
BASIC INEQUALITIES FOR (m;M)-	-CONVEX FUNCTIONS
WHEN 	 = � ln

S. S. DRAGOMIR1;2AND I. GOMM1

Abstract. In this paper we establish some basic inequalities for (m;M)-
	-convex functions when 	 = � ln : Applications for power functions and
weighted arithmetic mean and geometric mean are also provided.

1. Introduction

Assume that the function 	 : I � R! R (I is an interval) is convex on I and
m 2 R. We shall say that the function � : I ! R is m-	-lower convex if ��m	
is a convex function on I. We may introduce the class of functions [1]

(1.1) L (I;m;	) := f� : I ! Rj��m	 is convex on Ig :
Similarly, for M 2 R and 	 as above, we can introduce the class of M -	-upper
convex functions by [1]

(1.2) U (I;M;	) := f� : I ! RjM	� � is convex on Ig :
The intersection of these two classes will be called the class of (m;M)-	-convex
functions and will be denoted by [1]

(1.3) B (I;m;M;	) := L (I;m;	) \ U (I;M;	) :

Remark 1. If � 2 B (I;m;M;	), then � � m	 and M	 � � are convex and
then (��m	)+ (M	� �) is also convex which shows that (M �m)	 is convex,
implying that M � m (as 	 is assumed not to be the trivial convex function 	(t) =
0, t 2 I).

The above concepts may be introduced in the general case of a convex subset in
a real linear space, but we do not consider this extension here.
In [7], S. S. Dragomir and N. M. Ionescu introduced the concept of g-convex

dominated functions, for a function f : I ! R. We recall this, by saying, for a
given convex function g : I ! R, the function f : I ! R is g-convex dominated
i¤ g + f and g � f are convex functions on I. In [7], the authors pointed out a
number of inequalities for convex dominated functions related to Jensen�s, Fuchs�,
Peµcaríc�s, Barlow-Proschan and Vasíc-Mijalkovíc results, etc.
We observe that the concept of g-convex dominated functions can be obtained

as a particular case from (m;M)-	-convex functions by choosing m = �1, M = 1
and 	 = g.
The following lemma holds [1].
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Lemma 1. Let 	;� : I � R! R be di¤erentiable functions on �I; the interior of
I and 	 is a convex function on �I.

(i) For m 2 R, the function � 2 L
�
�I;m;	

�
i¤

(1.4) m [	 (t)�	(s)�	0 (s) (t� s)] � � (t)� � (s)� �0 (s) (t� s)
for all t; s 2 �I.

(ii) For M 2 R, the function � 2 U
�
�I;M;	

�
i¤

(1.5) � (t)� � (s)� �0 (s) (t� s) �M [	 (t)�	(s)�	0 (s) (t� s)]
for all t; s 2 �I.

(iii) For M;m 2 R with M � m, the function � 2 B
�
�I;m;M;	

�
i¤ both (1.4)

and (1.5) hold.

Another elementary fact for twice di¤erentiable functions also holds [1].

Lemma 2. Let 	;� : I � R! R be twice di¤erentiable on �I and 	 is convex on
�I.

(i) For m 2 R, the function � 2 L
�
�I;m;	

�
i¤

(1.6) m	00 (t) � �00 (t) for all t 2 �I:

(ii) For M 2 R, the function � 2 U
�
�I;M;	

�
i¤

(1.7) �00 (t) �M	00 (t) for all t 2 �I:

(iii) For M; m 2 R with M � m, the function � 2 B
�
�I;m;M;	

�
i¤ both (1.6)

and (1.7) hold.

For various inequalities concerning these classes of function, see the survey paper
[3].
In what follows, we consider the class of functions B (I;m;M;� ln) forM; m 2 R

with M � m that is obtained for 	 : I � (0;1)! R, 	(t) = � ln t:
If � : I � (0;1)! R is a di¤erentiable function on �I then by Lemma 1 we have

� 2 B (I;m;M;� ln) i¤

m

�
ln s� ln t� 1

s
(s� t)

�
� � (t)� � (s)� �0 (s) (t� s)(1.8)

�M
�
ln s� ln t� 1

s
(s� t)

�
for any s; t 2 �I:
If � : I � (0;1)! R is a twice di¤erentiable function on �I then by Lemma 2

we have � 2 B (I;m;M;� ln) i¤
(1.9) m � t2�00 (t) �M;
which is a convenient condition to verify in applications.
In this paper we establish some basic inequalities for (m;M)-	-convex functions

when 	 = � ln : Applications for power functions and weighted arithmetic mean
and geometric mean are also provided.
For recent results concerning inequalities for weighted arithmetic mean and geo-

metric mean, see [4], [5] and [8]-[15].
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2. Some Inequalities From Definition of Convexity

We de�ne the weighted arithmetic and geometric means

A� (a; b) := (1� �) a+ �b and G� (a; b) := a1��b�

where � 2 [0; 1] and a; b > 0: If � = 1
2 , then we write for brevity A (a; b) and

G (a; b), respectively.
The following double inequality holds, see also [6]:

Theorem 1. Let M; m 2 R with M > m and � 2 B ((0;1) ;m;M;� ln) : Then
for any a; b > 0 and � 2 [0; 1] we have

ln

�
A� (a; b)

G� (a; b)

�m
� (1� �) � (a) + �� (b)� � ((1� �) a+ �b)(2.1)

� ln
�
A� (a; b)

G� (a; b)

�M
:

Proof. Since � 2 B ((0;1) ;m;M;� ln) ; then �m := �+m ln is convex and by the
de�nition of convexity, we have

� ((1� �) a+ �b) +m lnA� (a; b)
� (1� �) [� (a) +m ln a] + � [� (b) +m ln b]
= (1� �) � (a) + �� (b) + (1� �)m ln a+ �m ln b
= (1� �) � (a) + �� (b) +m lnG� (a; b)

that is equivalent to

m ln
A� (a; b)

G� (a; b)
� (1� �)� (a) + �� (b)� � ((1� �) a+ �b)

and the �rst inequality in (2.1) is proved.
Similarly, by the convexity of �M := �M ln�� we get the second part of (2.1).

�

For m; M with M > m > 0 we de�ne

(2.2) Mp :=

8<: Mp if p > 1

mp if p < 0
and mp :=

8<: mp if p > 1

Mp if p < 0
:

Consider the function � (t) = tp, p 2 (�1; 0) [ (1;1) : This is a convex function
and �00 (t) = p (p� 1) tp�2; t > 0: Consider � (t) := t2�00 (t) = p (p� 1) tp. We
observe that

max
t2[m;M ]

� (t) = p (p� 1)Mp and min
t2[m;M ]

� (t) = p (p� 1)mp:

Corollary 1. Let m; M with M > m > 0 and p 2 (�1; 0)[ (1;1) : Then for any
a; b 2 [m;M ] and � 2 [0; 1] we have

ln

�
A� (a; b)

G� (a; b)

�p(p�1)mp

� (1� �) ap + �bp � ((1� �) a+ �b)p(2.3)

� ln
�
A� (a; b)

G� (a; b)

�p(p�1)Mp

;

where Mp and mp are de�ned by (2.2).
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By taking the exponential in (2.3) we get the equivalent inequality

exp

�
(1� �) ap + �bp � ((1� �) a+ �b)p

p (p� 1)Mp

�
(2.4)

� A� (a; b)

G� (a; b)

� exp
�
(1� �) ap + �bp � ((1� �) a+ �b)p

p (p� 1)mp

�
for any p 2 (�1; 0) [ (1;1) ; � 2 [0; 1] and any a; b 2 [m;M ] :
If we take p = 2 in (2.4) and perform the calculations, then we get

(2.5) exp

"
1

2
(1� �) � (b� a)

2

M2

#
� A� (a; b)

G� (a; b)
� exp

"
1

2
(1� �) � (b� a)

2

m2

#

for any a; b 2 [m;M ].
If a; b > 0 then by taking M = max fa; bg and m = min fa; bg in (2.5) we have

(2.6) exp

"
1

2
(1� �) � (b� a)2

max2 fa; bg

#
� A� (a; b)

G� (a; b)
� exp

"
1

2
(1� �) � (b� a)2

min2 fa; bg

#
:

Since

(b� a)2

max2 fa; bg =
�

b� a
max fa; bg

�2
=

�
min fa; bg
max fa; bg � 1

�2
and

(b� a)2

min2 fa; bg
=

�
b� a

min fa; bg

�2
=

�
max fa; bg
min fa; bg � 1

�2
for any a; b > 0; then (2.6) can be written as

exp

"
1

2
(1� �) �

�
1� min fa; bg

max fa; bg

�2#
(2.7)

� A� (a; b)

G� (a; b)

� exp
"
1

2
(1� �) �

�
max fa; bg
min fa; bg � 1

�2#
:

This inequality was obtained in a di¤erent way in [5].
If we take p = �1 in (2.4) and perform the calculations, then we get

(2.8) exp

"
1

2
(1� �) � m (b� a)

2

abA� (a; b)

#
� A� (a; b)

G� (a; b)
� exp

"
1

2
(1� �) �M (b� a)2

abA� (a; b)

#

for any a; b 2 [m;M ] and � 2 [0; 1] :
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If a; b > 0 then by taking M = max fa; bg and m = min fa; bg in (2.8) and since
ab = max fa; bgmin fa; bg we have

exp

"
1

2
(1� �) � (b� a)2

max fa; bgA� (a; b)

#
(2.9)

� A� (a; b)

G� (a; b)

� exp
"
1

2
(1� �) � (b� a)2

min fa; bgA� (a; b)

#
for any � 2 [0; 1] :
Since

1

max fa; bg �
1

A� (a; b)
� 1

min fa; bg
hence

exp

"
1

2
(1� �) �

�
min fa; bg
max fa; bg � 1

�2#
� exp

"
1

2
(1� �) � (b� a)2

max fa; bgA� (a; b)

#
and

exp

"
1

2
(1� �) � (b� a)2

min fa; bgA� (a; b)

#
� exp

"
1

2
(1� �) �

�
max fa; bg
min fa; bg � 1

�2#
;

showing that the double inequality (2.9) is better than (2.7).

3. Some Perturbed Inequalities

Recall the following result obtained by Dragomir in 2006 [2] that provides a
re�nement and a reverse for the weighted Jensen�s discrete inequality:

n min
j2f1;2;:::;ng

fpjg

24 1
n

nX
j=1

f (xj)� f

0@ 1
n

nX
j=1

xj

1A35(3.1)

� 1

Pn

nX
j=1

pjf (xj)� f

0@ 1

Pn

nX
j=1

pjxj

1A
� n max

j2f1;2;:::;ng
fpjg

24 1
n

nX
j=1

f (xj)� f

0@ 1
n

nX
j=1

xj

1A35 ;
where f : C ! R is a convex function de�ned on convex subset C of the linear space
X; fxjgj2f1;2;:::;ng are vectors in C and fpjgj2f1;2;:::;ng are nonnegative numbers
with Pn =

Pn
j=1 pj > 0.

For n = 2, we deduce from (3.1) that

2r

�
f(x) + f(y)

2
� f

�
x+ y

2

��
(3.2)

� �f (x) + (1� �) f (y)� f (�x+ (1� �) y)

� 2R
�
f(x) + f(y)

2
� f

�
x+ y

2

��
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for any x; y 2 C and � 2 [0; 1] where r := min f�; 1� �g and R := max f�; 1� �g :

Theorem 2. Let M; m 2 R with M > m and � 2 B ((0;1) ;m;M;� ln) : Then
for any a; b > 0 and � 2 [0; 1] we have

ln

"
A� (a; b)

G� (a; b)

�
G (a; b)

A (a; b)

�2r#m
(3.3)

� (1� �) � (a) + �� (b)� � ((1� �) a+ �b)

� 2r
�
�(a) + �(b)

2
� �

�
a+ b

2

��

� ln
"�
G (a; b)

A (a; b)

�2r
A� (a; b)

G� (a; b)

#M
and

ln

"�
A (a; b)

G (a; b)

�2R
G� (a; b)

A� (a; b)

#m
(3.4)

� 2R
�
�(a) + �(b)

2
� �

�
a+ b

2

��
� [�� (a) + (1� �) � (b)� � (�a+ (1� �) b)]

� ln
"
G� (a; b)

A� (a; b)

�
A (a; b)

G (a; b)

�2R#M
;

where r := min f�; 1� �g and R := max f�; 1� �g :

Proof. Since � 2 B ((0;1) ;m;M;� ln) ; then fm := � + m ln is convex and by
(3.2) we have

2r

�
�(a) + �(b)

2
� �

�
a+ b

2

��
� 2rm ln A (a; b)

G (a; b)
(3.5)

� �� (a) + (1� �) � (b)� � (�a+ (1� �) b)�m ln A� (a; b)
G� (a; b)

� 2R
�
�(a) + �(b)

2
� �

�
a+ b

2

��
� 2Rm ln A (a; b)

G (a; b)
;

for any a; b > 0 and � 2 [0; 1] :
Since � 2 B ((0;1) ;m;M;� ln) ; then also fM := ���M ln is convex and by

(3.2) we have

2r

�
�

�
a+ b

2

�
� �(a) + �(b)

2

�
+ 2rM ln

A (a; b)

G (a; b)
(3.6)

� � (�a+ (1� �) b)� �� (a)� (1� �)� (b) +M ln
A� (a; b)

G� (a; b)

� 2R
�
�

�
a+ b

2

�
� �(a) + �(b)

2

�
+ 2RM ln

A (a; b)

G (a; b)
;

for any a; b > 0 and � 2 [0; 1] :
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From the �rst inequality in (3.5) we have

ln

"
A� (a; b)

G� (a; b)

�
G (a; b)

A (a; b)

�2r#m
� �� (a) + (1� �) � (b)� � (�a+ (1� �) b)

� 2r
�
�(a) + �(b)

2
� �

�
a+ b

2

��
while from the �rst inequality in (3.6) we also have

�� (a) + (1� �) � (b)� � (�a+ (1� �) b)

� 2r
�
�(a) + �(b)

2
� �

�
a+ b

2

��

� ln
"�
G (a; b)

A (a; b)

�2r
A� (a; b)

G� (a; b)

#M
for any a; b > 0 and � 2 [0; 1] :
These prove the desired result (3.3).
From the second inequality in (3.5) we have

ln

"�
A (a; b)

G (a; b)

�2R
G� (a; b)

A� (a; b)

#m
� 2R

�
�(a) + �(b)

2
� �

�
a+ b

2

��
� [�� (a) + (1� �) � (b)� � (�a+ (1� �) b)]

while from the second inequality in (3.6) we also have

2R

�
�(a) + �(b)

2
� �

�
a+ b

2

��
� [�� (a) + (1� �) � (b)� � (�a+ (1� �) b)]

� ln
"
G� (a; b)

A� (a; b)

�
A (a; b)

G (a; b)

�2R#M
;

for any a; b > 0 and � 2 [0; 1] :
These prove the desired result (3.4). �

Corollary 2. Let m;M with M > m > 0 and p 2 (�1; 0)[ (1;1) : Then for any
a; b 2 [m;M ] and � 2 [0; 1] we have

ln

"
A� (a; b)

G� (a; b)

�
G (a; b)

A (a; b)

�2r#p(p�1)mp

(3.7)

� (1� �) ap + �bp � ((1� �) a+ �b)p

� 2r
�
ap + bp

2
�
�
a+ b

2

�p�

� ln
"�
G (a; b)

A (a; b)

�2r
A� (a; b)

G� (a; b)

#p(p�1)Mp
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and

ln

"�
A (a; b)

G (a; b)

�2R
G� (a; b)

A� (a; b)

#p(p�1)mp

(3.8)

� 2R
�
ap + bp

2
�
�
a+ b

2

�p�
� [(1� �) ap + �bp � ((1� �) a+ �b)p]

� ln
"
G� (a; b)

A� (a; b)

�
A (a; b)

G (a; b)

�2R#p(p�1)Mp

;

where r := min f�; 1� �g and R := max f�; 1� �g and Mp and mp are de�ned by
(2.2).

Observe, by simple calculation, we have that

(1� �) a2 + �b2 � ((1� �) a+ �b)2 � 2r
"
a2 + b2

2
�
�
a+ b

2

�2#
(3.9)

= (1� �) � (b� a)2 � r

2
(b� a)2 = r

�
R� 1

2

�
(b� a)2

and

2R

"
a2 + b2

2
�
�
a+ b

2

�2#
�
h
(1� �) a2 + �b2 � ((1� �) a+ �b)2

i
(3.10)

=
R

2
(b� a)2 � (1� �) � (b� a)2 = R

�
1

2
� r
�
(b� a)2

for any a; b 2 [m;M ] and � 2 [0; 1] :
If we write the inequalities (3.7) and (3.8) for p = 2; then we get

ln

"
A� (a; b)

G� (a; b)

�
G (a; b)

A (a; b)

�2r#2m2

� r
�
R� 1

2

�
(b� a)2(3.11)

� ln
"�
G (a; b)

A (a; b)

�2r
A� (a; b)

G� (a; b)

#2M2

and

ln

"�
A (a; b)

G (a; b)

�2R
G� (a; b)

A� (a; b)

#2m2

� R
�
1

2
� r
�
(b� a)2(3.12)

� ln
"
G� (a; b)

A� (a; b)

�
A (a; b)

G (a; b)

�2R#2M2

;

for any a; b 2 [m;M ] and � 2 [0; 1] :
From the �rst inequality in (3.11) we have

(3.13)
A� (a; b)

G� (a; b)
�
�
A (a; b)

G (a; b)

�2r
exp

�
1

2m2
r

�
R� 1

2

�
(b� a)2

�
;
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while from the second inequality in (3.11) we have

(3.14)
�
A (a; b)

G (a; b)

�2r
exp

�
1

2M2
r

�
R� 1

2

�
(b� a)2

�
� A� (a; b)

G� (a; b)
:

From the �rst inequality in (3.12) we have

(3.15)
�
A (a; b)

G (a; b)

�2R
exp

�
� 1

2m2
R

�
1

2
� r
�
(b� a)2

�
� A� (a; b)

G� (a; b)

while from the second inequality in (3.12) we have

(3.16)
A� (a; b)

G� (a; b)
�
�
A (a; b)

G (a; b)

�2R
exp

�
� 1

2M2
R

�
1

2
� r
�
(b� a)2

�
:

In conclusion, from (3.13)-(3.16) we have the following result:

max

(�
A (a; b)

G (a; b)

�2r
exp

�
1

2M2
r

�
R� 1

2

�
(b� a)2

�
;(3.17)

�
A (a; b)

G (a; b)

�2R
exp

�
� 1

2m2
R

�
1

2
� r
�
(b� a)2

�)

� A� (a; b)

G� (a; b)

� min
(�

A (a; b)

G (a; b)

�2r
exp

�
1

2m2
r

�
R� 1

2

�
(b� a)2

�
;

�
A (a; b)

G (a; b)

�2R
exp

�
� 1

2M2
R

�
1

2
� r
�
(b� a)2

�)
for any a; b 2 [m;M ] and � 2 [0; 1] :
We need the following lemma [4]:

Lemma 3. If the function f : I � R! R is a di¤erentiable convex function on �I;
then for any a; b 2 �I and � 2 [0; 1] we have

0 � (1� �) f (a) + �f (b)� f ((1� �) a+ �b)(3.18)

� � (1� �) (b� a) [f 0 (b)� f 0 (a)] :

We have:

Theorem 3. Let M; m 2 R with M > m and � 2 B ((0;1) ;m;M;� ln) : Then
for any a; b > 0 and � 2 [0; 1] we have

m

"
� (1� �) (b� a)

2

ab
� ln A� (a; b)

G� (a; b)

#
(3.19)

� � (1� �) (b� a) (�0 (b)� �0 (a))
� [(1� �) � (a) + �� (b)� � ((1� �) a+ �b)]

�M
"
� (1� �) (b� a)

2

ab
� ln A� (a; b)

G� (a; b)

#
:
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Proof. Since � 2 B ((0;1) ;m;M;� ln) ; then fm := � + m ln is convex and by
(3.18) we have

0 � (1� �) � (a) + �� (b)� � ((1� �) a+ �b)

�m ln A� (a; b)
G� (a; b)

� � (1� �) (b� a)
h
�0 (b)� �0 (a) + m

b
� m
a

i
= � (1� �) (b� a) (�0 (b)� �0 (a))� m

ab
� (1� �) (b� a)2

that is equivalent to

m

"
� (1� �) (b� a)

2

ab
� ln A� (a; b)

G� (a; b)

#
� � (1� �) (b� a) (�0 (b)� �0 (a))
� [(1� �) � (a) + �� (b)� � ((1� �) a+ �b)]

for any a; b 2 [m;M ] and � 2 [0; 1] and the �rst inequality in (3.19) is proved.
Since � 2 B ((0;1) ;m;M;� ln) ; then also fM := ���M ln is convex and by

(3.18) we have

0 � � (1� �) � (a)� �� (b) + f ((1� �) a+ �b)

+M ln
A� (a; b)

G� (a; b)

� �� (1� �) (b� a) [�0 (b)� �0 (a)] +M� (1� �) (b� a)
2

ab

that is equivalent to

� (1� �) (b� a) [�0 (b)� �0 (a)]
� (1� �) � (a)� �� (b) + f ((1� �) a+ �b)

�M
"
� (1� �) (b� a)

2

ab
� ln A� (a; b)

G� (a; b)

#
for any a; b 2 [m;M ] and � 2 [0; 1] and the second inequality in (3.19) is proved. �

Corollary 3. Let m;M with M > m > 0 and p 2 (�1; 0)[ (1;1) : Then for any
a; b 2 [m;M ] and � 2 [0; 1] we have

p (p� 1)mp

"
� (1� �) (b� a)

2

ab
� ln A� (a; b)

G� (a; b)

#
(3.20)

� p� (1� �) (b� a)
�
bp�1 � ap�1

�
� [(1� �) ap + �bp � ((1� �) a+ �b)p]

� p (p� 1)Mp

"
� (1� �) (b� a)

2

ab
� ln A� (a; b)

G� (a; b)

#
;

where Mp and mp are de�ned by (2.2).
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The case p = 2 is of interest. Observe that

2� (1� �) (b� a)2 �
h
(1� �) a2 + �b2 � ((1� �) a+ �b)2

i
= 2� (1� �) (b� a)2 � � (1� �) (b� a)2 = � (1� �) (b� a)2

and by (3.20) we have

2m2

"
� (1� �) (b� a)

2

ab
� ln A� (a; b)

G� (a; b)

#
� � (1� �) (b� a)2

� 2M2

"
� (1� �) (b� a)

2

ab
� ln A� (a; b)

G� (a; b)

#
;

which is equivalent to

exp

�
� (1� �) (b� a)2

�
1

ab
� 1

2m2

��
(3.21)

� A� (a; b)

G� (a; b)

� exp
�
� (1� �) (b� a)2

�
1

ab
� 1

2M2

��
for any a; b 2 [m;M ] and � 2 [0; 1].
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