SEVERAL INEQUALITIES FOR NORM

LOREDANA CIURDARIU

ABSTRACT. The aim of this paper is to present new forms of several inequalities for operators in Hilbert spaces, using the classical norm given by the scalar product.

1. Introduction

Let \mathcal{H} be a complex Hilbert space $(\mathcal{H}, < ., .>)$ and A, B two positive operators in $\mathcal{B}(\mathcal{H})$ the space of linear bounded operators on \mathcal{H} . As in [8], we take into account the following notations for the weighted operator arithmetic mean and the weighted operator geometric mean:

$$A\nabla_{\mu}B = (1-\mu)A + \mu B$$

and

$$A\sharp_{\mu}B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\mu} A^{\frac{1}{2}}$$

when $\mu \in [0, 1]$. If $\mu = \frac{1}{2}$ then we write only $A \nabla B$, $A \sharp B$.

In addition, let Φ be a continuous function defined on the interval J of real numbers, B a selfadjoint operator on the Hilbert space \mathcal{H} and A a positive invertible operator on \mathcal{H} . We assume, like in [8] that the spectrum $Sp\{A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\} \subset J$ and then by using the continuous functional calculus, we can use the noncommutative *perspective* $\mathcal{P}_{\Phi}(B, A)$ given by

$$\mathcal{P}_{\Phi}(B,A) = A^{\frac{1}{2}} \Phi\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}$$

in [8]. It is clear that

$$\mathcal{P}_{\Phi}(B,A) = A \sharp_{\mu} B$$

when $\Phi(t) = t^{\mu}$. We can also mention that the *relative operator entropy* S(A|B) for positive invertible operators A and B was defined by

$$S(A|B) = A^{\frac{1}{2}} \log \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) A^{\frac{1}{2}}$$

in the papers of Kamei and Fuji, see [12] and [11].

It is necessary to recall, as in [7], that for selfadjoint operators $A, B \in B(H)$ we write $A \leq B$ (or $B \geq A$) if $\langle Ax, x \rangle \leq \langle Bx, x \rangle$ for every vector $x \in H$. We will consider for beginning A as being a selfadjoint linear operator on a complex Hilbert space $(H; \langle ., . \rangle)$. The *Gelfand map* establishes a *- isometrically isomorphism Φ between the set C(Sp(A)) of all *continuous functions* defined on the *spectrum* of A, denoted Sp(A), and the C^* - algebra $C^*(A)$ generated by A and the identity

Date: June 09, 2016.

2000 Mathematics Subject Classification. 26D15.

RGMIA Res. Rep. Coll. 19 (2016), Art. 109

Key words and phrases. selfadjoint operators, inner product, norm.

operator 1_H on H as follows: For any $f, f \in C(Sp(A))$ and for any $\alpha, \beta \in \mathbf{C}$ we have

(i) $\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g);$ (ii) $\Phi(fg) = \Phi(f)\Phi(g)$ and $\Phi(f) = \Phi(f^*);$ (iii) $||\Phi(f)|| = ||f|| := \sup_{t \in Sp(A)} |f(t)|;$ (iv) $\Phi(f_0) = 1_H$ and $\Phi(f_1) = A$, where $f_0(t) = 1$ and $f_1(t) = t$ for $t \in Sp(A.)$ Using this notation, as in [7] for example, we define

$$f(A) := \Phi(f)$$
 for all $f \in C(Sp(A))$

and we call it the *continuous functional calculus* for a selfadjoint operator A. It is known that if A is a selfadjoint operator and f is a real valued continuous function on Sp(A), then $f(t) \ge 0$ for any $t \in Sp(A)$ implies that $f(A) \ge 0$, i.e. f(A) is a *positive operator* on H. In addition, if and f and g are real valued functions on Sp(A) then the following property holds:

(1)
$$f(t) \ge g(t)$$
 for any $t \in Sp(A)$ implies that $f(A) \ge g(A)$

in the operator order of B(H).

2. Variant with norm of some inequalities

In the first part of this section we reformulate inequalities from [4] in the case of the classical norm given by the scalar product in Hilbert spaces and then we extend some inequalities given in [13] for positive invertible operators on \mathcal{H} .

Theorem 1. If $n \in \mathbf{N}$, $n \geq 2$, N_1 , N_2 , ..., $N_n \in \mathcal{B}(\mathcal{H})$ are commuting gramian normal operators on Hilbert space \mathcal{H} and $a_1, ..., a_n \in \mathbf{R}^*$ with $\sum_{k=1}^n a_k \neq 0$ then we have:

$$\sum_{i=1}^{n} \frac{||N_i x||^2}{a_i} - \frac{||(\sum_{i=1}^{n} N_i x)|^2}{\sum_{i=1}^{n} a_i} = \frac{1}{\sum_{i=1}^{n} a_i} \sum_{1 \le i < j \le n} \frac{||(a_i N_j - a_j N_i) x||^2}{a_i a_j},$$

where $|N| = (N^*N)^{\frac{1}{2}}$ is the modulus of N.

Proof. We take into account the inequality (1) from [4] and then for every $x \in \mathcal{H}$, considering the inner product, we have:

$$<\sum_{i=1}^n \frac{|N_i|^2}{a_i} - \frac{|\sum_{i=1}^n N_i|^2}{\sum_{i=1}^n a_i} x, x> = <\frac{1}{\sum_{i=1}^n a_i} \sum_{1 \le i < j \le n} \frac{|a_i N_j - a_j N_i|^2}{a_i a_j} x, x>.$$

By calculus we obtain:

$$\sum_{i=1}^n < \frac{|N_i|^2}{a_i}x, x > - < \frac{|\sum_{i=1}^n N_i|^2}{\sum_{i=1}^n a_i}x, x > = \frac{1}{\sum_{i=1}^n a_i} < \sum_{1 \le i < j \le n} \frac{|a_i N_j - a_j N_i|^2}{a_i a_j}x, x > = \frac{1}{\sum_{i=1}^n a_i}x, x > = \frac{1}$$

which leads to desired inequality.

Theorem 2. If $n \in \mathbf{N}$, $n \geq 2$, N_1 , N_2 ,..., $N_n \in \mathcal{B}(\mathcal{H})$ are gramian normal operators on Hilbert space \mathcal{H} which commute as pairs and $a_1, ..., a_n \in \mathbf{R}^*$ with $\sum_{k=1}^n a_k \neq 0$ then we have:

$$\frac{||\sum_{i=1}^{n} N_i x||^2}{\sum_{i=1}^{n} a_i} + \sum_{k=1}^{n} \frac{||N_k x||^2}{a_k} - \frac{2}{\sum_{k=1}^{n} a_k} \sum_{k=1}^{n} ||N_k x||^2 =$$
$$= \frac{1}{\sum_{i=1}^{n} a_i} \sum_{1 \le i < j \le n} \frac{||(a_i N_j + a_j N_i) x||^2}{a_i a_j}.$$

Proof. Starting with the inequality (6) from Theorem 6, see [4], by similary calculus we obtain the desired inequality.

Proposition 1. Let $N_1, ..., N_n$ $(n \ge 2)$ be a sequence of gramian normal operators in $\mathcal{B}(\mathcal{H})$ commuting as pairs so that $\sum_{k=1}^n a_k N_k$ is hermitian and $a_1, ..., a_n \in \mathbf{R}^*$ with $\sum_{k=1}^n a_k > 0$. Then we have:

$$\sum_{1 \le i < j \le n} \frac{||(a_i N_j + a_j N_i)x||^2}{a_1 a_j} \le \le \frac{n-4}{2} \sum_{k=1}^n ||N_k x||^2 + \left(\sum_{k=1}^n a_k\right) \sum_{k=1}^n \frac{||N_k x||^2}{a_k} + \frac{n}{2} |||\sum_{k=1}^n N_k^2|^{\frac{1}{2}} x||^2.$$

Proof. We use the same method as in Theorem 1 and take into account the inequality from Proposition 2, see [4].

Proposition 2. Let $N_1, ..., N_n$ $(n \ge 2)$ be a sequence of gramian normal operators in $\mathcal{B}(\mathcal{H})$ commuting as pairs so that $\sum_{k=1}^n a_k N_k$ is hermitian and $a_1, ..., a_n \in \mathbf{R}^*$ with $\sum_{k=1}^n a_k > 0$. Then the following inequality takes place:

$$\sum_{1 \le i < j \le n} \frac{||(a_i N_j - a_j N_i)x||^2}{a_1 a_j} \ge$$
$$\ge \left(\sum_{i=1}^n a_i\right) \sum_{k=1}^n \frac{||N_k x||^2}{a_k} - \frac{n}{2} \sum_{k=1}^n ||N_i x||^2 - \frac{n}{2} |||\sum_{k=1}^n N_k^2|^{\frac{1}{2}} x||^2$$

Proof. We use inequality from Proposition 3, see [4] and the same reason as in Theorem 1.

Consequence 1. Let $\lambda \in (0,1)$ and A and B two positive invertible operators on a complex Hilbert space. Then we have:

$$\begin{split} r \left[B + 2A - 2A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} + I \right)^{\frac{1}{2}} A^{\frac{1}{2}} \right] &\leq \lambda B + A - A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} + I \right)^{\lambda} A^{\frac{1}{2}} \leq \\ &\leq (1 - r) \left[B + 2A - 2A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} + I \right)^{\frac{1}{2}} A^{\frac{1}{2}} \right], \end{split}$$

where $r = \min\{\lambda, 1 - \lambda\}$.

Proof. Using inequality (2.11) from Theorem 2.2, see [13], by the continuous functional calculus as in [8], we obtain for an operator C > 0 that

$$r(C+2I-2\sqrt{C+I}) \le \lambda C + I - (C+I)^{\lambda} \le (1-r)(C+2I-2\sqrt{C+I}).$$

Now we take $C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ obtaining:

$$\begin{split} r\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} + 2I - 2(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} + I)^{\frac{1}{2}}\right) &\leq \lambda A^{-\frac{1}{2}}BA^{-\frac{1}{2}} + I - \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} + I\right)^{\lambda} \leq \\ &\leq (1-r)\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} + 2I - 2(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} + I)^{\frac{1}{2}}\right). \end{split}$$

If we multiply both sides of previous inequality with $A^{\frac{1}{2}}$ we find the desired inequality.

or

Remark 1. Under cunditions of Consequence 1 we have:

$$\begin{split} r\left[||B^{\frac{1}{2}}x||^{2}+2||A^{\frac{1}{2}}x||^{2}-2||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}+I)^{\frac{1}{4}}A^{\frac{1}{2}}x||^{2}\right] \leq \\ \leq \lambda ||B^{\frac{1}{2}}x||^{2}+||A^{\frac{1}{2}}x||^{2}-||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}+I)^{\frac{\lambda}{2}}A^{\frac{1}{2}}x||^{2} \leq \\ \leq (1-r)\left[||B^{\frac{1}{2}}x||^{2}+2||A^{\frac{1}{2}}x||^{2}-2||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}+I)^{\frac{1}{4}}A^{\frac{1}{2}}x||^{2}\right] \end{split}$$

Proof. Using inequality from Consequence 1, the proof will be as in Theorem 1.

Theorem 3. Let $\lambda \in (0,1)$ and A and B two positive invertible operators on a complex Hilbert space with $B \ge A$. Then the following inequality takes place:

$$2r\left(A\nabla_{\frac{1}{2}}B - A\sharp_{\frac{1}{2}}B\right) + A_{1}(\lambda)A^{\frac{1}{2}}\log^{2}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)A^{\frac{1}{2}} \leq \\ \leq A\nabla_{\lambda}B - A\sharp_{\lambda}B \leq \\ \leq 2(1-r)\left(A\nabla_{\frac{1}{2}}B - A\sharp_{\frac{1}{2}}B\right) + B_{1}(\lambda)A^{\frac{1}{2}}\log^{2}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)A^{\frac{1}{2}}, \\ 2r\left(A\nabla_{\frac{1}{2}}B - A\sharp_{\frac{1}{2}}B\right) + A_{1}(\lambda)\mathcal{P}_{\log^{2}}(B,A) \leq \\ \leq A\nabla_{\lambda}B - A\sharp_{\lambda}B \leq \\ \leq 2(1-r)\left(A\nabla_{\frac{1}{2}}B - A\sharp_{\frac{1}{2}}B\right) + B_{1}(\lambda)\mathcal{P}_{\log^{2}}(B,A),$$

where $r = \min\{\lambda, 1-\lambda\}, A_1(\lambda) = \frac{\lambda(1-\lambda)}{1} - \frac{r}{4} \text{ and } B_1(\lambda) = \frac{\lambda(1-\lambda)}{1} - \frac{1-r}{4}.$

Proof. In this case we consider the inequality (2.9) from Theorem 2.1, see [13], taking b = 1. Thus we get:

$$r(\sqrt{a}-1)^2 + A_1(\lambda)\log^2 a \le \lambda a + 1 - \lambda - a^\lambda \le$$
$$\le (1-r)(\sqrt{a}-1)^2 + B_1(\lambda)\log^2 a.$$

Now if $C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ by continuous functional calculus as in [8] we have:

$$r(\sqrt{C} - I)^2 + A_1(\lambda) \log^2 C \le \lambda C + (1 - \lambda)I - C^{\lambda} \le \le (1 - r)(\sqrt{C} - I)^2 + B_1(\lambda) \log^2 C$$

or

wher

$$r((A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{2}} - I)^{2} + A_{1}(\lambda)\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}) \leq \\ \leq \lambda A^{-\frac{1}{2}}BA^{-\frac{1}{2}} + (1-\lambda)I - (A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\lambda} \leq \\ \leq (1-r)((A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{2}} - I)^{2} + B_{1}(\lambda)\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})$$

We multiply both sides of previous inequality with $A^{\frac{1}{2}}$ and we get

$$rA^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{2}} - I)^{2}A^{\frac{1}{2}} + A_{1}(\lambda)A^{\frac{1}{2}}\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}} \le$$
$$\le \lambda B + (1 - \lambda)A - A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\lambda}A^{\frac{1}{2}} \le$$
$$\le (1 - r)A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{2}} - I)^{2}A^{\frac{1}{2}} + B_{1}(\lambda)A^{\frac{1}{2}}\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}}.$$

 $\begin{aligned} & \text{Proposition 3. Under condition of Theorem 3 the following inequality holds:} \\ & r \left[||B^{\frac{1}{2}}x||^2 + ||A^{\frac{1}{2}}x||^2 - 2||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{4}}A^{\frac{1}{2}}x||^2 \right] + A_1(\lambda)||\log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}}x||^2 \leq \\ & \leq \lambda ||B^{\frac{1}{2}}x||^2 + (1-\lambda)||A^{\frac{1}{2}}x||^2 - ||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{\lambda}{2}}A^{\frac{1}{2}}x||^2 \leq \\ & \leq (1-r) \left[||B^{\frac{1}{2}}x||^2 + ||A^{\frac{1}{2}}x||^2 - 2||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{4}}A^{\frac{1}{2}}x||^2 \right] + \\ & \quad + B_1(\lambda)||\log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}}x||^2. \end{aligned}$

Proof. We will use inequality from Theorem 3 and the same method as in Theorem 1. ■

Proposition 4. Let $\lambda \in (0,1)$ and A and B two positive invertible operators on a complex Hilbert space with $B \leq A$. Then the following inequality holds:

$$2r\left(A\nabla_{\frac{1}{2}}B - A\sharp_{\frac{1}{2}}B\right) + A_{1}(\lambda)BA^{-\frac{1}{2}}\log^{2}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)A^{\frac{1}{2}} \leq \\ \leq A\nabla_{\lambda}B - A\sharp_{\lambda}B \leq \\ \leq 2(1-r)\left(A\nabla_{\frac{1}{2}}B - A\sharp_{\frac{1}{2}}B\right) + B_{1}(\lambda)BA^{-\frac{1}{2}}\log^{2}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)A^{\frac{1}{2}}, \\ e\ r = \min\{\lambda, 1-\lambda\},\ A_{1}(\lambda) = \frac{\lambda(1-\lambda)}{1} - \frac{r}{4}\ and\ B_{1}(\lambda) = \frac{\lambda(1-\lambda)}{1} - \frac{1-r}{4}.$$

Proof. For the beginning we take b = 1 in inequality (3.18) from Application 3.2, see [13], and we will obtain the following inequality:

$$r(\sqrt{a}-1)^2 + A(\lambda)a\log^2 a \le \lambda a + (1-\lambda) - a^\lambda \le$$
$$\le (1-r)(\sqrt{a}-1)^2 + B(\lambda)a\log^2 a,$$

when $0 < a \leq 1$, $\lambda \in (0,1)$ and r, $A(\lambda)$, $B(\lambda)$ are as in Application 3.2. By continuous functional calculus if $C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ as in [8] we get:

$$r(\sqrt{C}-I)^2 + A_1(\lambda)C\log^2 C \le \lambda C + (1-\lambda)I - C^{\lambda} \le$$
$$\le (1-r)(\sqrt{C}-I)^2 + B_1(\lambda)a\log^2 C,$$

or

$$r\left((A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{-\frac{1}{2}} - I\right)^{2} + A_{1}(\lambda)A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\log^{2}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right) \leq \\ \leq \lambda A^{-\frac{1}{2}}BA^{-\frac{1}{2}} + (1-\lambda)I - \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{\lambda} \leq \\ \leq (1-r)\left((A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{-\frac{1}{2}} - I\right)^{2} + B_{1}(\lambda)A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\log^{2}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)$$

if in addition we denote by $A_1(\lambda)$ and $B_1(\lambda)$ the quantities from Application 3.2 in last inequality. By multiplying both sides of previous inequality with $A^{\frac{1}{2}}$ we find the following:

$$rA^{\frac{1}{2}} \left((A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{-\frac{1}{2}} - I \right)^2 A^{\frac{1}{2}} + A_1(\lambda)BA^{-\frac{1}{2}} \log^2 \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} \right) A^{\frac{1}{2}} \le$$
$$\le \lambda B + (1-\lambda)A - A^{\frac{1}{2}} \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} \right)^{\lambda} A^{\frac{1}{2}} \le$$
$$\le (1-r)A^{\frac{1}{2}} \left((A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{-\frac{1}{2}} - I \right)^2 A^{\frac{1}{2}} + B_1(\lambda)BA^{-\frac{1}{2}} \log^2 \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} \right) A^{\frac{1}{2}},$$

which leads to the desired inequality.

Consequence 2. Under conditions of Proposition 4, the following inequalities take place:

$$\begin{split} r[||B^{\frac{1}{2}}x||^{2}+||A^{\frac{1}{2}}x||^{2}-2||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{4}}A^{\frac{1}{2}}x||^{2}]+A_{1}(\lambda)||[(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})]^{\frac{1}{2}}A^{\frac{1}{2}}x||^{2} \leq \\ & \leq \lambda[||B^{\frac{1}{2}}x||^{2}+(1-\lambda)||A^{\frac{1}{2}}x||^{2}-||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{\lambda}{2}}A^{\frac{1}{2}}x||^{2} \leq \\ & \leq (1-r)[||B^{\frac{1}{2}}x||^{2}+||A^{\frac{1}{2}}x||^{2}-2||(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{4}}A^{\frac{1}{2}}x||^{2}]+B_{1}(\lambda)||[(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})]^{\frac{1}{2}}A^{\frac{1}{2}}x||^{2} \end{split}$$

3. Bohr's inequality for norms

As a particular case of Bohr's generalized inequality given in [10] we can obtain:

Remark 2. Let A, B be two operators in $\mathcal{B}(\mathcal{H})$ and $a, b, c, d \in \mathbf{R}, a, b, c, d \neq 0$ such that ab + cd > 0 and $\frac{a}{b} > 0$ or ab + cd < 0 and $\frac{a}{b} < 0$. Then

$$||(aA - bB)x||^{2} + ||(cA - dB)x||^{2} \ge c^{2}(1 - \frac{ad}{cb})||Ax||^{2} + d^{2}(1 - \frac{cb}{ad})||Bx||^{2}.$$

This inequality also takes place if ab + cd > 0 and $\frac{c}{d} > 0$ or ab + cd < 0 and $\frac{c}{d} < 0$. The reverse inequality holds if ab + cd < 0 and $\frac{a}{b} > 0$ or ab + cd > 0 and $\frac{c}{d} < 0$.

Remark 3. (i) For any $r \ge 2$, A and B two positive invertible operators on a complex Hilbert space with $B \ge A$ and u, v > 0 with the property $uv(u+v)^{r-2} = 1$ we have:

$$(1+\frac{u}{v})BA^{-1}B + (1+\frac{v}{u})A \ge (uB+vA)A^{-1}(uB+vA) + (B-A)A^{-1}(B-A)$$

and therefore also

$$(1+\frac{u}{v})||A^{-\frac{1}{2}}Bx||^{2} + (1+\frac{v}{u})||A^{\frac{1}{2}}x||^{2} \ge ||A^{-\frac{1}{2}}(uB+vA)x||^{2} + ||A^{-\frac{1}{2}}(B-A)x||^{2}.$$

(ii0 For any $1 \le r \le 2$, A and B two positive invertible operators on a complex Hilbert space with $B \ge A$ and u, v > 0 with the property $uv(u+v)^{r-2} = 1$ the reverse inequality takes place.

Proof. The demonstration will be by the same method as in Theorem 3 taking into account the inequalities from Theorem 2, see [5]. \blacksquare

Consequence 3. (i) Let (A_i) in $\mathcal{B}(\mathcal{H})$ with $A_i^*A_j = 0, 1 \le i < j \le n$ and $\alpha_{ik}, p_i \in \mathbf{R}$ for i = 1, ..., n and k = 1, ..., m. Define $X = (x_{ij})$ where $x_{ij} = \sum_{k=1}^m \alpha_{ik}^4 - p_i$ if i = j and $x_{ij} = \sum_{k=1}^m \alpha_{ik}^2 \alpha_{jk}^2$ if $i \ne j$. If $X \ge 0$ then

$$\sum_{k=1}^{m} || \sum_{i=1}^{n} a_{ik} A_i |^2 y ||^2 \ge \sum_{i=1}^{n} |p_i| \cdot || |A_i|^2 y ||^2.$$

(i) If $\Lambda(a) + \Lambda(b) \leq \Lambda(c)$ for $a, b, c \in \mathbf{R}^n$ as in [10] then

$$\left\| \left(\sum_{i=1}^{n} a_{i} A_{i} \right) x \right\|^{2} + \left\| \left(\sum_{i=1}^{n} b_{i} A_{i} \right) x \right\|^{2} \le \sum_{i=1}^{n} c_{i} ||A_{i} x||^{2}$$

for arbitrary n-tuple (A_i) in $\mathcal{B}(\mathcal{H})$. If $\Lambda(a) + \Lambda(b) \ge \Lambda(c)$ for $a, b, c \in \mathbb{R}^n$ then the reverse inequality takes place.

Proof. (i) We use Proposition 2 from [5] and the same method as in Theorem 1.
(ii) We use Theorem 3.1 from [10] and the same method as in Theorem 1.

LOREDANA CIURDARIU

References

- Abramovich S., Baric J., Pecaric J., Superquadracity, Bohr's inequality and deviation from a mean value, The Australian Journal of Mathematical and Applications, 7 1, Article 1, 1-9, (2010).
- [2] Chansangiam P., Hemchote P., Pantaragphong P., Generalizations of Bohr inequality for Hilbert spaces, J. Math. Anal. Appl. 356 (2009), 525-536.
- [3] Cheung W-S., Pecaric J., Bohr's inequalities for Hilbert space operators, J. Math. Anal. Appl., 323 (2006) 403412.
- [4] Ciurdariu L., On Bergstrom inequality for commuting gramian normal operators, J. Math. Ineq., 4, 4 (2010), 505-516.
- [5] Ciurdariu L., Inequalities for modules and unitary invariant norms, Int. J. Contemp. Math. Sciences, 7, 2012, no.36, 1771-1783.
- [6] Ciurdariu L., Craciunescu A., On spectral representation on gramian normal operators on pseudo-Hilbert spaces, Analele Universitatii de Vest din Timisoara, Seria Matematica Informatica, XLV, 1, pp.131-149, (2007).
- [7] Dragomir S. S., Cebysev's type inequalities for functions on selfadjoint operators in Hilbert spaces, Res. Rep. Coll., RGMIA, 2009.
- [8] Dragomir S. S., Some asymmetric reverses of Young's scalar and operator inequalities with applications, RGMIA, Res. Rep. Coll., 19, 2016, Art 44.
- [9] Dragomir S. S., New refinements and reverses of Hermite-Hadamard inequality and applications to Young's operator inequality, RGMIA, Res. Rep. Coll., 19, 2016, Art. 42.
- [10] Fujii M., Zuo H., Matrix order in Bohr inequality for operators, Banach J. Math. Anal., 4 (2010) 1, 21-27.
- [11] Fuji J. I. and Kamei E., Uhlmann's interpolational method for operator means, Math. Japon. 34 (1989), no.4, 541-547.
- [12] Fuji J. I. and Kamei E., Relative operatot entropy in noncommutative information theory, Math. Japon. 34 (1989), no. 3, 341-348.
- [13] Minculete N., A refinement of the Kittaneh-Manasrah inequality, Creat. Math. Inform., 20 (2011), 2, 157-162.
- [14] Zhang F., On the Bohr inequality of operators, J. Math. Anal. Appl., 333 (2007) 1264-1271.

DEPARTMENT OF MATHEMATICS, "POLITEHNICA" UNIVERSITY OF TIMISOARA, P-TA. VICTORIEI, NO.2, 300006-TIMISOARA

8