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REFINEMENTS AND REVERSES OF HOLDER-MCCARTHY
OPERATOR INEQUALITY VIA A CARTWRIGHT-FIELD
RESULT

S. S. DRAGOMIR!:2

ABSTRACT. By the use of a classical result of Cartwright and Field we obtain
in this paper some new refinements and reverses of Holder-McCarthy operator
inequality in the case p € (0,1). A comparison for the two upper bounds
obtained showing that neither of them is better in general, is also performed.

1. INTRODUCTION

Let A be a nonnegative operator on the complex Hilbert space (H, (-, -}), namely
(Az,z) > 0 for any « € H. We write this as A > 0.

By the use of the spectral resolution of A and the Holder inequality, C. A.
McCarthy [16] proved that

(1.1) (Az,x)? < (APz,z), p € (1,00)
and
(1.2) (APx, z) < (Ax,z)?, pe (0,1)

for any « € H with ||z]| = 1.
Let A be a selfadjoint operator on H with

(1.3) mI < A< MI,

where I is the identity operator and m, M are real numbers with m < M.

In [7, Theorem 3] Fujii et al. obtained the following interesting ratio inequality
that provides a reverse of the Holder-McCarthy inequality (1.1) for an operator A
that satisfy the condition (1.3) with m >0

p
1 MP —mP
mn (Ax, z)?

pl/qu/q (M _ m)l/Z’ (mMP _ Mmp)l/q

(1.4) (APz,z) < {

for any x € H with ||z|| =1, where ¢ =p/(p—1), p > 1.
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If A satisfies the condition (1.3) with m > 0, then we also have the additive
reverse of (1.1) that has been obtained by the author in 2008, see [4]

(1.5) 0 < (APz,z) — (Az,x)?

L = m) [l — vt 2)?])

<p

1/2
8 (7=t — ) [ Al (A, 297]

< Lyt —my (471 =),

for any x € H with ||z|| = 1, where p > 1.
We also have [4]

(1.6) 0< (APx,z) — (Az,z)?

(M—m)(MP71—77Lp71)

i MP/2mp/2 <A£L'7$> <Ap71x’x> ’ (for m> 0)’

<p
(VAT — i) (M=72 — 02 [, ) (4012, 2]
£V —m) (71— 1) (37 (for m > 0),

<p

(m _ m) (M®=D/2 _ (p=1)/2) ppp/2,

for any x € H with ||z|| = 1, where p > 1.

For various related inequalities, see [6]-[10] and [14]-[15].

We have the following inequality that provides a refinement and a reverse for the
celebrated Young’s scalar inequality

(L.7) %1/(1 _l/)nfzx{a)b} < (Q-v)a+vb—a 7"

for any a, b> 0 and v € [0,1].

This result was obtained in 1978 by Cartwright and Field [1] who established a
more general result for n variables and gave an application for a probability measure
supported on a finite interval.

For some new recent reverses and refinements of Young’s inequality see [2]-[3],
[11]-[12], [13] and [19].

By the use of (1.7) we obtain in this paper some new refinements and reverses
of Holder-McCarthy operator inequality in the case p € (0,1). A comparison for
the two upper bounds obtained showing that neither of them is better in general,
is also performed.
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2. SOME REFINEMENTS AND REVERSE RESULTS

We have:

Theorem 1. Let m, M be real numbers so that M > m > 0. If A is a selfadjoint
operator satisfying the condition (1.3) above, then for any p € (0,1) we have

p(1—p) m ((A%z,z) p(1-p) (A%, )
(2.1) 9 M ((Ax,a:>2 - 1) < oM (Az, z) (W - 1)

(APx, x)
<1 M
=1 (Azx, z)*

- 2

for any x € H with ||z| = 1.
In particular,

1m [ (A%z,x) (Az,z) ((A%z, @)
22 <<Ax’x>2 - 1) < g <<Az7x>2 - 1)
| {Ara)  (Axx) <<A2a?,m> - 1)

(Az,z)"/* = 8m (Az,z)?

< 1M <<A2x,x> 3 1)
~8m \ (Az,z)” ,

Proof. If a, b € [m, M], then by Cartwright-Field inequality (1.7) we have

IN

for any x € H with ||z| = 1.

1 ) - 1 5
- — _ < — — p < — — .
5 p(l—p)(b—a)*<(1—p)a+pb—a PP < 2mp (1-p)(b—a)

or, equivalently

(2.3) ﬁp (1—p)(* —2ab+a?) < (1—p)a+pb—al PP

1
. 1— 2_2 2
5,7 (1= p) (b° — 2ab +a%),

IN

for any p € (0,1).
Fix a € [m, M] and by using the operator functional calculus for A with mI <
A < M1T we have

1
(2.4) Y4 (1—p) (A% —2aA+a®I) < (1—p)al +pA—a' PAP

1 2 2
L — — — + )
o P (1 —-p)(A® —2aA+a"])
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Then for any x € H with ||z|| = 1 we have from (2.4) that
1
(2.5) YV (1-p) ((A%2,2) — 2a (Az, 2) + a®)
<(1-p)a+p(Az,z) —a' P (AP2, 2)

< p(1—p) (<A2x,x> —2a (Az,2) + a?),

2m
for any a € [m, M].

If we choose in (2.5) a = (Az,z) € [m, M], then we get for any v € H with
lz]] =1 that

Lo —p) (A%, ) — (Az,2)?)

< (Az,z) — (Az,z)' 7P (AP
b < (Az,z) — (A2, )" (AP, )
1
S %p(l _p) (<A2$,l‘> - <A1‘7SL'>2),
and by division with (Az,z) > 0 we obtain the second and third inequalities in
(2.1).
The rest is obvious. (]

Remark 1. It is well known that, if mI < A < M1 with M > 0, then, see for
instance [17, p. 27|, we have

(1<)
for any x € H with ||z|| = 1, which implies that

(A%z,x) (M —m)*
0<) (Az, z)? —ls dmM

(A22,2) _ (m+ M)°
<14x7 x>2 - dmM

Using (2.1) and by denoting h = % we get

(APz,z) p(l-—p) 2
. <)1-— < _
(26) R T )
and, in particular,
<A1/2x,m> 1 9
. )1 — < —(h—
(27) 091- L < g -1,

for any x € H with ||z|| = 1.
We consider the Kantorovich’s constant defined by

_(h+1)°
(2.8) K (h) = T h>0.
The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (1) for any h > 0.
Observe that for any h > 0

From (2.6) we then have

(2.9) (0<)1-
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and, in particular,
(2.10) 0<)1 -
for any x € H with ||z| = 1.

Also, if a, b > 0 then
b (b—a)?
K(-|-1=—".
(a) 4ab

Since min {a, b} max {a, b} = ab if a,b > 0, then

(b—aP _winfab}b—a? oo [K (b> - 1]

max {a,b} ab

e IO

and the inequality (1.7) can be written as

and

(2.11) 2v(1 — v)min {a, b} [K (Z) - 1} <(1-v)a+vb—a' "

<t nmactan [1e(2) 1]

for any a, b> 0 and v € [0,1].

Theorem 2. Let m, M be real numbers so that M > m > 0. If A is a selfadjoint
operator satisfying the condition (1.3) above, then for any p € (0,1) we have

(APz, x)

(Ax, z)?
<p(1—p)[K®R) —1] <2 L A= <<.i14a;’:;>>f| x,x})

9 1/2
<p(L-p)[K (h) 1] [2+ <<A”>1> ]

(2.12) 0<)1—

(Az,z)”

<p(L=p)[K (h) = 1] [2+ (K () - 1)'"?]

for any x € H with ||z| = 1.
In particular, we have

<A1/2x, )
(Az,z)"/?

-1 (2 (AUl

<A2x,a:> 1z
[K (h) —1] [2 + ((Aa:,a:>2 — 1) ]
1

< JIK (M) 1] 2+ (K () = 1)'?]

for any x € H with ||z|| = 1.

(2.13) 0<)1—

<

RN

IA
RNy
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Proof. From (2.11) we have for any a, b > 0 and p € [0, 1] that

(214)  (1-pla+pb—a" P’ <p(1—p)(a+b+|b—al) [K (Z) - 1]
since 1
max {a,b} = 5 (a+b+[b—al).

If a, b € [m, M|, then Z € [%, %] and by the properties of Kantorovich’s constant
K, we have

1<K<b) <K(M> = K (h) for any a,b € [m, M].

a m
Therefore, by (2.14) we have
(1—pla+pb—a* PP <p(l—p)(a+b+|b—al|) K (h)—1]

for any a, b € [m, M] and p € [0,1].
Fix a € [m, M] and by using the operator functional calculus for A with mI <
A < MI, we have

(2.15)  (1—p)al +pA—a' PA? <p(1—p)[K (k) —1](al + A+|A—all).
Then for any x € H with ||z]| = 1 we get from (2.15) that

(2.16) (1-p)a+p(Az,x) —a' P (AP, x)
<p(—=p)[K(h) —1](a+ (Az,z) + (A = al|z,z)),
for any a € [m, M] and p € [0,1].
Now, if we take a = (Ax,x) € [m, M], where x € H with ||| =1 in (2.16), then
we obtain
(Az,z) — (Az,2)" P (APz, z)
<p(1=p)[K(h) = 1] 2(Az,2) + (|A = (Az,2) |z, 2)) ,

which, by division with (Ax,x) > 0 provides the first inequality in (2.12).
By Schwarz inequality, we have for € H with ||z|| =1 that

(|A = (Az, z) I| =, z)

IN

1/2
—(Az,z) 1) a:,x>

(
1/2

A2 —2(Ax,z) A+ (Az,z)? ) x,x>1/2
(A%z,z) — A:L',£K>2) ,

which proves the second part of (2.12).
Since
A2 _ 2
%—1§M:K(h)—l
(Az, x) dmM

for x € H with ||z|| = 1, then the last part of (2.12) is thus proved. O
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3. A COMPARISON FOR UPPER BOUNDS

We observe that the inequality (2.9) provides for the quantity

0<)1 - Ef;—’x:’;z, x € H with ||z|| =1,
the following upper bound
(3.1) By () o= P () - 1),
while the inequality (2.12) gives the upper bound
(3.2) By (p,h) i= p (1= p)[K () = 1] [2+ (K () - )/?]

where p € (0,1) and h > 1.
Now, if we depict the 3D plot for the difference of the bounds By and By, namely

D (xuy) = Bl (y>$) - BQ (yvx)
on the box [1,8] x [0, 1], see Figure 1

FIGURE 1. Plot of the difference D (z,y)

then we observe that it takes both positive and negative values, showing that the
bounds Bj (p, k) and Bs (p, h) can not be compared in general, namely neither of
them is better for any p € (0,1) and h > 1.
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