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Abstract. In this paper, we introduce the (�; k)-gamma function; (�; k)-beta
function, Pochhammer symbol (x)�n;k and Laplace transforms for conformable
fractional integrals. We prove several properties generalizing those satis�ed by
the classical gamma function, beta function and Pochhammer symbol. The
results presented here would provide generalizations of those given in earlier
works.

1. Introduction

The classical Euler gamma function or Euler integral of the second kind is given
by

� (x) =

Z 1

0

tx�1e�tdt; x > 0

and the beta function or Eulerian integral of the �rst kind with two variables is
de�ned by

B (x; y) =

Z 1

0

tx�1 (1� t)y�1 dt; x; y > 0:

Therefore, the classical beta function in terms of gamma function is de�ned in [2]
as

B (x; y) =
� (x) � (y)

� (x+ y)
; x; y > 0:

The rising factorial x(n), sometimes also denoted (x)n([4, p. 6]) or x
n ([8, p. 48]),

is de�ned by
x(n) = x (x� 1) ::: (x+ n� 1)

This function is also known as the rising factorial power ([8, p. 48]) and frequently
called the Pochhammer symbol in the theory of special functions. The rising fac-
torial is implemented in the Wolfram Language as Pochhammer [x; n]. In recently,
Diaz and Pariguan give a new de�nition for the function of variable x as follows

(x)n;k = x (x+ k) (x+ 2k) ::: (x+ (n� 1) k)

and they called the Pochhammer k-symbol. Setting k = 1 one obtains the usual
Pochhammer symbol (x)n. Recently, in a series of research publications, Diaz et
al. ([5]-[7]) have introduced k-gamma and k-beta functions and proved a number
of their properties. They have also studied k-zeta function and k-hypergeometric
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functions based on Pochhammer k-symbols for factorial functions. The k-gamma
functions is de�ned by

�k (x) = lim
n!1

n!kn (kn)
x
k�1

(x)n;�
; k > 0.

It has been shown that the Mellin transform of the exponential function e�
tk

k is
the k-gamma function, explicitly given by

�k (x) =

Z 1

0

tx�1e�
tk

k dt:

Clearly, � (x) = lim
k!1

�k (x) ; �k (x) = k
x
k�1�

�
x
k

�
and �k (x+ k) = x�k (x) : This

gives rise to k-beta function de�ned by

Bk (x; y) =
1

k

Z 1

0

t
x
k�1 (1� t)

y
k�1 dt

so that Bk (x; y) = 1
kB
�
x
k ;

y
k

�
and Bk (x; y) =

�k(x)�k(y)
�k(x+y)

:

The purpose of this paper is to introduce (�; k)-gamma function and (�; k)-
beta function for conformable fractional integrals and obtain some their properties.
When (�; k)! (1; 1), it turns out to be the usual gamma function and beta func-
tion.

2. Definitions and properties of conformable fractional derivative
and integral

The following de�nitions and theorems with respect to conformable fractional
derivative and integral were referred in [1], [9], [11]-[13].

De�nition 1. (Conformable fractional derivative) Given a function f : [0;1)!
R. Then the �conformable fractional derivative�of f of order � is de�ned by

(2.1) D� (f) (t) = lim
�!0

f
�
t+ �t1��

�
� f (t)

�

for all t > 0; � 2 (0; 1) : If f is ��di¤erentiable in some (0; a) ; � > 0; lim
t!0+

f (�) (t) exist,

then de�ne

(2.2) f (�) (0) = lim
t!0+

f (�) (t) :

We can write f (�) (t) for D� (f) (t) to denote the conformable fractional derivatives
of f of order �. In addition, if the conformable fractional derivative of f of order
� exists, then we simply say f is ��di¤erentiable. For 2 � n 2 N; we denote
Dn
� (f) (t) = D�D

n�1
� (f) (t) (t) :

Theorem 1. Let � 2 (0; 1] and f; g be ��di¤erentiable at a point t > 0. Then
i: D� (af + bg) = aD� (f) + bD� (g) ; for all a; b 2 R;
ii: D� (�) = 0; for all constant functions f (t) = �;
iii: D� (fg) = fD� (g) + gD� (f) ;

iv: D�

�
f

g

�
=
fD� (g)� gD� (f)

g2
:

v: If f is di¤erentiable, then

(2.3) D� (f) (t) = t
1�� df

dt
(t) :
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De�nition 2 (Conformable fractional integral). Let � 2 (0; 1] and 0 � a < b: A
function f : [a; b]! R is �-fractional integrable on [a; b] if the integral

(2.4)
Z b

a

f (x) d�x :=

Z b

a

f (x)x��1dx

exists and is �nite.

Remark 1.

Ia� (f) (t) = I
a
1

�
t��1f

�
=

Z t

a

f (x)

x1��
dx;

where the integral is the usual Riemann improper integral, and � 2 (0; 1].

Theorem 2. Let f : (a; b) ! R be di¤erentiable and 0 < � � 1. Then, for all
t > a we have

(2.5) Ia�D
a
�f (t) = f (t)� f (a) :

Theorem 3. (Integration by parts) Let f; g : [a; b] ! R be two functions such
that fg is di¤erentiable. Then

(2.6)
Z b

a

f (x)Da
� (g) (x) d�x = fgjba �

Z b

a

g (x)Da
� (f) (x) d�x:

Theorem 4. [14] (Inverse property) Assume that a � 0, and � 2 (0; 1), and also
let f be a continuous function such that I�a f exists. Then, for all t > a we have

Da
�I

a
�f (t) = f (t) :

In this paper, we establish properties of (�; k)-gamma and(�; k)-beta functions
for conformable fractional integral and we will investigate some integral inequalities.
The results presented here would provide generalizations of those given in earlier
works.

3. Gamma and Beta Functions for Conformable fractional integral

De�nition 3. (Pochhammer symbol) Let p 2 (0;1) ; k > 0; � 2 (0; 1] ; and
n 2 N+ Pochhammer symbol (p)�n;k is given by

(p)
�
n;k = (p+ �� 1) (p+ �� 1 + k) (p+ �� 1 + 2k) ::: (p+ �� 1 + (n� 1) k) :

Proposition 1. Let � 2 (0; 1] and ��k : (0;1)! R: For 0 < p <1; Conformable
gamma function ��k is given by

��k (p) =
R1
0
tp�1e�

tk

k d�t = lim
n!1

n!kn (nk)
p+��1

k �1

(p)
�
n;k

:

Proof. We will give two di¤erent proofs. Firstly, we take

��k (p) =
R1
0
tp�1e�

tk

k d�t = lim
n!1

R (nk) 1k
0

�
1� tk

nk

�n
tp�1d�t:
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Let An;i (p) ; i = 0; :::; n; be given by An;i (p) =
R (nk) 1k
0

�
1� tk

nk

�i
tp�1d�t: The

following recursion formula is proven using integration by parts

An;i (p) =
R (nk) 1k
0

�
1� tk

nk

�i
tp�1d�t

=
R (nk) 1k
0

�
1� tk

nk

�i
tp+��2dt

=

�
1� tk

nk

�i
tp+��1

p+ �� 1

�����
(nk)

1
k

0

+
i

n (p+ �� 1)
R (nk) 1k
0

�
1� tk

nk

�i�1
tp+�+k�2dt

=
i

n (p+ �� 1)
R (nk) 1k
0

�
1� tk

nk

�i�1
tp+k�1d�t

=
i

n (p+ �� 1)An;i�1 (p+ k) :

Also,

An;0 (p) =
R (nk) 1k
0

tp�1d�t =
(nk)

p+��1
k

p+ �� 1 :

Therefore, integrating by part

An;n (p)

=
R (nk) 1k
0

�
1� tk

nk

�n
tp�1d�t

=

�
1� tk

nk

�n
tp+��1

p+ �� 1

����(nk)
1
k

0

+
n

n (p+ �� 1)
R (nk) 1k
0

�
1� tk

nk

�n�1
tp+k�1d�t

=
n

n (p+ �� 1)
R (nk) 1k
0

�
1� tk

nk

�n�1
tp+k�1d�t

=
n

n (p+ �� 1)

8><>:
�
1� tk

nk

�n�1
tp+k+��1

p+ k + �� 1

�����
(nk)

1
k

0

+
n� 1

n (p+ k + �� 1)
R (nk) 1k
0

�
1� tk

nk

�n�1
tp+2k�1d�t

)
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=
n

n (p+ �� 1)

(
n� 1

n (p+ k + �� 1)
R (nk) 1k
0

�
1� tk

nk

�n�1
tp+2k�1d�t

)
...

=
n (n� 1) (n� 2) ::: (n� (n� 1)) (nk)

p+�+nk�1
k

n (p+ �� 1)n (p+ k + �� 1)n (p+ 2k + �� 1) :::n (p+ (n� 1) k + �� 1) (p+ �+ nk � 1)

=
n!nn:kn (nk)

p+��1
k

nn (p)
�
n;k nk

�
1 + p+��1

nk

� = n!kn (nk)
p+��1

k �1

(p)
�
n;k

and

��k (p) = lim
n!1

An;n (p) = lim
n!1

n!kn (nk)
p+��1

k �1

(p)
�
n;k

:

which copletes the proof.
Secondly, for proof of proposition, we �rst prove that

(3.1)
Z 1

0

�
1� tk

�n
tp�1d�t =

knn!

(p)
�
n+1;k

for p > 0 and n = 0; 1; 2; :::: In order to prove (3.1) by induction we �rst take n = 0
to obtain for p > 0 Z 1

0

tp�1d�t =
1

p+ �� 1 =
1

(p)
�
1;k

:

Now we assume that (3.1) holds for n = m. Then we haveZ 1

0

�
1� tk

�m+1
tp�1d�t =

Z 1

0

�
1� tk

� �
1� tk

�m
tp�1d�t

=

Z 1

0

(1� t)m tp�1d�t�
Z 1

0

(1� t)m tp+k�1d�t

=
kmm!

(p)
�
m+1;k

� kmm!

(p+ k)
�
m+1;k

=
kmm!

(p)
�
m+2;k

(p+ �� 1 + (m+ 1) k � p� �+ 1) = km+1 (m+ 1)!

(p)
�
m+2;k

which show sthat (3.1) holds for n = m + 1. This proves that (3.1) holds for all
n = 0; 1; 2; :::. Now we set t = uk

nk into (3.1) to �nd that

1

(nk)
p+��1

k

Z (nk)1=k

0

�
1� uk

nk

�n�1
up�1d�u =

knn!

(p)
�
n;k nk

�
1 + p+��1

nk

�
and then Z (nk)1=k

0

�
1� uk

nk

�n
up�1d�u =

n!kn (nk)
p+��1

k �1

(p)
�
n;k nk

�
1 + p+��1

nk

� :
Since we have

lim
n!1

�
1� uk

nk

�n
= e�

uk

k ;
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we conclude that

��k (p) =

Z 1

0

up�1e�
uk

k d�u = lim
n!1

n!kn (nk)
p+��1

k �1

(p)
�
n;k

:

�
Proposition 2. The (�; k)-Gamma function ��k (p) satis�es the following identities
(1) ��k (p+ k) = (p+ �� 1) ��k (p)
(2) ��k (p+ nk) = (p)

�
n;k �

�
k (p)

(3) ��k (k + 1� �) = 1
(4) ��k (p) = a

p+��1
k

R1
0
tp+k�1e�a

tk

k d�t:

Proof. (1) Using the integration by parts, we have

��k (p+ k) =
R1
0
tp+k�1e�

tk

k d�t

=
R1
0
tp+k+��2e�

tk

k dt

= �tp+��1e� tk

k

���1
0
+ (p+ �� 1)

R1
0
tp+��2e�

tk

k dt

= (p+ �� 1)
R1
0
tp�1e�

tk

k d�t

= (p+ �� 1) ��k (p) :
(2) Integrating the by parts for n�times we get

��k (p+ nk) =

Z 1

0

tp+nk�1e�
tk

k d�t

=

Z 1

0

tp+��2+nke�
tk

k dt

= �tp+��1e� tk

k

���1
0
+ (p+ �� 1 + (n� 1)k)

Z 1

0

tp+��2+(n�1)ke�
tk

k dt

= (p+ �� 1 + (n� 1)k)
Z 1

0

tp+��2+(n�1)ke�
tk

k dt

= (p+ �� 1 + (n� 1)k)
�
�tp+��1e� tk

k

���1
0

+(p+ �� 1 + (n� 2)k)
Z 1

0

tp+��2+(n�2)ke�
tk

k dt

�
= (p+ �� 1 + (n� 1)k) (p+ �� 1 + (n� 2)k)

Z 1

0

tp+��2+(n�2)ke�
tk

k dt

...

= (p+ �� 1 + (n� 1)k) (p+ �� 1 + (n� 2)k) ::: (p+ �� 1)
Z 1

0

tp+��2e�
tk

k dt

= (p)
�
n;k �

�
k (p) :

The proof of the properties (3) and (4) are abvious from the de�nition of (�; k)-
Gamma function ��k : �
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De�nition 4. Let � 2 (0; 1] : The (�; k)-Beta function B�k (p; q) is given the by
formula

B�k (p; q) =
1

k

Z 1

0

t
p
k�1 (1� t)

q
k�1 d�t; p; q; k > 0:

Proposition 3. The (�; k)-Beta function B�k (p; q) satis�es the following identities
1) B�k (p; k) =

1
p+k(��1) ;

2) B�k (k (2� �) ; q) = 1
q+k(��1)

Proof. From the de�nition of the (�; k)-Beta function B�k (p; q) ; we have

B�k (p; k) =
1

k

Z 1

0

t
p
k�1d�t =

1

p+ k (�� 1)
and similarly,

B�k (k (2� �) ; k) =
1

k

Z 1

0

t1�� (1� t)
q
k�1 d�t =

1

q + k (�� 1) :

This completes the proof. �
Remark 2. From the Proposition 3, we have

B�k (k; k) =
1

k�
:

Remark 3. By the Proposition 3 with � = 1, we have the following properties for
k-Beta function

Bk (p; k) =
1

p
; Bk (k; q) =

1

q
:

Proposition 4. The following property holds for (�; k)-Beta function B�k (p; q)

B�k (p; q) =
p+ k2 (�� 2)

p+ k2 (�� 2) + kqB
�
k (p� k; q) :

Proof. Integrating the by parts, we have

B�k (p; q) =
1

k

Z 1

0

t
p
k�1 (1� t)

q
k�1 d�t

=
1

k

k

q
t
p
k+��2 (1� t)

q
k

����
+
1

k
:
k

q

�p
k
+ �� 2

�Z 1

0

t
p
k+��2 (1� t)

q
k d�t

=
p+ k2 (�� 2)

kq

1

k

Z 1

0

t
p
k�2 (1� t) (1� t)

q
k�1 d�t

=
p+ k2 (�� 2)

kq

�
1

k

Z 1

0

t
p
k�2 (1� t)

q
k�1 d�t�

1

k

Z 1

0

t
p
k�1 (1� t)

q
k�1 d�t

�
=

p+ k2 (�� 2)
kq

[B�k (p� k; q)�B�k (p; q)] :

That is,

B�k (p; q) =
p+ k2 (�� 2)

kq
[B�k (p� k; q)�B�k (p; q)]
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which completes the proof. �

Proposition 5. The following identity holds

B�k (p; q) = Bk (p+ k (�� 1) ; q) =
1

k
B
�p
k
+ �� 1; q

k

�
where Bk (x; y) is k-Beta function and B (x; y) is classical Beta function.

Proof. The proof is follows directly from the de�nitions of (�; k)-Beta function and
conformable integral. �

Proposition 6. The following property holds for (�; k)-Beta function in terms of
(�; k)-gamma function

B�k (p+ k � k�; q) =
��k (p) �

�
k (q)

��k (p+ q + 1� �)
:

Proof. By using de�nition of (�; k)-gamma function, we get

��k (p) �
�
k (q) =

Z 1

0

tp�1e�
tk

k d�t

Z 1

0

sq�1e�
sk

k d�s

=

Z 1

0

Z 1

0

e�
tk+sk

k tp�1sq�1d�td�s:

Now we apply the change of variables tk = xky and sk = xk(1� y) to this double
integral. Note that tk + sk = xk and that 0 < t < 1 and 0 < s < 1 imply that
0 < x <1 and 0 < y < 1: The Jacobian of this transformation (see [3]) is 

@�f
@x�

@�f
@y�

@�g
@x�

@�g
@y�

!
=

 
x1�� @f@x y1�� @f@y
x1�� @g@x y1�� @g@y

!

=

 
x1��y

1
k

1
ky

1��xy
1
k�1

x1�� (1� y)
1
k � 1

ky
1��x (1� y)

1
k�1

!

= �1
k
x2��y

1
k�� (1� y)

1
k�1 :

Since x; y; k > 0; we conclude that d�td�s =

�����
 

@�f
@x�

@�f
@y�

@�g
@x�

@�g
@y�

!����� d�xd�y: Hence we
have

��k (p) �
�
k (q) =

Z 1

0

Z 1

0

e�
xk

k xp�1y
p�1
k xq�1 (1� y)

q�1
k
1

k
x2��y

1
k�� (1� y)

1
k�1 d�xd�y

=

�Z 1

0

e�
xk

k xp+q��d�x

��
1

k

Z 1

0

y
p
k�� (1� y)

q
k�1 d�y

�
= ��k (p+ q + 1� �)B�k (p+ k � k�; q)

�

Remark 4. By the Proposition 6 with � = 1, we have the following properties

Bk (p; q) =
�k (p) �k (q)

�k (p+ q)
:
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4. Laplace transform for Conformable fractional integral

In Abbeljawad give the de�nition of the Laplace transform for conformable left
fractional integral of order 0 < � � 1: In this section, we will generalise the de-
�nition of the Laplace transform for conformable fractional integral and use it to
soleve prove some properties.

De�nition 5. Let � 2 (0; 1] ; k > 0; and f : [0;1) ! R be a function. Then the
fractional Laplace transform of order � of f de�ned by

(4.1) L�k ff(t)g (s) = F�k (s) =
1Z
0

e�s
tk

k f(t)d�t

which is called (�; k)-Laplace transform.

Some properties of the (�; k)- Laplace Transform
1) L�k f0g (s) = 0
2) L�k ff(t) + g(t)g (s) = L�k ff(t)g (s) + L�k fg(t)g (s)
3) L�k fcf(t)g (s) = cL�k ff(t)g (s) ; c is a constant.
Properties 2) and 3) together means that the Laplace transform is linear.

Theorem 5. Let � 2 (0; 1] ; k > 0; and f : (0;1)! R be di¤erentiable function.
Then

(4.2) L�k fD�f(t)g (s) = sF�k (s)� f (0) :

Proof. By de�nition (�; k)-Laplace transform and using the (2.6), we have (4.2). �

It is easy to see from de�niton of the (�; k)-Laplace transform that we have
rather unusual results given in the following theorem.

Theorem 6. Let � 2 (0; 1]; c 2 R and k > 0. Then we have the following results
i) L�k f1g (s) = s�

�
k ��k (1) ;

ii) L�k ftg (s) = s�
1+�
k ��k (2) ;

iii) L�k ftpg (s) = s�
p+�
k ��k (p+ 1) ;

iv) L�k
n
ec

tk

k

o
(s) = (s� c)�

�
k ��k (1) ;

v) L�k ff(t)g (s) = F�k (s)) L�k

n
f(t):ec

tk

k

o
(s) = F�k (s� c) ;

vi) L�k ff(t)g (s) = F�k (s)) L�k ff(ct)g (s) = 1
c�F

�
k

�
s
ck

�
;

Example 1. Let us consider the function f(t) = sinw t�

� ; then by using the property
D�
�
cosw t�

�

�
= �w sinw t�

� ; we can write

L�k

�
sinw

t�

�

�
(s) =

1Z
0

e�s
tk

k sinw
t�

�
d�t = �

1

w

1Z
0

e�s
tk

k D�

�
cosw

t�

�

�
d�t
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Therefore, using integration by part for conformable integral, we have

� 1
w

1Z
0

e�s
tk

k D�

�
cosw

t�

�

�
d�t

= � 1
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����1
0

�
1Z
0
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t�

�
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�
e�s
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k

�
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9=;
=
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w
� s

w
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tk��e�s
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k cosw
t�

�
d�t

=
1

w
� s

w2

1Z
0

tk��e�s
tk

k D�

�
sinw

t�

�

�
d�t:

Similarly, we get
(4.3)

L�k

�
sinw

t�

�

�
(s) =

1

w
+
s (k � �)
w2

L�k

�
tk�2� sinw

t�

�

�
(s)� s

2

w2
L�k

�
tk�� sinw

t�

�

�
(s) :

If we take k = � in (4.3), we have

L��

�
sinw

t�

�

�
(s) =

w

1 + s2

which is proved by Abdeljawad in [1].
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