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ON JENSEN’S ADDITIVE INEQUALITY FOR POSITIVE
CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN
HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain some additive refinements and reverses
of Jensen’s inequality for positive convex/concave functions of selfadjoint op-
erators in Hilbert spaces. Natural applications for power and exponential
functions are provided.

1. INTRODUCTION
The famous Young inequality for scalars says that if a, b > 0 and v € [0, 1], then
(1.1) a7 < (1—v)a+vb

with equality if and only if @ = b. The inequality (1.2) is also called v-weighted
arithmetic-geometric mean inequality.

We have the following inequality that provides a refinement and a reverse for the
celebrated Young’s inequality

(b—a)’

(1.2) ;V(l_y)(b_a)<(1_V)a+yb_al_ybu<;UO_V)min{a,b}

max {a,b} ~ -
for any a, b> 0 and v € [0,1].

This result was obtained in 1978 by Cartwright and Field [2] who established a
more general result for n variables and gave an application for a probability measure
supported on a finite interval.

We observe that, if a, b € [v,T] C (0,00), then from (1.2) we have

(1.3) Aiyu_yxb_MQg(y_wa+yb_dfwvg;lyu_yxb_QQ

2r 27
for v € [0,1].
Moreover, since
(b—a)? , (b—a)? . b a
—_— = —_— = — _ — 2
) min {a, b} s min {a, b} p; + 5
and
(b-a) _ (b—a) _ b, a
min{a b} max {a, b} , = max {a,b} o + 5 21,
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then from (1.2) we have the following inequality as well
1 b
(1.4) u(l—u)*y(+a—2)§(1—y)a+1/b—a1_”b”
2 a b
1 b a
<—v(l-v)T'|{—-4--2
< 2V( v) (a + b )
for any a, b € [v,T'] C (0,00) and v € [0,1].
We recall that Specht’s ratio is defined by [15]

— L ifhoe (0,1)U(1,00),
hﬁ)

(1.5) S (h) == etn (a7
1lifh=1.

It is well known that lim,—; S (h) =1, S(h) = S(+) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).
In [16], Tominaga also proved the following additive reverse of Young’s inequality

(1.6) (1—v)a+vb—a b < S(%) L (a,b)
where a, b > 0, v € [0,1] and L (a,b) is the logarithmic mean, namely

b—g if a#b

Inb—Ina

L(a,b) :=
b if a=0.

If for positive numbers a, b we have a,b € [y,I'] C (0,00) and v € [0, 1], then by
(1.6) we get [16]

(1.7) 1-v)at+vb—a' """ <8 (S) I (17 5)

Kittaneh and Manasrah [10], [11] provided a refinement and an additive reverse
for Young inequality as follows:

2 2
(1.8) r(Va—vb) <(-va+vb—a = <R(Va-vb)
where a, b > 0, v € [0,1], r = min {1 —v,v} and R = max {1 —v,v}. The case
v =  reduces (1.8) to an identity.

If a, b € [7,T] C (0,00), then ‘\/5— \/E’ < VT — /7 and by (1.8) we get

2

(1.9) (1—-v)a+vb—a' b SR(\/f—ﬁ) .

In the recent paper [5] we obtained the following reverses of Young’s inequality
as well:
(1.10) (1-v)a+vb—a b <v(l—v)(a—>b)(Ina—Inb)

where a, b > 0, v € [0, 1].
Observe that for a, b € [7,T'] C (0,00) we have

0<(a—b)(lna—Inb)=]a—b|[lna—Ind| <(T'—~)(InT —1In~)
and by (1.10) we get
(1.11) 1-v)a+vb—a "0 <v(1l—-v)T —7)(nl —1In~).
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For any a, b > 0 and v € [0, 1] we have [6]

1—v)a+vb—a'~"b”

(1.12) %1/(1—1/) (Ina — Inb)? min {a, b} < (
1
2

< Zv(1—v)(Ina — Inb)® max {a, b}

This inequality was obtained in the case a < b in [1] as well.
If a, b € [7,T] C (0,00), then by (1.12) we get

1
(1.13) §u(1—1/)'y(hr1a—hr1b)2 <(1-v)a+vb—a "
v(1—v)T (Ina —Inb)®

for any v € [0,1].
Ifa, b e [y,I'] C (0,00) and v € [0,1], then we have [7]

(1.14) (1-v)a+uvb—a™"b <max{t,r (v),tyr(1-v)}
where
(1.15) byr (V) = (1 —v)y + vl — 77T,

We consider the function f, : [0,00) — [0, 00) defined for v € (0,1) by
fol@)=1—v+ve—2a”.
For [k, K] C [0,00) define
fv (k) if K <1,

(1.16) A, (k,K):=< max{f, (k), L (K)} if k<1<K,

f(K) ifl<k
and
fu(K) it K <1,

(1.17) 6, (k,K):={ 0ifk<1<K,

fo (k) if 1 <k.

In the recent paper [8] we obtained the following refinement and reverse for the
additive Young’s inequality:
(1.18) 6, (k,K)a<(1—v)a+vb—a'™"b" <A, (k,K)a,
for positive numbers a, b with 2 € [k, K] C (0,00) and v € [0, 1] where A, (k, K)
and 6, (k, K) are defined by (1.16) and (1.17) respectively.

Now, if a, b € [y,T] C (0,00) and v € [0,1], then & € {1 E] and by (1.18) we

—o o

a I~y
have
T
. _ _ l=vyv < l -
(1.19) (I-v)a+vb—a"b max{fl,(r),f,,<’y)}a7
and since

fu (%) — (1 - V)F+;777VF17D
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and

s (F> (I =v)y+ D =Tyt
"\ 2]
then by (1.19) we get

(1.20) (1-v)a+vb—a"p"
_ _ AvTl—rv _ _ TVvAl—v
§max{(1 Z/)F+;"y YT 7(1 v)y+vl — Ty }a,
v

for any a, b € [y,T'] C (0,00) and v € [0,1].
The following result that provides a vector operator version for the Jensen in-
equality is well known, see for instance [13] or [14, p. 5]:

Theorem 1. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M| for some scalars m, M with m < M. If f is a convex function
on [m, M|, then

(1.21) f({Az,z)) < (f (A) 2, z)

for each x € H with ||z|| = 1.

As a special case of Theorem 1 we have the Hoélder-McCarthy inequality [12]:
Let A be a selfadjoint positive operator on a Hilbert space H, then

(i) (A"z,z) > (Az,z)" for all r > 1 and z € H with [jz] = 1;

(ii) (A"z,z) < (Az,z)" forall 0 <r < 1 and z € H with ||z| = 1;

(iii) If A is invertible, then (A"z,z) > (Az,z)" for all r < 0 and € H with
]| = 1.

In [3] (see also [4, p. 16]) we obtained the following additive reverse of (1.21):
Theorem 2. Let I be an interval and f : I — R be a convexr and dzﬁerentzable
function on I (the interior of I) whose derivative f’ is continuous on I. If Ais a
selfadjoint operators on the Hilbert space H with Sp (A) C I, then

(122)  (0<)(f(A)z,2) — [ ((Az,2)) < (' (A) Az, 2) — (Az, 2) (f' (A) 2, 2)
for any x € H with ||z| = 1.

In the recent paper [9] we established the following multiplicative inequalities:
Theorem 3. Let f: [m, M] — [0,00) be a continuous function and assume that

1.23 0<~= mi t) < t) =T < .
(1.23) v ter[r;;%f() tem%f() o0

Then for any A a selfadjoint operator with

we have the inequality

2
oy QD f(ee) v W léy(l o (E) ]

(fv (A)z,z) f1=v ((Az, z)) gl

for any x € H with ||z|| = 1, where v € [0,1].
Moreover, if f is convex on [m, M|, then for any v € [0,1],

/¥ ({As,2) Loy
(1.26) T Az < exp l2u (1-v) (’Y 1) ]
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while, if f is concave on [m, M], then

(Do) AL (TN (A)aa)
G20 A S pl2 -0 (3 1>]f”(<Aw,x>)'

For some meaningful examples of functions satisfying the above inequalities
(1.26)-(1.27), see [9)].

Motivated by the above results, in this paper we obtain several additive refine-
ments and reverses of Jensen’s inequality for positive convex/concave functions of
selfadjoint operators in Hilbert spaces. Natural applications for power functions
are provided.

2. UPPER BOUNDS

By using the definition of ¢y 1 (v) from (1.15), we define for v, I" € (0,00) and
v € [0,1], the function
(2.1) e (v,T,v)
'=max {t,r (V),tyr (1 —v)}
=max {(1 —v)y+ vl — AT vy + (1 —v) T — 'y"Fl_"} .
We observe that
(p(’}/,F,V) = SD(F77’V> = @<7aF71 _V>
for 4, T € (0,00) and v € [0,1].
Using the inequality (1.3) for (a,b) = (v,TI") and (a,b) = (T',y) we get
1
(22) (p(’%F,V)SgV(l—U)(F—’y)z
forany 0 < v < T and v € [0,1].
From Tominaga’s inequality (1.6) we have

(v, Iv)< S <1;> L(y,T)

while from (1.7) we have
r r 1 r
e(v,Iv) <5 (> L (1, ) == () L(y,T)
Y v v v

(2.3) e(v,T,v)<S G) L(v,T)

giving that

for any 0 < v < T and v € [0,1].
From (1.9) we have

(2.4) o (v,T,v) <max{v,1—v} (\/f— ﬁ)Q
for any 0 <y < T and v € [0,1],
(2.5) (., Iw)<v(@—v)(I —7)(Inl —Invy)
for any 0 < v < T and v € [0,1].

while from (1.10) we have
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From (1.13) we also have

(2.6) e (7, Tv) <

for any 0 <y < T and v € [0,1].

Therefore, by the inequality (1.14), we can state that for any a, b € [y,T] C
(0,00) (with v < T') we have the following reverse of Young’s inequality
(2.7) (1—-v)a+vb—a b <oy, T,v) <®(v,T,v)

for any v € [0, 1], where, as pointed out above, the upper bound & (v,I',v) can be
one of the right hand side of the inequalities (2.2)-(2.6), namely

(2.8) D (y,T,v) :=

v(1—v)T(InT —Iny)?

N =

. . 1 ify <1,
v a-n -2 5(2) e
v v Loify > 1,
2
max {v,1 — v} (\/f—ﬁ) , v(1=v)(T =) (Inl —Inv),
%V(l—V)F(lnF—ln”y)Z,
for any 0 < v < T and v € [0,1].

Theorem 4. Let f : [m,M] — [0,00) be a continuous function and assume that
it satisfies the condition (1.23). Then for any A a selfadjoint operator with the
property (1.24), we have the inequality

(2.9) 0<(1—w)f(Az,2)) +v (f(A)z,z)— f17" ((Az,z)) (f* (A) 2, z)
<@ (,Lv) <@ (y,T,v)

for any x € H with ||z| = 1.
Moreover, if f is convex on [m, M|, then

(2.10)  f17((Az,2) [fY ((Az,2)) = (f (A) z,2)] < ¢ (4,T,v) < @ (7,T,v)
for any v € [0,1] and for any x € H with ||z| = 1.

Proof. Let t € [m, M] and x € H with ||z|| = 1. Then f (¢), f ((Az,z)) € [v,I] and
by (2.7) we have

(2.11) (1 =) f ((Az,2)) +vf (t) = f177 (Az,2)) f (1) < ¢ (v, T, v) @ (7,1, v)

for any t € [m, M], v € [0,1] and = € H with ||z| = 1.
If we use the functional calculus for the operator A with mly < A < M1pg, then
by (2.11) we get

(2.12) (1 =) f ((Az,2)) 1u +vf (A) = f177 ((Az,2)) f7 (A)
< 4,0(’}/,].—‘,1/) 1g < CI)(’}/,F,V)lH

for any v € [0,1] and = € H with ||z|| = 1.
If we take in (2.12) the inner product over y € H with ||y|| = 1, then we get

(2.13) (1=v) f((Az,2)) + v {f (A)y,y) — F77 (Az,2) (f* (A) y,y)
<o, T,v) <@ (y,T,v)

for any v € [0, 1], which by taking y = z, we get the desired inequality (2.9).
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If f is convex on [m, M], then by Jensen’s inequality we have f ({Az,x)) <
(f (A)z,z), for € H with ||z|| = 1, then
f({Az,2)) — 177 ((Az, 2)) (f (A) 2, 2)
< (1= ) £ (A2, 2)) + v (f (A) 2,2 — 17 (A, 2)) (F* (A) 2, 2)
s<e(v)<@(y,Thy),
which implies the desired result (2.10). O

Remark 1. If for some v € (0,1) the function fY is concave, then (f* (A)z,z) <
7 ((Az,x)) for any x € H with ||z| = 1, then by (2.10) we have the meaningful
inequality
(2.14) 0< f177 ((Az,2)) [f* ((Az, 2)) = (f* (A) z,2)] < ¢ (v,T,v) < @ (7,T,v)
for any x € H with ||z|| = 1.

If we consider the convex function f(t) = t", r > 1 and take v € (0,1) with

rv < 1, then the function f¥ is concave and by (2.14) we get for any x € H with
lz]| =1 that

(2.15) 0< (Az, x) " Az, 2)"" — (A2, 2)] < o (m", M",v)
S (P(mT,MT’V)7

where mly < A< M1y with 0 < m < M. Since (A.’L‘,£E>(17V)T > m=9)" for any
x € H with ||z|| = 1, then by (2.15) we get the following additive reverse of the
Hélder-McCarthy inequality
1
m(lfv)rw
1

(2.16) (0 <) (Az,2)"" — (A" z,2) < (m",M",v)

< O (m",M",v)
for any x € H with ||z|| = 1.
3. SOME INEQUALITIES VIA CARTWRIGHT-FIELD RESULT

‘We have:

Theorem 5. Let f : [m, M] — [0,00) be a continuous function and assume that
it satisfies the condition (1.23). Then for any A a selfadjoint operator with the
property (1.24), we have the inequality

(31 (0<) v (1—0) ((f (A)z,2) —  ((Az,2)))°

2
< oo (1= ) ((f? (A) ) — 2f (A, 2)) (F () ,2) + £ ((Aa, )
< (L) J (Az, ) + v (f ()3, 2) ~ [ (Az, 2)) (¥ (A) 2, )
< v (L= 0) (2 (A)2,) — 2f (A, @) (7 (A) 2,2) + 12 (A, )

2y
for any x € H with ||z|| = 1.
Moreover, if f is convex on [m, M], then

(3-2) (0<) %V (1—v) ((f (A) z,2) — [ ((Az,2)))*

< (f(A)z,z) - f177 ((Az,2)) (f” (A) 2, 2)
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and
(3.3)  f177 ((Az,2)) [ (Az, ) — (f* (A) 7, 2)]
- %Vﬂ —v) ((£* (A) z,x) — 2f ((Az, ) (f (A) 2, ) + f* ((Az,2)))

for any v € [0,1] and for any x € H with ||z| = 1.
If f is concave on [m, M|, then

(3-4) (0<) %V (1 =) (f ({Az,2)) = (f (A) z,2))’

< 177 ((Az,2)) [f7 ((Az,2) = (7 (A) 2, )]
for any v € [0,1] and for any x € H with ||z|| = 1.

Proof. Let t € [m, M] and € H with ||z|| = 1. Then f (¢), f ((Az,z)) € [7,T] and
by (1.3) we have

(35) 0= sor(U-0) (£ (1)~ 27 (42,2)) £ () + £ ({Az, 2))
< (1—0) f (A, @) + vf (1) — [ ((Az,2)) 7 (1)
< % v (1= v) (2 () — 2f (A, 2)) £ (8) + 1 ((Az, 2)))

for any ¢t € [m, M] and x € H with ||z| = 1.
If we use the functional calculus for the operator A with mly < A < M1pg, then
by (3.5) we get

3.6) 0< %V (=) (f*(4) = 2f (Az,2)) f (A) + f* ((Az,2)) 1)
< (1=v) f(Az,2) 1y +vf (A) = f177 (Az, 2)) ¥ (A)
< %V (L= v) (f*(A) — 2f (Az, 2)) [ (A) + f* ((Az,2)) 1nr)

for any « € H with |jz| = 1.
If we take the inner product in (3.6) over y € H with ||y|| = 1, then we get

3.7 0< mv(1=v) (2 (A y,y) - 2f (Az,2)) (f (A) y9) + 2 (Az, 7))
< ( v) f ({Az, @) + v (f (A) y.y) — F177 ({Az,2)) (f (A) y,y)
< 217 v(1=v) (£ (A)y,y) = 2f (Az,2)) (f (A) y,y) + f* ((Az, 2)))

which by taking y = z, produces the second, third and fourth inequalities in (3.1).
By Holder-McCarthy inequality we have

(12 (A)z,x) > (f (A)z,2)",
for any x € H with ||z|| = 1, which implies that
(2 (A) z,2) — 2f ((Az, 2)) (f (A) z, ) + f* ((Az, )
> (f (A)w,2)” = 2f ((Az,@)) (f (A) z,2) + [* ((Az, 7))
= ((f (A z,2) - [ ((Az,2)))*
proving the first inequality in (3.1).
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If f is convex, then by Jensen’s inequality we have (f (A) z,z) > f ((Az, z)) for
any « € H with ||z|| = 1. Using the first two inequalities in (3.1) we get

(38)  (0<) v (1= 0) (f (A)2,2)  f ({Az,2)))?

< orv (1= 0) (£ () ,2) = 27 ({Az,2)) (F (A) 2, 2) + £ (A, 2))
< (1=0) £ ((Az,2)) + v {f (A)2,) = £ ((Av, ) (F (A) 2,)
< (f (A)2,2) = [ (A, ) (¥ (A)2,2)

proving the inequality (3.2).
From the fourth inequality in (3.1) we have

(3.9) 17 ((Az,2)) (f* ((Az,z)) — (f* (A) 2, 2))
= f ((Az,z)) — f17" ((Az, 2)) (f” (4) z, 2)
< (1=v) f ({Az,2) +v{f (A z,2) = f177 ((Az,2)) (f* (A) 2, 2)

v (L=v) ((f* (A z,2) - 2f (Az, 2)) (f (A) 2, 2) + * ((Az,2)))

for any x € H with ||z|| = 1, proving the inequality (3.3).
If f is concave on [m, M], then by the first two inequalities in (3.1) we get

(310)  (0<) g (1 =) ({f (A) ) —  ({Aw, )

< v (1= 0) (7 (), w) = 2f (A, 2)) (F (A),2) + 12 (A, 2)))
<(I-v)f ((Amal’}) +v(f(A)z,x) - f17 ((Az,2)) (f7 (A) 2, 2)
< F({Az,a) — F ((Az, ) (F* (A) 2, 2)
= (<A$,$>) [f" ((Az, z)) = (" (A) =, z)]
for any x € H with ||z|| = 1, proving the inequality (3.4). O

Remark 2. The function f (t) =t", r > 1 is convex on Ry.. Then for any v € [0,1]
and a selfadjoint operator mly < A < M1y with 0 < m < M we have from (3.2)
that

(3.11) (0<)—

s (1—v)(A"z,z) — (Az,z)")
<{(A"z,z) — (Az, 1:>(1_V)T (A" "z, x)

for any x € H with ||z| = 1.
If we take in (3.11) v = %, then we get the inequality

(312) (0<)— ((A"z,x) — (Ax,x)T)Q < (A"z,z) — (Az, z)"? <AT/2x,x>

1
8MT
for any x € H with ||z|| = 1.

If we take r =2 in (8. 11) then we get

2
(3.13) (0<) —— M2 v(l—v) (<A2x,x> — (Az, x)2)
< (Az,z) — <Ax,x)2(1_”) (A z,2)
for any x € H with ||z| = 1.
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The function f (t) =9, g € (0,1) is concave on Ry. Then for any v € [0,1] and
a selfadjoint operator mly < A < M1y with 0 < m < M we have from (3.4)

(3.14) (0 <) v (1 —v)((Az,2)? — (A%, z))?

2M4
< (Az, z) (A, 2)" — (A9, 2)]

for any x € H with ||z|| = 1.
Since (Az,z)* ™ < M= for any x € H with ||z|| = 1, then by (3.14) we
have
1
2MC-v)a
for any x € H with ||z| = 1.

(3.15) (0<) v (1 —v) ((Az,2)? — (A%, 2))° < (Az, 2)" — (A2, z)

If we use the second Cartwright-Field inequality that holds for any a, b € [v,T]
and v € [0,1], namely

1 b a

- _ e = < _ _ l=vv

2V(1 y)’y<a—|—b 2)_(1 v)a+vb—a b

v(l—-v)T 9—1-9—2
a b

Theorem 6. With the assumptions of Theorem 5 we have

<

N | =

we can state the following result as well:

(3.16) Jyl/ (1-v)

X (<f1/2 > 1/2(<A:c,:c>) < 1/2 :r,:r> fl/2 (Az,x )
S%w(l—y)(<f(z4)w,rc>f ((Aw,2)) + f ({Az,2)) (f " (A) 2, 2) - 2)
< (1=v) f (Az,2) + v {f (A 2,2) — '~ ”(<Ax ) (f (A > 2)

< 3T (=) (6 () £ ((Aw, )+ F (A, 2) (7 (D)) — 2)

for any v € [0,1] and for any x € H with ||z| = 1.
Moreover, if f is convex on [m, M|, then

3.17) (0

IN

) 5w (1-)

< ({772 Ay, ) ;2 (A ) = (772 () ) 2 (A, )
< (f (A)z,2) = 17 (Az,2)) (f* (A . 2)

and
(3.18) [V ((Aw,x)) [f* ((Az, ) — (f¥ (A) z,z)]
< %FV (1 —v) ((f (A z,z) f~ ((Az,2)) + [ ((Az,2)) (f " (A) z,2) - 2)

for any v € [0,1] and for any x € H with ||z|| = 1.
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If f is concave on [m, M], then
1
(3.19) (0<) W (1-v)

< ((F72 (Wa.z) ;772 (Az,2) = (£ (A)2,2) £12 ((Az,2)))
< 7V ((Ax,2)) [f7 ((Az, 2)) = (7 (A) @, 2)]
for any v € [0,1] and for any x € H with ||z|| = 1.

2

The proof follows along the lines of the proof in Theorem 5 and we omit the
details.

4. RELATED RESULTS
By the use of the Kittaneh-Manasrah inequality (1.8) we have:

Theorem 7. With the assumptions of Theorem 5 we have

@y (PP @) - P (A
<r((f@Waa) + £ ((Az,2) —2(£% (A)a,2) £/2 ((Az,2)))
< (1-v) f({Az,2)) + v (f (A z,z) = f177 (Az,2)) (f* (A) 2, 2)
< R((F (A)z.a)+ f ((Az.2) =2 (£ (A w,a) /2 ((Ax,2))

for any v € [0,1] and for any x € H with ||z|| = 1, where r = min {1 — v, v} and
R=max{l—v,v}.
Moreover, if f is convex on [m, M|, then

(4.2) (£ @) - 2 (<Ax,x>))2
< (F (W) a,a) = 17 ((Aw,2) (17 (A) 2, 2)
and
(43) 7 (A @) [ (Aw,@) — (7 (A) 2, a)
< R((f(A)w,2) + [ ((Az,2) =2 (/2 (A) 2. z) [/2 ({As, ) )

for any v € [0,1] and for any x € H with ||z| = 1.
If f is concave on [m, M], then

(14) r (P72 (W) - P72 ((Awa)
< 7V ((Az,2)) [f7 ((Az,2)) = (7 (A) 2, 2)]
for any v € [0,1] and for any x € H with ||z| = 1.

The function f (t) = t¥, p > 1 is convex on Ry. Then for any v € [0,1] and a
positive selfadjoint operator A we have from (4.2) that

(4.5) r (<A”/2x,x> - <A$7x>p/2)2 < (APz,z) — (Az, 2) 7P (AP, 2)

for any x € H with ||z|| = 1, where r = min {1 — v,v} and R = max {1 —v,v}.



12 S. S. DRAGOMIR™?
If we take in (4.5) v = %, then we get the inequality
1 ) 2 ,
(4.6) 3 (<Ap/2x,x> - <Ax,x>p/2) < (APz,z) — (Az, )P <Ap/2x,x>

for any « € H with ||z]| = 1.
If we take p = 1 in (4.5), then we get

(4.7) r ((Aw,x)1/2 - <A1/2x,x>)2 < (Az,z) — (Az,z)' 7" (A2, )

for any « € H with ||z]| = 1.
If A< Mly, then (Az,z)' ™" < M for v € (0,1) and z € H with ||z| = 1,
and since

(Az,z) — (Az,2) ™" (A, z) = (Az,2)' ™" ((Az,2)" — (A2, )
then by (4.7) we get

(4.8) ﬁ ((Am, a2 - <A1/2x,x>>2 < (Azx,z)" — (A’x, )

for any « € H with ||z]| = 1.
Finally, if we use the logarithmic inequality (1.13) we can state the following
result as well:

Theorem 8. With the assumptions of Theorem 5 we have

(49)  Lr(1— 1)y (n((f (A)2.2)) — (] (4),2))°
< %V 1—-v)y
x ((In® f (A)z,z) = 2(In f (A) 2, 2) In ((f (A) 2, 2)) + In® ((f (A) 2, )))
<(1=v) f({Az,2)) + v (f (A)z,z) = 177 (Az,2)) (" (A) 2, )
< %V (1-v)T

x (0 f (A),) = 2 (in f (A) 2, 2) In (4F (A)a, ) + W (F (4) 2, 2)))

for any v € [0,1] and for any x € H with ||z|| = 1, where r = min {1 — v, v} and
R=max{l—v,v}.
Moreover, if [ is convex on [m, M], then

(4.10) Sv (1= w)7 (n((f (A),2)) ~ (0 f (4) 7,))’
< (F(A)a,z) — 7 (A 2) (7 (A) 2, 2)

and

(411) 7 ((Az,2)) [ ((Az, 7)) — (f” (A) 2, 2)]

1
—v(1 = )
2
x (I f (A)z,2) —2(In f (A) z,2) In ((f (A) z,2)) + In® ((f (A) z,z)))
for any v € [0,1] and for any x € H with ||z|| = 1.
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If f is concave on [m, M], then
12) %V(l — )y (I ((f (A)z,2)) - (In f (A) 2, 2))*
< 177 ((Az, @) [f7 (A, 2) — (7 (A) 2, 2)]

for any v € [0,1] and for any x € H with ||z|| = 1.
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