Received 17/06/16

ON SOME INTEGRAL INEQUALITIES FOR CONFORMABLE
FRACTIONAL INTEGRALS

ABDULLAH AKKURT, M. ESRA YILDIRIM, AND HUSEYIN YILDIRIM
ABSTRACT. In this article, we obtain integral inequalities for Conformal frac-

tional integrals and Chebyshev functional by using synchronous functions.

1. INTRODUCTION

Let us consider the functional in [1]

1 a 1 0 1 0
(L1)  T(f.9) :=m{f(w)g(x)dm— (baff(w)dw> (b fg(w)de)

aq

where f and g are two synchronous and integrable functions on [a, b].

In the last few decades, much significant development of integral inequalities had
been established. Integral inequalities have been frequently employed in the theory
of applied sciences, differential equations, and functional analysis. In the last two
decades, they have been the focus of attention in ([1], [2]-[4]).

In this paper, we obtain some integral inequalities for conformable fractional
integrals.

2. DEFINITIONS AND PROPERTIES OF CONFORMABLE FRACTIONAL DERIVATIVE
AND INTEGRAL

The following definitions and theorems with respect to conformable fractional
derivative and integral were referred in [5]-[10].

Definition 1. (Conformable fractional derivative) Given a function f : [0,00) —
R. Then the “conformable fractional derivative” of f of order « is defined by

(2.1) Do () (1) = tim LEHE) =S ()

e—0 3

forallt >0, a € (0,1). If f is a—differentiable in some (0,a), a > 0, hm+ £ () eist,
t—0

then define

(2.2) £00) = lim £ (1).

t—0t

We can write f(*) (t) for Dy (f) (t) to denote the conformable fractional derivatives
of f of order . In addition, if the conformable fractional derivative of f of order
« exists, then we simply say f is a—differentiable.

Theorem 1. Let o € (0,1] and f, g be a—differentiable at a point t > 0. Then
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i. Do (af +bg) = aD, (f) + Dy (g), for all a,b € R,
ii. Dy, (A) = 0, for all constant functions f () = A,
it Do (fg) = fDa (9) +9Da (f)

iv. Do (f) _ IDa (g)g—QgDa (f)

If f is differentiable, then D, (f) (t) = t'=* 9% (¢).

Also: *
1.D,(1)=0

2. D, (e%%) = ax'~“e*®, a € R

3. D, (sin(azr)) = ax'~*cos(ax), a € R

4. D, (cos(ar)) = —az'~*sin(az), a € R

5. Do (2t%) =1

6. D, (Sm(%)) = cos(L)

7. D, (cos(%)) = —sin(%)

8. Dy (e<%>) = ().

Theorem 2 (Mean value theorem for conformable fractional differentiable func-
tions). Let o € (0,1] and f : [a,b] — R be a continuous on [a,b] and an a-fractional
differentiable mapping on (a,b) with 0 < a < b. Then, there exists ¢ € (a,b), such

that ,
Da () (¢) = LV =S 1),

Definition 2 (Conformable fractional integral). Let o € (0,1] and 0 < a < b. A
function f : [a,b] — R is a-fractional integrable on [a,b] if the integral

b b
(2.3) / f(x)doz = / f(z)z* e
exists and is finite. All a-fractional integrable on [a,b] is indicated by L} ([a,b])

Remark 1.

I8 (F) () = I¢ (1 f) = / 1@ g,

.,L.l—a
where the integral is the usual Riemann improper integral, and o € (0,1].

Theorem 3. Let [ : (a,b) — R be differentiable and 0 < « < 1. Then, for all
t > a we have

(2.4) IGDof () = ()= f(a).
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Theorem 4. (Integration by parts) Let f,g : [a,b] — R be two functions such
that fg is differentiable. Then

b b
@5 [ @D @ das = foli~ [ o) DL (@) da

Theorem 5. Assume that f : [a,00) — R such that f(")(t) is continuous and
a € (n,n+ 1]. Then, for all t > a we have

Dof ) Ia=f(t).

Theorem 6. Let a € (0,1] and f : [a,b] — R be a continuous on [a,b] with
0<a<b. Then,

15 (f) (@) < Ig | f] (z).-
In this paper, we establish integral inequalities for Conformable fractional inte-
grals and Chebyshev functional by using synchronous functions.
3. MAIN RESULTS

Theorem 7. Let f and g be two synchronous functions on [0,00). Then fort > a,
a > 0;

(3.1) I2(f9)(t) > —— T8 f(1)Iog(t).

— o go <«

Proof. For f and g synchronous functions, we have

(3-2) (f (1) = f(p) (9 (1) = 9(p)) = 0.
From (3.2), it can be written as
(3:3) F(M)g(r) + fp)g(p) = F(T)g(p) + f(p)g(7).

If we multiply both the sides of (3.3) with 771, 7 € (a,t), we get
(34)  TTHf(m)g(r) + 0T f(p)g(p) = T f(T)g(p) + T f(p)g(T).

Integrating (3.4) with respect to 7 over (a,t), we obtain:

Lot f (g (n)dr + [0 F(p)g(p)dr

(3.5)
> [Tremlf(n)g(p)dr + [1 7o f(p)g(r)dr.

Consequently,

I3 F(Dg(r)dat + [} F(0)g(p)dat
(3.6)

> [P F(D)g(p)dar + [L F(p)g(T)dar.
So we have
37 U0 + Y F()a(0) > gL + ()T (9)().

Now multiplying two sides of (3.7) by p®~1, p € (a,t), we obtain:
(3.8)

t® — a®
P IS (fo)(t) 4+ p* !

(07

f(p)g(p) = p*~tg(p)I5(f)(E) + P £ (p)I5(9) (})-
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By integrating (3.8) over (a,t), we get:

I8(f9)(t) f, o+ ——
(3.9)

t e t
> Iaf () [, p*te(p)dp + Iag (1) [, p*~ ' f(p)dp-.
The inequality can be written as the following at the same time,

oo I3 0L f(p)g(p)dp

(6% [e3%

—a

-1
t
(3.10) 0= (S0 miomeo.
This completes the proof. ([

Theorem 8. Let f and g be two synchronous functions on [a,b]. Then fort > a,
a>0, and 8 >0,

t8 —af t* —a®
(3.11) 3 Lo (fo) () + — I (f9) (8) = IS f(DI5g(t) + I3 F (6) Iag(t).
Proof. If we multiply two sides of (3.7) by p?~!, we obtain:
(3.12)

PO + 07 (p)a() = o D)) + 07 FOTE) (1)

Integrating (3.12) over (a,t), we get:

Ii(fg)(t)ftpﬁ’ldp+ # ftpﬂ*lf(p)g(p)dp

(3.13) ’ ‘
t ¢
> ILf(t) [ o7 g(p)dt + I5g(t) [ 077 fp)dt.
Consequently,
B _ ,8 a_ ,a«
(B14) I () () + =12 () () 2 T2 (01 9(0) + I2F (D I2g(0).
This completes the proof. (|

Remark 2. Applying Theorem 8 for a = [3, we obtain Theorem 7.

Theorem 9. Let (f;)
all t > a, o> 07

n o _ ge 1-n n
(3.15) 15<Hfi><t>>( - ) (Hfgfi) (1
i=1 i=1

Proof. We will prove this theorem by induction.It is clear that for n = 1 and all
t >0, a>0, we have I2(f1)(t) > I2 f1(t). And for n = 2, we obtain (3.1),

i=1,..n bem positive increasing functions on [0,00). Then for

(0% e}

—a

(3.16) ) () > (t ) (I912) (1) (I8.f2) (1),

Now assume that( induction hypothesis)

.17 el oo (") (H szi> (0.
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n
If (fi),_, , are positive increasing functions, then (H fi) (t) is an increasing

n—1
function. So we can use Theorem 7 for functions [] f; = g, and f,, = f, therefore
i=1

we obtain
n o — g
CEU | ORI = (H f"ﬁ) (I25) ().
By (3.17)
(319) Ia Hfz > ( aao‘)_ (ta;aa> - <H10f1> Iﬂfn)()
This completes the proof. ([l

Theorem 10. If f is an increasing and g is a differentiable functions and there
exist a real number m ;= t1r>1£ g'(t) on [0,4+00). Then for allt € [a,b] and o > 0,

15(fg)() > (““ - ) 1) g (1)
(3.20)
ta+1 _ aa+l " .
—WTIaf(t) +mlg (tf(t)).

Proof. Consider the given function H(t) = g(t) — mt. It is clear that H is an
increasing function and differentiable on [0, +00). Then using Theorem 7 we obtain
mt) f(

IS(H ) () = 15((9(t) — )

e — q@ —1 . . )
(3.21) Z( o ) I8 f (@) [LE5g(t) — mig (t)]

-1
& — g% toz+1 _ anrl
> I8 f(t)I%g(t) — m— T2 f(¢t).
_< o ) af()ag() m o 1 a ()

Also,
IS(Hf)(¢)

(3.22) = I3((g(t) —mt) f(t))

= 15(f9)(t) —mlIg (tf(1))
From equations (3.21) and (3.22), we get:

15(fg)(1) > (ta - ) 125(1) 12 1)
(3.23)
ta+1 _ aa—i—l . "
—mTIaf(t) +mlIg (tf(t)).

This completes the proof. (Il
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Corollary 1. If f is an increasing and g is a differentiable functions on [0, 4+00).
Then for all t € [a,b] and o > 0,
1. If there exist real numbers my = gg f'(z), and my = tir>1£g'(t). Then we

have:

tot2 _ gat2
I3(fg)(t) — malg (tg (t)) — mal2 (tf (£) +mam <M>
v — g\t tatl _ gatl
(324) > ( a ) [Igf(t)-[gg(t) —ma Tlgg(t)
totl _ gotl " patl _ gatly 2
My Ll ) mm <a+1> ] ~

I1. If there exist real numbers My := sup f'(x), and My := supg'(t). Then we
t>0 >0
have:

ta+2 7aoz+2
TE(7)(0) ~ MATE (tg(0) - M (ef(0) + dua (5 )
-1

o — g% taJrl _ aa+1

> I2f()I5g(t) — M——1%g(t
s = () [ - S et

ta+l _ anrl toHrl _ anrl 2
—My———F—I3f(t) + M1 My | —— .

e L/ + M 2( o )1

Proof. Consider the given function F(t) = f(t) — mit and G(t) = g(t) — mat. It
is clear that F' and G are increasing functions and differentiable on [0, +00). Then
using Theorem 7 we obtain
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Therefore

)0 = maTt (19(0) — ma2(ef )+ mama (25

a+2

-1
e — g% tCH-l _ aa-{-l
> ( ) [fgf(t)fggu) o T ey

o a+1

potl _ gatl o+l et 2
—mg———I2f(t _— .
e 180 s (25 )

This completes the proof of (I).

Consider the given function F'(t) = f(t) — Mit, G(t) = g(t) — Mat. It is clear
that F' and G are increasing functions and differentiable on [0, +00). Then using
Theorem 7 we obtain

IS(FG)(t) =I5 (J(6) — Mit) (9() — Mat)
« [e3 -1
> (F55) 100 -0 1260 -
ta _ aa -1 . . tcx+1 _ anrl .
> (555) s - S nat)
ta+1 _ anrl " ta+1 _ anrl 2
a0 (ST ]
Therefore
ta+2 _ aoz+2
TE(7)(0) ~ MATE (tg(0) ~ MaTz(ef () + b (5 )

-1
o — g% taJrl _ ao¢+1
> ( ) [Lif(t)fig(t) L VTP

e} a+1
ta—i—l _ aa-i—l ta—i—l _ aa-i—l 2
—My———F—I3f(t) + M1 My | ———— .
S s+ anon (24
This completes the proof of (II). O
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