l,m} min InS(z")A < AV,B-AlB

z€[m,M]

< 2max{l, M} n{l&)}(\ﬂln(S(m))A,
re|m,

for any v € [0,1].
Since, by the properties of the Specht’s ratio, we have

mlnS (M") if M < 1,
min{l,m} min InS(z")=¢ 0ifm<1<M,
z€[m,M]

InS(m") if 1 <m
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and
InS(m) if M <1,

Mmax {IlnS (m),InS (M
max {1, M} g (5 () = ifmSl{S M( Jne

MInS (M) if 1 <m.

In particular, we have
(2.43) 2u(m, M)A < AVB — A'B <2U (m,M) A

where

mlnS(\/M) if M <1,
u(m,M):=4q 0ifm<1<M,
InS(vm) if 1 <m.

We have the following upper and lower bounds in terms of Kantorovich’s ratio.

Theorem 4. Let A, B be positive invertible operators and M > m > 0 such that
the condition (1.2) is valid. Then for any v € [0,1] we have

(2.44) 2rv(m, M)A < AV,B — Al,B < 2RV (m, M) A,
where

min K (M) if M <1,
(2.45) vim,M):=<¢ 0ifm<1<M,

InK(m) ifl<m
and
InK (m) if M <1,
(2.46) V(im,M):=¢ Mmax{lnK (m),InK (M)} ifm<1<M,

MInhK (M) if 1 <m.
We also have
(2.47) AV,B—-Al,B<8 (1—-v)T (m,M)A,
where
K(m)-1ifM<1,
(2.48) T(m,M):=< Mmax{K(m)—1,K(M)—-1} ifm <1< M,

M(K(M)-1) if1<m.
In particular, we have

(2.49) v(im,M)A<AVB - AIB<V (m,M)A
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and
(2.50) AVB — AlB < 2T (m, M) A.
The inequality (2.44) follows by (2.37), observing, by the properties of Kan-
torovich’s ratio, that
min K (M) if M <1,
min{l,m} min InK (z)=< 0ifm<1<M,
z€[m,M]
InK (m) if 1 <m
and
InK (m) if M <1,

) Mmax{lnK (m),InK (M)}
max{l,M}zéﬂgﬁd]ln(K(x))— ifm <1< M,
MhhK (M) if1l<m.
The inequality (2.47) follows by (2.36), observing that
K(m)-1ift M<1,
) Mmax{K(m)—-1,K(M)-1}
max{l,M}xerﬁgm](K(x)—l)— ifm <1< M,
M (K (M)—1) if 1 < m.
Now, if we take in (2.38) a = 1 and b = x, then we have
(2.51) v (1= vy min {1,2} (1 - 2ndlzh i
’ ’ max {1,z}
<l—-v+4vx— (1—Z/—|—l/1371)_1

max {1,z} 1>2.

min {1, z}

< v (1 - v)max{1,z} <

If x € [m, M] C (0,00) then min {1, 2} > min {1, m} and max {1,2} < max {1, M }.
From (2.51) we then have

min {1,m} >
max {1, M'}
<l—-v+4vx— (1—V—|—V£C_1)71

vty itan () )

(2.52) v(1 —v)min{l,m} (1 -

for any z € [m, M].
Using (2.52) we obtain the following operator inequality:

Theorem 5. Let A, B be positive invertible operators and M > m > 0 such that
the condition (1.2) is valid. Then for any v € [0,1] we have

(2.53) v(l—v)z(m,M)A<AV,B—-AL,B<v(l1—-v)Z(m,M)A,
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where
m(l—m)® if M <1,
2(mM):={ m(1—m2) ifm<1<M,
122 .
(l—ﬁ) ifl<m
and

(£ -1)" if M <1,

Z(m,M) =< M(M_1)* ifm<1<M,

M (M —1) if1 <m.

In particular,

(2.54) iz (m,M)A< AVB — AlB < EZ (m, M) A.

3. APPLICATIONS

We apply some of the above results for operators that are bounded below and
above by positive constants.

Proposition 1. Let A, B be two positive operators and m, m’, M, M’ be positive

real numbers. Put h := % and b = Aﬂf,,
(1) fO<mI <A<m'I<MI<B<MI, then

(3.1) v(l—v) (AB' 1)’ A< AV,B - Al,B
<v(—v)h? (AB~' - 1) A.
(i) If 0 <mI < B<m'I < M'I <A< MI, then
1 _ 2
(3.2) u(l—y)ﬁ(AB '—-I)"A<AV,B-Al,B
<v(l-v) (AB_l—I)QA.

Proof. We observe that h, b’ > 1 and if either of the condition (i) or (ii) holds,
then h > h'.
If (i) is valid, then we have

M’ M
(3.3) A<WA=——A<B< —A=hA,
m m
while, if (ii) is valid, then we have
1 1
4 —AL < — .
(3.4) FASB<SA<A

If we use the inequality (2.1) and the assumption (i), then we get (3.1).
If we use the inequality (2.1) and the assumption (ii), then we get (3.2). O

The following result provides bounds in terms of Specht’s ratio.
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Proposition 2. Let A, B be two positive operators and m, m’, M, M’ be positive

real numbers. Put h := % and h' = JT\:[—L,,
(1) fO<mI <A<m'I<MI<B<MI, then
(3.5) 2InS ((W)") A< AV,B — Al,B <2hIn S (h) A.

(i) If0<mI < B<m'I<MI<A<MI, then
1 r
(3.6) 2o InS ((R)")A<AV,B— Al,B <2InS (h) A.
Proof. If we use the inequality (2.39) and the assumption (i), then we have

(3.7) 2InS ((W)")A< AV,B — Al,B <2hInS (h) A

and the inequality (3.5) is proved.
If we use the assumption (ii) and the inequality (2.39), then we get

(3.8) 2%1115 <(;,>> A< AV,B—AlL,B<2InS (2) A
Since S ((£)") = S ((7")") and S (£) = S (h) then by (3.8) we get (3.6). O

We also have upper and lower bounds in terms of Kantorovich’s ratio:

Proposition 3. With the assumptions of Proposition 2 we have:
(i) If0<mI < A<m'I<M1I<B<MI, then

(3.9) orInK (W) A< AV, B — Al,B < 2RhIn K (h) A.
(i) If 0 <mI < B<m'I <M'I<A<MI, then

(3.10) 27% InK (h)A < AV,B — Al,B < 2RIn K (h) A.

Proof. Using the inequality (2.44) and the assumption (i) we have
2rinK (W')A < AV,B — A!l,B <2RhIn K (h) A,

and the inequality (3.9) is proved.
By the assumptions (ii) and the inequality (2.44) we also have

1 1 1
— _ < —Al,B < — ,
2rhan<h,>A_AVl,B A B_2Ran<h>A

and since K (;5) = K (b') and K (+) = K (h) , we deduce the desired result (3.10).
O

We finally have:

Proposition 4. With the assumptions of Proposition 2 we have:
(1) fO<mI <A<m'I<MI<B<MI, then

2
(3.11) v(l—v) (1}1) A<AV,B—AL,B<v(l—-v)h(h—1)*A4,
(i) If0<mI < B<m'I<MI<A<MI, then

312)  v(1 _y)% (1 - }11)214 <AV B—ALB<v(1—v)(h—1)A.
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The proof follows by (2.53) and we omit the details.

Now, if we consider the following two variable functions obtained by taking the
upper bounds for the difference A, (a,b) — H, (a, b) given by the inequalities (2.35)-
(2.38) fora=1,b=x € (0,00) and y € (0,1), namely

Ui (z,y) : =2max{z,1}InS (z),
Us (z,y) : =2max{y,1 —y}max{z,1}InK (x),
Us (z,y) : =8y(l—y)max{z,1} (K (x)—1) and
. o ) max (2 max {z,1} 2
Ui s =y(1-gmax (o (2 )

then the differences Uy — U, Uy — Us, Uy — Uy, Uy — Us, Uy — Uy take both negative
and positive values on the box (0,10) x (0, 1) showing that neither of these bounds
are best in general. However, the plot of the difference Us — U, takes only negative
values on the box (0, 10) x (0,1) suggesting that the upper bound in (2.38) may be
better that (2.37). It is an open question for the author if this is true in general.
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