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Abstract. In this paper, some new generalized Gronwall-type inequalities are
investigated for conformable di¤erential equations. The established results are
extensions of some existing Gronwall-type inequalities in the literature.

1. Introduction

Fractional Calculus is a generalization of ordinary di¤erentiation and integration
to arbitrary (non-integer) order. The subject is as old as the calculus of di¤erenti-
ation and goes back to times when Leibniz, Gauss, and Newton invented this kind
of calculation. During three centuries, the theory of fractional calculus developed
as a pure theoretical �eld, useful only for mathematicians, we refer to [10], see also
[11]. Recently a new local, limit-based de�nition of a conformable derivative has
been formulated [1], [4], [8], with several follow-up papers [2], [3], [5]-[9]. In this
paper, we use the Katugampola derivative formulation of conformable derivative of
order for � 2 (0; 1]and t 2 [0;1) given by

(1.1) D� (f) (t) = lim
"!0

f
�
te"t

��
�
� f (t)

"
; D� (f) (0) = lim

t!0
D� (f) (t) ;

provided the limits exist (for detail see, [8]). If f is fully di¤erentiable at t; then

(1.2) D� (f) (t) = t1��
df

dt
(t) :

A function f is ��di¤erentiable at a point t � 0 if the limit in (1.1) exists and is
�nite. This de�nition yields the following results;

Theorem 1. Let � 2 (0; 1] and f; g be ��di¤erentiable at a point t > 0. Then
i: D� (af + bg) = aD� (f) + bD� (g) ; for all a; b 2 R;
ii: D� (�) = 0; for all constant functions f (t) = �;
iii: D� (fg) = fD� (g) + gD� (f) ;

iv: D�

�
f

g

�
=
fD� (g)� gD� (f)

g2

v: D� (tn) = ntn�� for all n 2 R
vi: D� (f � g) (t) = f 0 (g (t))D� (g) (t) for f is di¤erentiable at g(t):

De�nition 1 (Conformable fractional integral). Let � 2 (0; 1] and 0 � a < b: A
function f : [a; b]! R is �-fractional integrable on [a; b] if the integralZ b

a

f (x) d�x :=

Z b

a

f (x)x��1dx
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exists and is �nite. All �-fractional integrable on [a; b] is indicated by L1� ([a; b])

Remark 1.

Ia� (f) (t) = I
a
1

�
t��1f

�
=

Z t

a

f (x)

x1��
dx;

where the integral is the usual Riemann improper integral, and � 2 (0; 1].

We will also use the following important results, which can be derived from the
results above.

Lemma 1. Let the conformable di¤erential operator D� be given as in (1.1), where
� 2 (0; 1] and t � 0, and assume the functions f and g are �-di¤erentiable as
needed. Then
i. D� (ln t) = t�� for t > 0

ii. D�
hR t
a
f (t; s) d�s

i
= f(t; t) +

R t
a
D� [f (t; s)] d�s

iii.
R b
a
f (x)D� (g) (x) d�x = fgjba �

R b
a
g (x)D� (f) (x) d�x:

In this paper, some new generalized Gronwall-type inequalities are investigated
for conformable di¤erential equations. The established results are extensions of
some existing Gronwall-type inequalities in the literature.

2. Main Results

Troughout this paper, all the functions which appear in the inequalities are
assumed to be real-valued and all the integrals involved exist on the respective
domains of their de�nitions, and C (M;S) and C1 (M;S)denote the class of all
continuous functions and the �rst order conformable derivative; respectively, de�ned
on set M with range in the set S:
Firstly, we start with the following de�nition, which is a generalization of the

limit de�nition of the derivative for the case of a function with many variables.

De�nition 2. Let f be a function with n variables t1; :::; tn and the conformable
partial derivative of f of order � 2 (0; 1] in xi is de�ned as follows

(2.1)
@�

@t�i
f(t1; :::; tn) = lim

"!0

f(t1; :::; ti�1; tie
"t��i ; :::; tn)� f (t1; :::; tn)

"
:

The �rst result is the generalization of Theorem 2.10 of [3].

Theorem 2. Assume that f(t; s) is function for which @�t
�
@�s f(t; s)

�
and @�s [@

�
t f(t; s)]

exist and are continuos over the domain D � R2; then

(2.2) @�t
�
@�s f(t; s)

�
= @�s [@

�
t f(t; s)] :

Proof. By using the (1.1), it follows that

@�t
�
@�s f(t; s)

�
= @�t

24 lim
"!0

f
�
t; se"s

��
�
� f (t; s)

"

35
= @�t

"
lim
"!0

f
�
t; s+ "s1�� +O("2)

�
� f (t; s)

"

#
:
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Making the change of variable k = "s1�� (1 +O(")) ; we get

@�t
�
@�s f(t; s)

�
= @�t

"
lim
k!0

f (t; s+ k)� f (t; s)
ks��1

1+O(")

#
:

Since f is di¤entiable in s-direction, we obtain

(2.3) @�t [@
�
s f(t; s)] = s

1��@�t

�
@

@s
f(t; s)

�
:

Again by de�nition (1.1), it follows that

@�t [@
�
s f(t; s)] = s

1�� lim
"!0

@
@sf

�
te"t

��
; s
�
� @

@sf(t; s)

"
:

Similarly, after making the change of variable; we have

@�t [@
�
s f(t; s)] = s

1��t1�� lim
h!0

@
@sf (t+ h; s)�

@
@sf(t; s)

"
:

Since f is di¤entiable in t-direction, we obtain

(2.4) @�t [@
�
s f(t; s)] = s

1��t1��
@2

@t@s
f(t; s):

Since f is continuous, by using the Clairaut�s theorem for partial derivatives, it
follows that

@2

@s@t
f(t; s) =

@2

@t@s
f(t; s):

Therefore the equation (2.4) becomes

@�t [@
�
s f(t; s)] = s

1��t1��
@2

@t@s
f(t; s) = s1��t1�� lim

k!0

@
@tf (t; s+ k)�

@
@tf (t; s)

k
:

Thus, taking k = "s1�� (1 +O(")) and laler h = "t1�� (1 +O(")) we arrive at

@�t [@
�
s f(t; s)] = @

�
s

"
lim
k!0

@
@tf (t; s+ k)�

@
@tf (t; s)

k

#
= @�s [@

�
t f(t; s)]

which completes the proof. �

Theorem 3. Let k 2 C (R+;R+) ; y 2 C (R+ � R+;R+) ; r 2 C1 (R+;R+) with
(t; s)! @�t y(t; s) 2 C (R+ � R+;R+) : Assume in additional that r is nondecreasing
and r(t) � t for t � 0: If u 2 C (R+;R+) satis�es

(2.5) u(t) � k(t) +
Z r(t)

0

y (t; s)u(s)d�s; t � 0;

then
(2.6)

u(t) � k(t)+e
R r(t)
0 y(t;s)d�s

Z t

0

e�
R r(�)
0 y(�;s)d�s

@�

@��

 Z r(�)

0

y (� ; s) k(s)d�s

!
d�� ; t � 0:

Proof. If we set

z(t) =

Z r(t)

0

y (t; s)u(s)d�s
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then our assumptions on y and r imply that z is nondecreasing on R+: Thus, for
t � 0; by using Lemma 1 (ii), we get

D�z(t) = y (t; r(t))u(r(t))D�r(t) +

Z r(t)

0

�
@�

@t�
y (t; s)

�
u(s)d�s

� y (t; r(t)) [k(r(t)) + z(r(t))]D�r(t) +

Z r(t)

0

�
@�

@t�
y (t; s)

�
[k(s) + z(s)] d�s

� y (t; r(t)) [k(r(t)) + z(t)]D�r(t) +

Z r(t)

0

�
@�

@t�
y (t; s)

�
k(s)d�s+ z(t)

Z r(t)

0

@�

@t�
y (t; s) d�s

or, equivalently

D�z(t)� z(t) @
�

@t�

 Z r(t)

0

y (t; s) d�s

!
� @�

@t�

 Z r(t)

0

y (t; s) k(s)d�s

!
:

Multiplying the above inequality by e�
R r(t)
0 y(t;s)d�s; we obtain that

@�

@t�

�
z(t)e�

R r(t)
0 y(t;s)d�s

�
� e�

R r(t)
0 y(t;s)d�s

@�

@t�

 Z r(t)

0

y (t; s) k(s)d�s

!
:

Integrating this from 0 to t yields

z(t) � e
R r(t)
0 y(t;s)d�s

Z t

0

e�
R r(�)
0 y(�;s)d�s

@�

@��

 Z r(�)

0

y (� ; s) k(s)d�s

!
d�� :

Combine the above inequality with u(t) � k(t) + z(t) this imply (2.4). The proof
is complete. �

Corollary 1. Assume y; r are as in Theorem 3 and k(t) = k > 0: If u 2 C (R+;R+)
satis�es (2.5), then

u(t) � ke
R r(t)
0 y(t;s)d�s; t � 0

Proof. Applying Theorem 3 for k(t) = k and ; we arrive at

u(t) � k + ke
R r(t)
0 y(t;s)d�s

Z t

0

e�
R r(�)
0 y(�;s)d�s

@�

@��

 Z r(�)

0

y (� ; s) d�s

!
d��

= k + ke
R r(t)
0 y(t;s)d�s

�
1� e�

R r(t)
0 y(t;s)d�s

�
= ke

R r(t)
0 y(t;s)d�s; t � 0:

�

Remark 2. If we take r(t) = t in Corollary 1, then the inequality given by Corollary
1 reduces to Gronwall�s inequality for conformable integrals in [1].

Theorem 4. Let k; y; x 2 C (R+;R+) ; r 2 C1 (R+;R+) and assume that r is
nondecreasing with r(t) � t for t � 0: If u 2 C (R+;R+) satis�es

(2.7) u(t) � k(t) + y(t)
Z r(t)

0

x(s)u(s)d�s; t � 0;
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then

(2.8) u(t) � k(t) + y(t)
Z t

0

e
R r(t)
r(�)

x(s)y(s)d�sx (r(�)) k(r(�))D�r(�)d�� ; t � 0:

Proof. If we set

z(t) =

Z r(t)

0

x(s)u(s)d�s

then; by using conformable rules we see that

D�z(t) = x (r(t))u(r(t))D�r(t)

� x (r(t)) [k(r(t)) + y (r(t)) z(r(t))]D�r(t)

� x (r(t)) [k(r(t)) + y (r(t)) z(t)]D�r(t):

Thus, we have

D�z(t)� x (r(t)) y (r(t)) z(t)D�r(t) � x (r(t)) k(r(t))D�r(t):

Multiplying the above inequality by e�
R r(t)
0 x(s)y(s)d�s; we obtain that

@�

@t�

�
z(t)e�

R r(t)
0 x(s)y(s)d�s

�
� e�

R r(t)
0 x(s)y(s)d�sx (r(t)) k(r(t))D�r(t):

Integrating this from 0 to t yields

z(t) � e
R r(t)
0 x(s)y(s)d�s

Z t

0

e�
R r(�)
0 x(s)y(s)d�sx (r(�)) k(r(�))D�r(�)d��

=

Z t

0

e
R r(t)
r(�)

x(s)y(s)d�sx (r(�)) k(r(�))D�r(�)d��

and hence the claim follows because of u(t) � k(t)+y(t)z(t). The proof is complete.
�

Corollary 2. Assume y; x; k are as in Theorem 4 and r(t) = t: If u 2 C (R+;R+)
satis�es (2.7), then

u(t) � k(t) + y(t)
Z t

0

e
R t
�
x(s)y(s)d�sx (�) k(�)d�� ; t � 0:

Remark 3. If we take y(t) = t in Corollary 2, then the inequality given by Corollary
2 reduces to Gronwall�s inequality for conformable integrals in [2].
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