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Abstract. The main issues addressed in this paper are making generalization
of Gronwall, Volterra and Pachpatte type inequalities for conformable di¤eren-
tial equations. By using the Katugampola de�nition for conformable calculus
we found some upper or lower bound for fractional derivatives and integrals.
The established results are extensions of some existing Gronwall, Volterra and
Pachpattetype inequalities in the previous published studies.

1. Introduction & Preliminaries

Until quite recently, the question of how to take non-integer order of derivative
or integration was phenomenon among the mathematicians. However together with
the development of mathematics knowledge, this question was answered via Frac-
tional Calculus which is a generalization of ordinary di¤erentiation and integration
to arbitrary (non-integer) order. During three centuries, the theory of fractional
calculus developed as a pure theoretical �eld, useful only for mathematicians, we
refer to [10], see also [11]. In more recent times a new local, limit-based de�nition of
a conformable derivative has been introduced in [1], [4], [8], with several follow-up
papers [2], [3], [5]-[9]. In this study, we use the Katugampola derivative formulation
of conformable derivative of order for � 2 (0; 1] and t 2 [0;1) given by

(1.1) D� (f) (t) = lim
"!0

f
�
te"t

��
�
� f (t)

"
; D� (f) (0) = lim

t!0
D� (f) (t) ;

provided the limits exist (for detail see, [8]). If f is fully di¤erentiable at t; then

(1.2) D� (f) (t) = t1��
df

dt
(t) :

A function f is ��di¤erentiable at a point t � 0 if the limit in (1.1) exists and is
�nite. This de�nition yields the following results;

Theorem 1. Let � 2 (0; 1] and f; g be ��di¤erentiable at a point t > 0. Then
i: D� (af + bg) = aD� (f) + bD� (g) ; for all a; b 2 R;
ii: D� (�) = 0; for all constant functions f (t) = �;
iii: D� (fg) = fD� (g) + gD� (f) ;

iv: D�

�
f

g

�
=
fD� (g)� gD� (f)

g2

v: D� (tn) = ntn�� for all n 2 R
vi: D� (f � g) (t) = f 0 (g (t))D� (g) (t) for f is di¤erentiable at g(t):

Key words and phrases. Gronwall�s inequality, confromable fractional integrals.
2010 Mathematics Subject Classi�cation 26D15, 26A51, 26A33, 26A42.

1

e5011831
Typewritten Text
Received 14/07/16

e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 19 (2016), Art. 123



2 FUAT USTA AND MEHMET ZEKI SARIKAYA

De�nition 1 (Conformable fractional integral). Let � 2 (0; 1] and 0 � a < b: A
function f : [a; b]! R is �-fractional integrable on [a; b] if the integralZ b

a

f (x) d�x :=

Z b

a

f (x)x��1dx

exists and is �nite. All �-fractional integrable on [a; b] is indicated by L1� ([a; b])

Remark 1.

Ia� (f) (t) = I
a
1

�
t��1f

�
=

Z t

a

f (x)

x1��
dx;

where the integral is the usual Riemann improper integral, and � 2 (0; 1].

We will also use the following important results, which can be derived from the
results above.

Lemma 1. Let the conformable di¤erential operator D� be given as in (1.1), where
� 2 (0; 1] and t � 0, and assume the functions f and g are �-di¤erentiable as
needed. Then
i. D� (ln t) = t�� for t > 0

ii. D�
hR t
a
f (t; s) d�s

i
= f(t; t) +

R t
a
D� [f (t; s)] d�s

iii.
R b
a
f (x)D� (g) (x) d�x = fgjba �

R b
a
g (x)D� (f) (x) d�x:

The de�nition given in below is a generalization of the limit de�nition of the
derivative for the case of a function with many variables.

De�nition 2. Let f be a function with n variables t1; :::; tn and the conformable
partial derivative of f of order � 2 (0; 1] in xi is de�ned as follows

(1.3)
@�

@t�i
f(t1; :::; tn) = lim

"!0

f(t1; :::; ti�1; tie
"t��i ; :::; tn)� f (t1; :::; tn)

"
:

The below theorem is the generalization of Theorem 2.10 of [3] which the detailed
proof can be found in [12].

Theorem 2. Assume that f(t; s) is function for which @�t
�
@�s f(t; s)

�
and @�s [@

�
t f(t; s)]

exist and are continuous over the domain D � R2; then

(1.4) @�t
�
@�s f(t; s)

�
= @�s [@

�
t f(t; s)] :

This prospective study was designed to investigate the new generalization of
Gronwall, Volterra and Pachpatte type inequalities for conformable di¤erential
equations. The established results are extensions of some existing Gronwall, Volterra
and Pachpatte type inequalities in the literature.

2. Main Findings & Cumulative Results

Throughout this paper, all the functions which appear in the inequalities are
assumed to be real-valued and all the integrals involved exist on the respective
domains of their de�nitions, and C (M;S) and C1 (M;S)denote the class of all
continuous functions and the �rst order conformable derivative; respectively, de�ned
on set M with range in the set S:
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Theorem 3. Let k; y; x; g 2 C (R+;R+) ; r 2 C1 (R+;R+) and assume that r is
non-decreasing with r(t) � t for t � 0: If u 2 C (R+;R+) satis�es

(2.1) u(t) � k(t) + y(t)
Z r(t)

0

[x(s)u(s) + g(s)]d�s; t � 0;

then
(2.2)

u(t) � k(t) + y(t)
Z t

0

e
R r(t)
r(�)

x(s)y(s)d�s[x (r(�)) k(r(�)) + g(r(�))]D�r(�)d�� ; t � 0:

Proof. If we set

z(t) =

Z r(t)

0

[x(s)u(s) + g(s)]d�s

then; by using conformable rules we see that

D�z(t) = [x (r(t))u(r(t)) + g (r(t))]D�r(t)

� fx (r(t)) [k(r(t)) + y (r(t)) z(r(t))] + g (r(t))gD�r(t)

� fx (r(t)) [k(r(t)) + y (r(t)) z(t)] + g (r(t))gD�r(t):

Thus, we have

D�z(t)� x (r(t)) y (r(t)) z(t)D�r(t) � [x (r(t)) k(r(t)) + g (r(t))]D�r(t):

Multiplying the above inequality by e�
R r(t)
0 x(s)y(s)d�s; we obtain that

@�

@t�

�
z(t)e�

R r(t)
0 x(s)y(s)d�s

�
� e�

R r(t)
0 x(s)y(s)d�s[x (r(t)) k(r(t)) + g (r(t))]D�r(t):

Integrating this from 0 to t yields

z(t) � e
R r(t)
0 x(s)y(s)d�s

Z t

0

e�
R r(�)
0 x(s)y(s)d�s[x (r(�)) k(r(�)) + g (r(�))]D�r(�)d��

=

Z t

0

e
R r(t)
r(�)

x(s)y(s)d�s[x (r(�)) k(r(�)) + g (r(�))]D�r(�)d��

and hence the claim follows because of u(t) � k(t)+y(t)z(t). The proof is complete.
�

Remark 2. If we take g(t) = 0 in Theorem 3, then Theorem 3 reduces to Theorem
4 is proved by Sarikaya in [12].

Corollary 1. Assume y; x; k are as in Theorem 3 and r(t) = t�

� : If u 2 C (R
+;R+)

satis�es (2.1), then

u(t) � k(t) + y(t)
Z t

0

e

R t�

�
��
�

x(s)y(s)d�s
[x (�) k(�) + g(�)]d�� ; t � 0:

Theorem 4. Let k; y; x; g 2 C (R+;R+) ; r 2 C1 (R+;R+) and assume that r is
non-decreasing with r(t) � t for t � 0: If u 2 C (R+;R+) satis�es

(2.3) u(t) � k(t) +
nX
i=1

yi(t)

Z r(t)

0

[xi(s)u(s) + gi(s)]d�s; t � 0;
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then
(2.4)

u(t) � k(t)+Y (t)
Z t

0

e
R r(t)
r(�)

Pn
i=1 xi(s)y(s)d�s

nX
i=1

[xi (r(�)) k(r(�))+gi(r(�))]D
�r(�)d�� ; t � 0:

where Y (t) = supi=1;:::;n yi(t).

Proof. The inequality (2.3) implies that

u(t) � k(t) + Y (t)
Z r(t)

0

nX
i=1

[xi(s)u(s) + gi(s)]d�s:

Now an application of Theorem 3 provides the desired inequality (2.4). �

Theorem 5. Let v; y; h 2 C (R+;R+) ; r; p 2 C1 (R+;R+) and assume that p is
non-decreasing with p(x) � x for x � 0: If u 2 C (R+;R+) satis�es

(2.5) u(t) � v(x) + y(t)
Z r(t)

p(x)

h(s)v(s)d�s; 0 � x � t;

then

(2.6) u(t) � v(x)ey(t)
R r(�)
p(�)

h(�)d��; 0 � x � t;

Proof. Denote

z(x) = u(t)� y(t)
Z r(t)

p(x)

h(s)v(s)d�s

hence; by using conformable rules we have

D�z(x) = �y(t)h(p(x))v(p(x))D�p(x)

� �y(t)h(p(x))z(p(x))D�p(x)

� �y(t)h(p(x))z(x)D�p(x):

Thus, we have
D�z(x) + y(t)h(p(x))z(x)D�p(x) � 0:

Multiplying the above inequality by ey(t)
R r(t)
p(x)

h(s)d�s; we obtain that

@�

@x�

�
z(x)e

y(t)
R r(t)
p(x)

h(s)d�s
�
� 0:

Then if q(x) = ey(t)
R r(t)
p(x)

h(s)d�s, we have @�

@x� (zq) (x) � 0 and so (zq)(t) � (zq)(x)
on [0; t]. Now z(x) � v(x) and z(t) = u(t) and we have the result given in (2.6).
This result is the best possible in the sense that if equation (2.5) holds on [0; t],
then equation (2.5) holds on [0; t]. �

Theorem 6. Let k;m; f; g 2 C (R+;R+) ; y 2 C (R+ � R+;R+) ; r 2 C1 (R+;R+)
with (t; s) ! @�t y(t; s) 2 C (R+ � R+;R+) : Assume in additional that r is non-
decreasing and r(t) � t for t � 0: If u 2 C (R+;R+) satis�es

(2.7) u(t) � k(t) +m(t)
Z r(t)

0

y (t; s) [f(s)u(s) + g(s)]d�s;
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then

u(t) � k(t) +m(t)e
R r(t)
0 y(t;s)m(s)f(s)d�s

Z t

0

e�
R r(�)
0 y(�;s)m(s)f(s)d�s(2.8)

� @�

@��

 Z r(�)

0

y (� ; s) [f(s)k(s) + g(s)]d�s

!
d��

for t � 0:

Proof. Let describe

z(t) =

Z r(t)

0

y (t; s) [f(s)u(s) + g(s)]d�s

then our assumptions on y; f; g and r imply that z is non-decreasing on R+: Thus,
for t � 0; by using Lemma 1 (ii), we get

D�z(t) = y (t; r(t)) [f(r(t))u(r(t)) + g(r(t))]D�r(t) +

Z r(t)

0

�
@�

@t�
y (t; s)

�
[f(s)u(s) + g(s)]d�s

� y (t; r(t)) [f(r(t))fk(r(t)) +m(r(t))z(r(t))g+ g(r(t))]D�r(t) +

+

Z r(t)

0

�
@�

@t�
y (t; s)

�
[f(s)fk(s) +m(s)z(s)g+ g(s)] d�s

� y (t; r(t)) [f(r(t))fk(r(t)) +m(r(t))z(t)g+ g(r(t))]D�r(t) +

+

Z r(t)

0

�
@�

@t�
y (t; s)

�
[f(s)k(s) + g(s)]d�s+ z(t)

Z r(t)

0

@�

@t�
y (t; s) [m(s)y(s)]d�s

or, equivalently

D�z(t)�z(t) @
�

@t�

 Z r(t)

0

y (t; s)m(s)f(s)d�s

!
� @�

@t�

 Z r(t)

0

y (t; s) [f(s)k(s) + g(s)]d�s

!
:

Multiplying the above inequality by e�
R r(t)
0 y(t;s)m(s)f(s)d�s; we obtain that

@�

@t�

�
z(t)e�

R r(t)
0 y(t;s)m(s)f(s)d�s

�
� e�

R r(t)
0 y(t;s)m(s)f(s)d�s

@�

@t�

 Z r(t)

0

y (t; s) [f(s)k(s) + g(s)]d�s

!
:

Integrating this from 0 to t yields

z(t) � e
R r(t)
0 y(t;s)m(s)f(s)d�s

Z t

0

e�
R r(�)
0 y(�;s)m(s)f(s)d�s

@�

@��

 Z r(�)

0

y (� ; s) [f(s)k(s) + g(s)]d�s

!
d�� :

Combine the above inequality with u(t) � k(t) + m(t)z(t) this imply (2.8). The
proof is complete. �

Remark 3. If we take r(t) = t, k(t) = k (a constant), m(t) = 1, f(s) = 1 and
g(s) = 0 in Theorem 6, then the inequality given by Theorem 6 reduces to Gronwall�s
inequality for conformable integrals in [1].
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Theorem 7. Let f; g 2 C (R+;R+) ; r 2 C1 (R+;R+) and assume that r is non-
decreasing with r(t) � t for t � 0: If u 2 C (R+;R+) satis�es

(2.9) u(t) � u0+
Z r(t)

0

f(s)u(s)d�s+

Z r(t)

0

f(s)

"Z p(s)

0

g(n)u(n)d�n

#
d�s; t � 0;

then

(2.10) u(t) = u0 + u0

Z t

0

f(s)e
R p(s)
0 [f(n)+g(n)]d�nd�s; t � 0:

Proof. Let denote z(t) the right hand side of inequality (2.9). Then u(t) � z(t) and
z(0) = u0 and

D�z(t) = f(r(t))u(r(t))D�r(t) + f(r(t))D�r(t)

Z r(t)

0

g(n)u(n)d�n

� f(r(t))z(t)D�r(t) + f(r(t))D�r(t)

Z r(t)

0

g(n)z(n)d�n

� f(r(t))D�r(t)

"
z(t) +

Z r(t)

0

g(n)z(n)d�n

#
:

De�ne a function m(t) by

m(t) = z(t) +

Z r(t)

0

g(n)z(n)d�n

then m(0) = z(0) = u0, D�z(t) � f(r(t))D�r(t)m(t), z(t) � m(t) and

D�m(t) = D�z(t) + g(r(t))z(r(t))D�r(t)

� D�z(t) + g(r(t))z(t)D�r(t):

So we get

(2.11) D�m(t) � [f(r(t)) + g(r(t))]m(t)D�r(t):

The inequality (2.11) implies the estimation of m(t) such that

m(t) � u0e
R r(t)
0 [f(n)+g(n)]d�n:

Then

(2.12) D�z(t) � u0f(r(t))D�r(t)e
R r(t)
0 [f(n)+g(n)]d�n:

Now by setting r(t) = p(s) in (2.12) and integrating from 0 to t and substituting
the bound z(t) in u(t) � z(t) we get

z(t) � u0 + u0
Z t

0

f(s)e
R p(s)
0 [f(n)+g(n)]d�nd�s

which this proves our claim. �
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3. Concluding Remark

The present study was designed to make the generalization of some inequalities
for conformable di¤erential equations. For this purpose we use the Katugampola
derivative formulation of conformable derivative of order for � 2 (0; 1]. The �ndings
of this investigation complement those of earlier studies. In other words the present
study con�rms previous �ndings and contributes additional evidence by making
generalization.

References

[1] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied
Mathematics 279 (2015) 57�66.

[2] D. R. Anderson and D. J. Ulness, Results for conformable di¤erential equations, preprint,
2016.

[3] A. Atangana, D. Baleanu, and A. Alsaedi, New properties of conformable derivative, Open
Math. 2015; 13: 889�898.

[4] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new de�nition of fractional derivative,
Journal of Computational Apllied Mathematics, 264 (2014), 65-70.

[5] O. S. Iyiola and E. R.Nwaeze, Some new results on the new conformable fractional calculus
with application using D�Alambert approach, Progr. Fract. Di¤er. Appl., 2(2), 115-122, 2016.

[6] M. Abu Hammad, R. Khalil, Conformable fractional heat di¤erential equations, International
Journal of Di¤erential Equations and Applications 13( 3), 2014, 177-183.

[7] M. Abu Hammad, R. Khalil, Abel�s formula and wronskian for conformable fractional dif-
ferential equations, International Journal of Di¤erential Equations and Applications 13( 3),
2014, 177-183.

[8] U. Katugampola, A new fractional derivative with classical properties, ArXiv:1410.6535v2.
[9] A. Zheng, Y. Feng and W. Wang, The Hyers-Ulam stability of the conformable fractional

di¤erential equation, Mathematica Aeterna, Vol. 5, 2015, no. 3, 485-492.
[10] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional

Di¤erential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
[11] S. G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory

and Applications, Gordonand Breach, Yverdon et alibi, 1993.
[12] M. Z. Sarikaya, Gronwall type inequality for conformable fractional integrals , 2016, preprint.

[Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce,
Turkey

E-mail address : fuatusta@duzce.edu.tr

[Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce,
Turkey

E-mail address : sarikayamz@gmail.com




