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GRONWALL TYPE INEQUALITIES FOR CONFORMABLE
FRACTIONAL INTEGRALS

MEHMET ZEKI SARIKAYA

ABSTRACT. In this paper, some new generalized Gronwall-type inequalities are
investigated for conformable differential equations. The established results are
extensions of some existing Gronwall-type inequalities in the literature.

1. INTRODUCTION

Fractional Calculus is a generalization of ordinary differentiation and integration
to arbitrary (non-integer) order. The subject is as old as the calculus of differenti-
ation and goes back to times when Leibniz, Gauss, and Newton invented this kind
of calculation. During three centuries, the theory of fractional calculus developed
as a pure theoretical field, useful only for mathematicians, we refer to [10], see also
[11]. Recently a new local, limit-based definition of a conformable derivative has
been formulated [1], [4], [8], with several follow-up papers [2], [3], [5]-[9]. In this
paper, we use the Katugampola derivative formulation of conformable derivative of
order for o € (0,1]and ¢ € [0, 00) given by

NG ENI0 |
1) DY) = lim D () (0) = FmD* () (1),

e—0 £

provided the limits exist (for detail see, [8]). If f is fully differentiable at ¢, then
(1.2) DY (f) (1) =" (1)
A function f is a—differentiable at a point ¢ > 0 if the limit in (1.1) exists and is
finite. This definition yields the following results;
Theorem 1. Let o € (0,1] and f, g be a—differentiable at a point t > 0. Then

i. D% (af +bg) = aD* (f) +bD* (g), for all a,b € R,

ii. D* (X) = 0, for all constant functions f (t) = A,

ii. D* (fg) = fD* (g9) + gD (f),

D — gD
iv. D° (f> _ fD%(9) 9 (f)
g g

v. D* (") =nt"* for alln € R

vi. D*(fog)(t) = f' (g (t)) D*(g) (t) for f is differentiable at g(t).
Definition 1 (Conformable fractional integral). Let o € (0,1] and 0 < a < b. A
function f : [a,b] — R is a-fractional integrable on [a,b] if the integral

/abf () dox := /abf (z) z* tda
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exists and is finite. All a-fractional integrable on [a,b] is indicated by L ([a,b])

Remark 1.

rno=1"7)= [ L

where the integral is the usual Riemann improper integral, and o € (0,1].

We will also use the following important results, which can be derived from the
results above.

Lemma 1. Let the conformable differential operator D% be given as in (1.1), where
a € (0,1] and t > 0, and assume the functions f and g are a-differentiable as
needed. Then

i. D*(Int) =t~ fort >0

ii. D* [fatf(t,s)das] = (&) + [1 DY [f (t,5)] das
iii. [0 f(2) D% (9) (@) daw = fg’ = [ g (@) D* (f) (x) doa.

In this paper, some new generalized Gronwall-type inequalities are investigated
for conformable differential equations. The established results are extensions of
some existing Gronwall-type inequalities in the literature.

2. MAIN RESULTS

Troughout this paper, all the functions which appear in the inequalities are
assumed to be real-valued and all the integrals involved exist on the respective
domains of their definitions, and C'(M,S) and C* (M, S)denote the class of all
continuous functions and the first order conformable derivative, respectively, defined
on set M with range in the set S.

Firstly, we start with the following definition, which is a generalization of the
limit definition of the derivative for the case of a function with many variables.

Definition 2. Let f be a function with n variables tq,...,t, and the conformable
partial derivative of f of order a € (0,1] in x; is defined as follows

9 Fltr,ontion, tiesti " tn) — f(t1y o tn)

The first result is the generalization of Theorem 2.10 of [3].

Theorem 2. Assume that f(t,s) is function for which 05 [0 f(t,s)] and 05 [08 f(t, )]
exist and are continuos over the domain D C R?, then

(2.2 o5 [08 (1, 5)] = 02 (07 F(t,5)]
Proof. By using the (1.1), it follows that

t, es P\ _ t,
o [001(t,s)] = o . (tose™") = f (t,9)

e—0 9

P A B ) R AT
a t1e=0 19
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Making the change of variable k = es'=7 (1 + O(¢)), we get

o ol fl,s+k)—f(ts
oF (02 £(2.5)] = [,113% e W .
1+0(e)
Since f is diffentiable in s-direction, we obtain
(23) of 103 (0.5 = 570 | 109

Again by definition (1.1), it follows that

gf (16" s) = §(09)
0 (00 f (L, 5)] = 5" lim = ( ) ds .
e—0 c
Similarly, after making the change of variable, we have
Tf(t+hs) = Ff(ts)

Qo — J1-B4l-a li Js
Of [0S f(t,8)] =5 "t Lim 6 .

Since f is diffentiable in ¢-direction, we obtain
2

(2.4) o7 105 7(1,5)) = 5 0 g, 5)

Since f is continuous, by using the Clairaut’s theorem for partial derivatives, it
follows that
0? 0?
t =
gsat! 19 = Gias

Therefore the equation (2.4) becomes

f(t,s).

92 Sif s+ k) =5 (ts)
a (oo _ Jd-B4l—a — 1-B41—a 1; ot ) ot )
O (07 f(t5)] = st 5 o f(ts) = 577747 lim . :

Thus, taking k = s’ (14 O(¢)) and laler h = et' = (1 + O(g)) we arrive at

%f(t75+k) B %f (ta S)
k

O 105 f (¢, 8)] = O =07 (07 f(t,9)]

lim
k—0
which completes the proof. O

Theorem 3. Let k € C(RT,RT), y € C(RT x R* RY), r € C' (RT,R") with
(t,5) — Ofy(t,s) € C(RT x RT,RT). Assume in additional that r is nondecreasing
and r(t) <t fort > 0. Ifu e C(RY,R") satisfies

r(t)
(2.5) u(t) < k(t) +/ y (¢, s)u(s)dys, t >0,
0
then
(2.6)
fT(t) (t,8)das ! 7["“(7) (1,8)das 0« ()
u(t) < h(t)+elo vttes [ em o mumades o y (7, 8) k(s)das | daT, t>0.
0 T 0

Proof. If we set
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then our assumptions on y and r imply that z is nondecreasing on R*. Thus, for
t > 0, by using Lemma 1 (ii), we get

(0%

r(t)
D%(t) = yt,r@)u(r())D>r(t) —I—/O [aatay (t,s)} u(8)dys

’l‘(t) 8@

r(t) o
< O R + D0 + [ | )] 16+ 26 das
r(t) o
< O k@) + 01D+ [ ()] Heldas 200 [

or, equivalently

1eY r(t) [eY r(t)
Dz(t) — z(t)a% (/O y(t,s)dw) < (% (/0 y(t,s)k(s)da5> .

Multiplying the above inequality by e~ I3 y(t:5)das e obtain that

0« () () 0« r(®)
— (z(t)e™ Jo y(ts)das ) < o= fo " y(ts)das 2 / y (t,8) k(s)das | .
ot ( ) ot \ Jo

Integrating this from 0 to t yields

(t t (T e T(T)
Z(t) <e D( )y(t,s)das/ o fo( >y(’r,s)dasaé;a (/ Y (7'7 5) k(s)da5> doT.
0

0

Combine the above inequality with u(t) < k(¢) + z(¢) this imply (2.4). The proof
is complete. ([l

Corollary 1. Assumey,r are as in Theorem 3 and k(t) =k > 0. Ifu € C (RT,RT)
satisfies (2.5), then

u(t) < kedo P utodas 45

Proof. Applying Theorem 3 for k(t) = k and , we arrive at

ks t (T o T(T)
u(t) < k+ kel “)W’S)dcﬁ/ e 57 uir)das 97 (/ y(7,s) das> doT
0

0 67—(1
= Lk -+ kefor(t) y(t,5)das (1 — e OT(t) y(t,s)das>

= kel utdas 4 >,

O

Remark 2. If we take r(t) =t in Corollary 1, then the inequality given by Corollary
1 reduces to Gronwall’s inequality for conformable integrals in [1].

Theorem 4. Let k,y,z € C(RT,RT), r € C' (R*,R") and assume that r is
nondecreasing with v(t) <t for t > 0. If u € C (RT,R") satisfies

r(t)
(2.7) u(t) < k(t) + y(t)/O z(s)u(s)dys, t>0,

ote

y(t,s)dys
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then
"I a(s)y(s)das o
(2.8)  w(t) <k()+y(t) | e@ “x (r(r)) k(r(r)) D (7)dyT, t>0.
0
Proof. If we set

(1)
z(t) = / x(s)u(s)das
0
then, by using conformable rules we see that
Dz(t) x (r(t)) u(r(t))Dr(t)

< x(r(@) [k(r(8) +y (r(2) 2(r(2)] D (2)

< x(r(@) [k(r(t) +y (r(2) 2(£)] Dr(1).
Thus, we have

D%2(t) — 2 (r(t) y (r(2)) 2() DYr(t) < (r(8)) k(r(t)) Dr(2).

Multiplying the above inequality by e~ I #(8)y(s)das e obtain that

38? (z(t)e_ J(t) x(S)y(s)das) <e f[f(t) x(s)y(s)dasw (T‘(t)) k(T(t))DaT(t).

Integrating this from 0 to t yields

(t t (T
) < el / e BT H s (1(0)) k(1)) DO (7)o T
0

r(t)

= [Ty (2 k() D ()
0

and hence the claim follows because of u(t) < k(t)+y(t)z(t). The proof is complete.
O

Corollary 2. Assume y,x,k are as in Theorem 4 and r(t) =t. Ifu € C (RT,RT)
satisfies (2.7), then

¢ "t
ult) < k(1) + y(t) / et OV asy (1) k(r)dor, ¢ 0.
0

Remark 3. If we take y(t) =t in Corollary 2, then the inequality given by Corollary
2 reduces to Gronwall’s inequality for conformable integrals in [2].
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