A NEW INTEGRAL INEQUALITIES FOR GG-CONVEX FUNCTIONS

KÜBRA YILDIZ[♦] AND MERVE AVCI ARDIC[♦]*

ABSTRACT. In this paper, we obtained new integral inequalities for the first derivatives of the GG-convex functions.

1. Introduction

We will start with the definition of convexity:

Definition 1. The function $f:I\subset\mathbb{R}\to\mathbb{R}$ is a convex function on I, if the inequality

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

holds for all $x, y \in I$ and $t \in [0,1]$. We say that f is concave if -f is convex.

Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a convex function where $a, b \in I$ with a < b. Then the following double inequality hold:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a)+f(b)}{2}.$$

This inequality is well-known in the literature as Hermite-Hadamard inequality that gives us upper and lower bounds for the mean-value of a convex function. If f is concave function both of the inequalities in above hold in reversed direction.

Anderson et. al. mentioned mean function in [2] as following:

Definition 2. A function $M:(0,\infty)\times(0,\infty)\to(0,\infty)$ is called a Mean function if

- (1) M(x,y) = M(y,x),
- (2) M(x,x) = x,
- (3) x < M(x, y) < y, whenever x < y,
- (4) M(ax, ay) = aM(x, y) for all a > 0.

Based on the definition of mean function, let us recall special means (See [2])

- 1. Arithmetic Mean: $M(x,y) = A(x,y) = \frac{x+y}{2}$.
- 2. Geometric Mean: $M(x,y) = G(x,y) = \sqrt{xy}$.
- 3. Harmonic Mean: $M(x,y) = H(x,y) = 1/A\left(\frac{1}{x}, \frac{1}{y}\right)$.
- 4. Logarithmic Mean: $M(x,y) = L(x,y) = (x-y)/(\log x \log y)$ for $x \neq y$ nd L(x,x) = x.

1

 $^{1991\} Mathematics\ Subject\ Classification.\ 26 D15,\ 26 A51,\ 26 E60,\ 41 A55.$

 $Key\ words\ and\ phrases.\ GG-$ convex functions, Hölder inequality, Power-mean integral inequality and Logarithmic Mean.

[★]Corresponding Author.

5. Identric Mean: $M(x,y) = I(x,y) = (1/e)(x^x/y^y)^{1/(x-y)}$ for $x \neq y$ nd I(x,x) = x.

In [2], Anderson *et. al.* also gave a definition that include several different classes of convex functions as the following:

Definition 3. Let $f: I \to (0, \infty)$ be continuous, where I is subinterval of $(0, \infty)$. Let M and N be any two Mean functions. We say f is MN-convex (concave) if

$$f\left(M\left(x,y\right)\right) \leq \left(\geq\right) N\left(f\left(x\right),f\left(y\right)\right)$$

for all $x, y \in I$.

In [1], Niculescu mentioned the following considerable definition:

Definition 4. The GG-convex functions are those functions $f: I \to J$ (acting on subintervals of $(0, \infty)$) such that

$$(1.1) x, y \in I \text{ and } \lambda \in [0, 1] \Longrightarrow f\left(x^{1-\lambda}y^{\lambda}\right) \le f\left(x\right)^{1-\lambda} f\left(y\right)^{\lambda}.$$

Every real analytic function $f(x) = \sum_{n=0}^{\infty} c_n x^n$ with nonnegative coefficients c_n is a GG-convex function on (0, r), where r is the radius of convergence of f. The functions such as exp, sinh, cosh are GG-convex on $(0, \infty)$; tan, sec, csc, $\frac{1}{x}$ - cot x are GG-convex on $(0, \frac{\pi}{2})$; $\frac{1+x}{1-x}$ is GG-convex on (0.1). (See [1])

in [3], authors proved the following lemma and established new inequalities for GG- convex functions.

Lemma 1. Let $f: I \subseteq IR = (0, \infty) \longrightarrow IR$ be a differentiable function and $a,b \in I^{\circ}$ with $a \triangleleft b$. If $f'(x) \in L([a,b])$, then

$$\frac{b^{2}f\left(b\right)-a^{2}f\left(a\right)}{2}-\int_{a}^{b}xf(x)du=\frac{\ln b-\ln a}{2}\int_{0}^{1}a^{3(1-t)}b^{3t}f^{'}\left(a^{1-t}b^{t}\right)dt$$

The main aim of this paper is to prove some new integral inequalities for GG—convex functions.

2. Main Results

We need the following integral identity to get our new results.

Lemma 2. Let $f: I \subseteq IR = (0, \infty) \longrightarrow IR$ be a differentiable function on I° where $a,b \in I^{\circ}$ with $a \lessdot b$. If $f^{'} \in L[a,b]$, then the following equality holds:

$$b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} uf(u)du$$

$$= \frac{\ln b - \ln a}{2} \left[\int_{0}^{1} \left(b^{\frac{3t}{2}} a^{\frac{3(2-t)}{2}} \right) f'\left(b^{\frac{t}{2}} a^{\frac{2-t}{2}} \right) dt + \int_{0}^{1} \left(a^{\frac{3t}{2}} b^{\frac{3(2-t)}{2}} \right) f'\left(a^{\frac{t}{2}} b^{\frac{2-t}{2}} \right) dt \right]$$

Proof. Let

$$I_{1} = \int_{0}^{1} \left(b^{\frac{3t}{2}} a^{\frac{3(2-t)}{2}} \right) f' \left(b^{\frac{t}{2}} a^{\frac{2-t}{2}} \right) dt$$

and

$$I_2 = \int_0^1 \left(a^{\frac{3t}{2}} b^{\frac{3(2-t)}{2}} \right) f' \left(a^{\frac{t}{2}} b^{\frac{2-t}{2}} \right) dt$$

We notice that

$$I_{1} = \int_{0}^{1} \left(b^{\frac{3t}{2}} a^{\frac{3(2-t)}{2}} \right) f' \left(b^{\frac{t}{2}} a^{\frac{2-t}{2}} \right) dt$$
$$= \frac{2}{\ln b - \ln a} \int_{0}^{1} \left(b^{t} a^{1-t} \right) f' \left(b^{\frac{t}{2}} a^{\frac{2-t}{2}} \right) d \left(b^{\frac{t}{2}} a^{\frac{2-t}{2}} \right).$$

By the change of the variable $u = b^{\frac{t}{2}}a^{\frac{2-t}{2}}$ and integrating by parts , we have

$$I_1 = \frac{2}{\ln b - \ln a} \left[abf\sqrt{ab} - a^2f(a) - 2\int_a^{\sqrt{ab}} uf(u)du \right].$$

Conformably, we have

$$I_2 = \frac{2}{\ln b - \ln a} \left[b^2 f(b) - abf \sqrt{ab} - 2 \int_{\sqrt{ab}}^b u f(u) du \right]$$

Multiplying I_1 and I_2 by $\frac{\ln b - \ln a}{2}$ and adding the results we get the desired identity.

Our first result is given in the following Theorem.

Theorem 1. Let $f: I \subseteq IR_+ = (0, \infty) \longrightarrow IR$ be a differentiable function on I° where $a, b \in I^{\circ}$ with a < b , and $f^{'} \in L[a, b]$. If $|f^{'}|$ is GG- convex on [a, b], then the following inequality holds:

$$\begin{split} & \left| b^2 f(b) - a^2 f(a) - \int_a^b u f(u) du \right| \\ \leq & \frac{\ln b - \ln a}{2} \left(\sqrt{a^3 \left| f'(a) \right|} + \sqrt{b^3 \left| f'(b) \right|} \right) L\left(\sqrt{a^3 \left| f'(a) \right|}, \sqrt{b^3 \left| f'(b) \right|} \right). \end{split}$$

Proof. From Lemma 2, using the property of the modulus and GG- convexity of |f'| we can write

$$\left| b^{2}f(b) - a^{2}f(a) - \int_{a}^{b} uf(u)du \right|$$

$$\leq \frac{\ln b - \ln a}{2} \left[\int_{0}^{1} \left(b^{\frac{3t}{2}} a^{\frac{3(2-t)}{2}} \right) \left| f'\left(b^{\frac{t}{2}} a^{\frac{2-t}{2}} \right) \right| dt + \int_{0}^{1} \left(a^{\frac{3t}{2}} b^{\frac{3(2-t)}{2}} \right) \left| f'\left(a^{\frac{t}{2}} b^{\frac{2-t}{2}} \right) \right| dt \right]$$

$$\leq \frac{\ln b - \ln a}{2} \left[\int_{0}^{1} \left(b^{\frac{3t}{2}} a^{\frac{3(2-t)}{2}} \right) \left| f'\left(b \right) \right|^{\frac{t}{2}} \left| f'\left(a \right) \right|^{\frac{2-t}{2}} dt + \int_{0}^{1} \left(a^{\frac{3t}{2}} b^{\frac{3(2-t)}{2}} \right) \left| f'\left(a \right) \right|^{\frac{t}{2}} \left| f'\left(b \right) \right|^{\frac{2-t}{2}} dt \right]$$

$$= \frac{\ln b - \ln a}{2} \left[a^{3} \left| f'\left(a \right) \right| \int_{0}^{1} \left(\frac{\sqrt{b^{3} \left| f'\left(b \right) \right|}}{\sqrt{a^{3} \left| f'\left(a \right) \right|}} \right)^{t} dt + b^{3} \left| f'\left(b \right) \right| \int_{0}^{1} \left(\frac{\sqrt{a^{3} \left| f'\left(a \right) \right|}}{\sqrt{b^{3} \left| f'\left(b \right) \right|}} \right)^{t} dt \right]$$

If we calculate the integrals above, we get the desired result.

Theorem 2. Let $f: I \subseteq IR_+ = (0, \infty) \longrightarrow IR$ be a differentiable function on I° where $a,b \in I^{\circ}$ with a < b, and $f' \in L[a,b]$. If $\left| f' \right|^q$ is GG- convex on [a,b] for all $x \in [a,b]$, the following inequality

$$\begin{split} & \left| b^2 f(b) - a^2 f(a) - 2 \int_a^b u f(u) du \right| \\ & \leq \frac{\ln b - \ln a}{2} \left(\sqrt{a^3 \left| f'\left(a\right) \right|} + \sqrt{b^3 \left| f'\left(b\right) \right|} \right) \left(L\left(\sqrt{a^{3p}}, \sqrt{b^{3p}}\right) \right)^{\frac{1}{p}} \left(L\left(\sqrt{\left| f'\left(a\right) \right|^q}, \sqrt{\left| f'\left(b\right) \right|^q}\right) \right)^{\frac{1}{q}} \\ & \text{holds where } q > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1. \end{split}$$

Proof. From Lemma 2, using the property of the modulus, GG- convexity of $\left|f'\right|^q$ and Hölder integral inequality, we can write

$$\begin{aligned} & \left| b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} uf(u)du \right| \\ &= \frac{\ln b - \ln a}{2} \left[\int_{0}^{1} \left(b^{\frac{3t}{2}} a^{\frac{3(2-t)}{2}} \right) \left| f'\left(b^{\frac{t}{2}} a^{\frac{2-t}{2}} \right) \right| dt + \int_{0}^{1} \left(a^{\frac{3t}{2}} b^{\frac{3(2-t)}{2}} \right) \left| f'\left(a^{\frac{t}{2}} b^{\frac{2-t}{2}} \right) \right| dt \right] \\ &\leq \frac{\ln b - \ln a}{2} \left\{ \left(\int_{a}^{b} b^{\frac{3tp}{2}} a^{\frac{3(2-t)}{2}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f'\left(b^{\frac{t}{2}} a^{\frac{2-t}{2}} \right) \right|^{q} dt \right)^{\frac{1}{q}} \right. \\ &+ \left(\int_{a}^{b} a^{\frac{3tp}{2}} b^{\frac{3(2-t)}{2}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f'\left(a^{\frac{t}{2}} b^{\frac{2-t}{2}} \right) \right|^{q} dt \right)^{\frac{1}{q}} \right\} \\ &\leq \frac{\ln b - \ln a}{2} \left\{ a^{3} \left| f'\left(a \right) \right| \left(\int_{0}^{1} \left(\frac{\sqrt{b^{3p}}}{\sqrt{a^{3p}}} \right)^{t} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f'\left(b \right) \right|^{\frac{tq}{2}} \left| f'\left(a \right) \right|^{\frac{(2-t)q}{2}} dt \right)^{\frac{1}{q}} \right. \\ &+ b^{3} \left| f'\left(b \right) \right| \left(\int_{0}^{1} \left(\frac{\sqrt{a^{3p}}}{\sqrt{b^{3p}}} \right)^{t} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f'\left(a \right) \right|^{\frac{tq}{2}} \left| f'\left(b \right) \right|^{\frac{(2-t)q}{2}} dt \right)^{\frac{1}{q}} \right\}. \end{aligned}$$

If we calculate the integrals above, we get the desired result.

Theorem 3. Under the assumptions of Theorem 2, the following inequality holds:

$$\begin{vmatrix} b^2 f(b) - a^2 f(a) - 2 \int_a^b u f(u) du \end{vmatrix}$$

$$\leq \frac{\ln b - \ln a}{2} \left[\left(\frac{\sqrt{b^{3p}} - 1}{\ln \left(\sqrt{b^{3p}} \right)} \right)^{\frac{1}{p}} \left(\sqrt{a^3 |f'(a)|} \times \left(L \left(\sqrt{|f'(b)|^q}, \sqrt{|f'(a)|^q} a^{3q} \right) \right)^{\frac{1}{q}} \right) \right]$$

$$+ \left[\left(\frac{\sqrt{a^{3p}} - 1}{\ln \left(\sqrt{a^{3p}} \right)} \right)^{\frac{1}{p}} \left(\sqrt{b^3 |f'(b)|} \times \left(L \left(\sqrt{|f'(a)|^q}, \sqrt{|f'(b)|^q} b^{3q} \right) \right)^{\frac{1}{q}} \right) \right].$$

Proof. From Lemma 2, using the property of the modulus, GG – convexity of $\left|f'\right|^q$ and Hölder integral inequality, we can write

$$\begin{vmatrix} b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} uf(u)du \end{vmatrix}$$

$$\leq \frac{\ln b - \ln a}{2} \left\{ \left(\int_{0}^{1} b^{\frac{3tp}{2}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} a^{\frac{3(2-t)q}{2}} \left| f'\left(b^{\frac{t}{2}} a^{\frac{2-t}{2}}\right) \right|^{q} dt \right)^{\frac{1}{q}} + \left(\int_{0}^{1} a^{\frac{3tp}{2}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} b^{\frac{3(2-t)q}{2}} \left| f'\left(a^{\frac{t}{2}} b^{\frac{2-t}{2}}\right) \right|^{q} dt \right)^{\frac{1}{q}} \right\}$$

$$\leq \frac{\ln b - \ln a}{2} \left\{ \left(\int_{0}^{1} b^{\frac{3tp}{2}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} a^{\frac{3(2-t)q}{2}} \left| f'\left(b\right) \right|^{\frac{tq}{2}} \left| f'\left(a\right) \right|^{\frac{(2-t)q}{2}} dt \right)^{\frac{1}{q}} + \left(\int_{0}^{1} a^{\frac{3tp}{2}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} b^{\frac{3(2-t)q}{2}} \left| f'\left(a\right) \right|^{\frac{tq}{2}} \left| f'\left(b\right) \right|^{\frac{(2-t)q}{2}} \right)^{\frac{1}{q}} \right\}.$$

By a simple computation we get the desired result.

Theorem 4. Under the assumptions of Theorem 2, the following inequality holds:

$$\left| b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} f(u)du \right| \leq \frac{\ln b - \ln a}{2} \left(\sqrt{a^{3} |f'(a)|} + \sqrt{b^{3} |f'(b)|} \right) \left(L\left(\sqrt{b^{3q} |f'(b)|^{q}}, \sqrt{a^{3q} |f'(a)|^{q}} \right) \right)^{\frac{1}{q}}.$$

Proof. From Lemma 2, using the property of the modulus, GG- convexity of $\left|f'\right|^q$ and Hölder integral inequality, we can write

$$\begin{vmatrix} b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} uf(u)du \end{vmatrix}$$

$$\leq \frac{\ln b - \ln a}{2} \left\{ \left(\int_{0}^{1} dt \right)^{1 - \frac{1}{q}} \left(\int_{0}^{1} b^{\frac{3tq}{2}} a^{\frac{3(2-t)q}{2}} \left| f'\left(b^{\frac{t}{2}} a^{\frac{2-t}{2}}\right) \right|^{q} dt \right)^{\frac{1}{q}} + \left(\int_{0}^{1} dt \right)^{1 - \frac{1}{q}} \left(\int_{0}^{1} a^{\frac{3tq}{2}} b^{\frac{3(2-t)q}{2}} \left| f'\left(a^{\frac{t}{2}} b^{\frac{2-t}{2}}\right) \right|^{q} dt \right)^{\frac{1}{q}} \right\}$$

$$\leq \frac{\ln b - \ln a}{2} \left\{ a^{3} \left| f'\left(a\right) \right| \left(\int_{0}^{1} \left(\frac{\sqrt{b^{3q} \left| f'\left(b\right) \right|^{q}}}{\sqrt{a^{3q} \left| f'\left(a\right) \right|^{q}}} \right)^{t} dt \right)^{\frac{1}{q}} + b^{3} \left| f'\left(b\right) \right| \left(\int_{0}^{1} \left(\frac{\sqrt{a^{3q} \left| f'\left(a\right) \right|^{q}}}{\sqrt{b^{3q} \left| f'\left(b\right) \right|^{q}}} \right)^{t} dt \right)^{\frac{1}{q}} \right\}.$$

If we calculate the integrals above, we get the desired result.

Theorem 5. Under the assumptions of Theorem 2, the following inequality holds:

$$\left| b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} uf(u)du \right|$$

$$\leq \frac{\ln b - \ln a}{2} \left\{ \left(\frac{2\sqrt{b^{3}} - 2}{3\ln b} \right)^{\frac{1}{p}} a^{3} \left| f^{'}(a) \right| L^{\frac{1}{q}} \left(\sqrt{b^{3} \left| f^{'}(b) \right|^{q}}, \sqrt{a^{3q} \left| f^{'}(a) \right|^{q}} \right) + \left(\frac{2\sqrt{a^{3}} - 2}{3\ln a} \right)^{\frac{1}{p}} b^{3} \left| f^{'}(b) \right| L^{\frac{1}{q}} \left(\sqrt{a^{3} \left| f^{'}(a) \right|^{q}}, \sqrt{b^{3q} \left| f^{'}(b) \right|^{q}} \right) \right\}.$$

Proof. From Lemma 2, using the property of the modulus, GG – convexity of $\left|f'\right|^q$ and Hölder integral inequality, we can write

$$\left| b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} uf(u)du \right|$$

$$\leq \frac{\ln b - \ln a}{2} \left\{ \left(\int_{0}^{1} b^{\frac{3t}{2}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} b^{\frac{3t}{2}} a^{\frac{3(2-t)q}{2}} \left| f'(b) \right|^{\frac{tq}{2}} \left| f'(a) \right|^{\left(1 - \frac{t}{2}\right)q} dt \right)^{\frac{1}{q}} \left(\int_{0}^{1} a^{\frac{3t}{2}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} a^{\frac{3t}{2}} b^{\frac{3(2-t)q}{2}} \left| f'(a) \right|^{\frac{tq}{2}} \left| f'(b) \right|^{\left(1 - \frac{t}{2}\right)q} dt \right)^{\frac{1}{q}} \right\}.$$

If we calculate the integrals above, we get the desired result.

Theorem 6. Let $f: I \subseteq IR_+ = (0, \infty) \longrightarrow IR$ be a differentiable function on I° where $a,b \in I^{\circ}$ with a < b, and $f' \in L[a,b]$. If $\left| f' \right|^q$ is GG- convex on [a,b] for all $x \in [a,b]$, the following inequality

$$\begin{vmatrix} b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} uf(u)du \end{vmatrix} \leq \frac{\ln b - \ln a}{2} \left\{ \left(\left(\sqrt{b^{3}} \right)^{1 - \frac{1}{q}} + \left(\sqrt{a^{3}} \right)^{1 - \frac{1}{q}} \right) \left(L(\sqrt{b^{3}}, \sqrt{a^{3}}) \right)^{1 - \frac{1}{q}} \right. \\ \left. \left(L\left(\sqrt{b^{3} |f'(b)|^{q}}, \sqrt{a^{3} |f'(a)|^{q}} \right) \right)^{\frac{1}{q}} \left(b^{\frac{3}{2q}} \sqrt{|f'(b)|} + a^{\frac{3}{2q}} \sqrt{|f'(a)|} \right) \right\}.$$

holds for $q \geq 1$.

Proof. From Lemma 2, using the property of the modulus, GG – convexity of $\left|f'\right|^q$ and power-mean integral inequality, we can write

$$\begin{vmatrix} b^{2}f(b) - a^{2}f(a) - 2\int_{a}^{b} uf(u)du \end{vmatrix}$$

$$\leq \frac{\ln b - \ln a}{2} \left\{ \left(\int_{0}^{1} b^{\frac{3t}{2}} a^{\frac{3(2-t)}{2}} dt \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} b^{\frac{3t}{2}} a^{\frac{3(2-t)}{2}} \left| f'\left(b^{\frac{t}{2}} a^{\frac{2-t}{2}}\right) \right|^{q} dt \right)^{\frac{1}{q}} + \left(\int_{0}^{1} a^{\frac{3t}{2}} b^{\frac{3(2-t)}{2}} dt \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} a^{\frac{3t}{2}} b^{\frac{3(2-t)}{2}} \left| f'\left(a^{\frac{t}{2}} b^{\frac{2-t}{2}}\right) \right|^{q} dt \right)^{\frac{1}{q}} \right\}$$

$$\leq \frac{\ln b - \ln a}{2} \left\{ a^{3\left(1-\frac{1}{q}\right)} \left(\int_{0}^{1} \left(\sqrt{\frac{b^{3}}{a^{3}}} \right)^{t} dt \right)^{1-\frac{1}{q}} a^{\frac{3}{q}} \left(\int_{0}^{1} \left(\sqrt{\frac{b^{3}}{a^{3}}} \right)^{t} \left| f'\left(b\right) \right|^{\frac{qt}{2}} \left| f'\left(a\right) \right|^{\left(1-\frac{t}{2}\right)q} dt \right)^{\frac{1}{q}} + b^{3\left(1-\frac{1}{q}\right)} \left(\int_{0}^{1} \left(\sqrt{\frac{a^{3}}{b^{3}}} \right)^{t} dt \right)^{1-\frac{1}{q}} b^{\frac{3}{q}} \left(\int_{0}^{1} \left(\sqrt{\frac{a^{3}}{b^{3}}} \right)^{t} \left| f'\left(a\right) \right|^{\frac{qt}{2}} \left| f'\left(b\right) \right|^{\left(1-\frac{t}{2}\right)q} dt \right)^{\frac{1}{q}} \right\}.$$

We get the desired result by a simple calculation.

REFERENCES

- [1] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3 (2) (2000), 155–167. Available online at http://dx.doi.org/10.7153/mia-03-19
- [2] G.D. Anderson, M.K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) 1294–1308.
- [3] A.P. JI, T.Y.Zhang and F. Qi, Integral Inequalities of Hermite-Hadamard Type for (α, m) GA– Convex functions. J.Computational Analysis And Applications, Volume 18, no:2, 2013.
- ullet Adiyaman University, Faculty of Science and Arts, Department of Mathematics, Adiyaman, Turkey

E-mail address: kubrayildiz2@hotmail.com

 $E ext{-}mail\ address: merveavci@ymail.com}$