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Abstract. In this paper the more general comparison theorems for con-

formable fractional differential equations is proposed and tested. Thus we
prove some inequalities for conformable integrals by using the generalization

of Sturm’s separation and Sturm’s comparison theorems. The results pre-

sented here would provide generalizations of those given in earlier works. The
numerical example is also presented to verify the proposed theorem.

1. Introduction

An important point is that the fractional derivative at a point x is a local property
only when a is an integer; in non-integer cases we cannot say that the fractional
derivative at x of a function f depends only on values of f very near x, in the way
that integer-power derivatives certainly do. Therefore it is expected that the theory
involves some sort of boundary conditions, involving information on the function
further out. To use a metaphor, the fractional derivative requires some peripheral
vision. As far as the existence of such a theory is concerned, the foundations of the
subject were laid by Liouville in a paper from 1832. The fractional derivative of a
function to order a is often now defined by means of the Fourier or Mellin integral
transforms. Various types of fractional derivatives were introduced: Riemann-
Liouville, Caputo, Hadamard, Erdelyi-Kober, Grunwald-Letnikov, Marchaud and
Riesz are just a few to name [9]-[14]. Recently a new local, limit-based definition
of a so-called conformable derivative has been formulated in [1], [6] as follows

Dα (f) (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε

provied the limits exits. Note that if f is fully differentiable at t, then the deriva-
tive is Dα (f) (t) = t1−αf ′(t). The reader interested on the subject of conformable
calculus is referred in [1]-[8].

The aim of this paper is to establish the comparison theorems for conformable
fractional differential equations which are based on conditions of mixed type, point-
wise and integral inequalities. Thus we provide the generalization for comparison of
the solution of linear second order conformable differential equations investigated
in [13].

The remaining part of the paper proceeds as follows: the second section of this
paper will review the basic tools of conformable fractional calculus. The third
section begins by laying out the main results and looks at how can be applied it to
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the conformable fractional differential equations. The fourth section concludes this
study with some remarks.

2. Preliminary

Here we recall basic notions, and provide results helpful for the main section.
The basic definition is from [1]-[3].

Definition 1. (Conformable fractional derivative) Given a function f : [0,∞)→
R. Then the “conformable fractional derivative” of f of order α is defined by

(2.1) Dα (f) (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε

for all t > 0, α ∈ (0, 1) . If f is α−differentiable in some (0, a) , α > 0, lim
t→0+

f (α) (t) exist,

then define

(2.2) f (α) (0) = lim
t→0+

f (α) (t) .

We can write f (α) (t) for Dα (f) (t) to denote the conformable fractional derivatives
of f of order α. In addition, if the conformable fractional derivative of f of order
α exists, then we simply say f is α−differentiable. For 2 ≤ n ∈ N, we denote
Dn
α (f) (t) = DαD

n−1
α (f) (t) (t)

Theorem 1. Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0. Then

i. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,

ii. Dα (λ) = 0, for all constant functions f (t) = λ,

iii. Dα (fg) = fDα (g) + gDα (f) ,

iv. Dα

(
f

g

)
=
fDα (g)− gDα (f)

g2
.

If f is differentiable, then

(2.3) Dα (f) (t) = t1−α
df

dt
(t) .

Theorem 2 (Mean value theorem for conformable fractional differentiable func-
tions). Let α ∈ (0, 1] and f : [a, b]→ R be a continuous on [a, b] and an α-fractional
differentiable mapping on (a, b) with 0 ≤ a < b. Then, there exists c ∈ (a, b), such
that

Dα (f) (c) =
f(b)− f(a)
bα

α −
aα

α

.

Definition 2 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A
function f : [a, b]→ R is α-fractional integrable on [a, b] if the integral

(2.4)

∫ b

a

f (x) dαx :=

∫ b

a

f (x)xα−1dx

exists and is finite.
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Remark 1.

Iaα (f) (t) = Ia1
(
tα−1f

)
=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

Theorem 3. Let f : (a, b) → R be differentiable and 0 < α ≤ 1. Then, for all
t > a we have

(2.5) IaαD
a
αf (t) = f (t)− f (a) .

Theorem 4. (Integration by parts) Let f, g : [a, b] → R be two functions such
that fg is differentiable. Then

(2.6)

∫ b

a

f (x)Da
α (g) (x) dαx = fg|ba −

∫ b

a

g (x)Da
α (f) (x) dαx.

Theorem 5. Assume that f : [a,∞) → R such that f (n)(t) is continuous and
α ∈ (n, n+ 1]. Then, for all t > a we have

Da
αf (t) Iaα = f (t) .

Definition 3. For two functions y1 and y2 satisfying the α-conformable fractional
equation and α ∈ (0, 1], we set

Wα (y1, y2) =

∣∣∣∣ y1 y2
Dαy1 Dαy2

∣∣∣∣ .
In this paper, we establish the following comparison theorems for conformable

fractional differential equations are based in conditions of a mixed type, point-wise
and integral inequalities, and generalizes the results in [12] and [13]. The results
presented here would provide generalizations of those given in earlier works.

3. Main results

In [13], Pospisil and Skripkova give the Sturm’s comparison theorems for con-
formable fractional differential equations as follows:

Theorem 6 (Sturm Separation Theorem). Let x(t) and y(t) be linearly independent
solutions of

(3.1) D2
αx(t) + p(t)Dαx(t) + q(t)x(t) = 0

where p(t) and q(t) are continuous functions, on an open interval (a, b) and 0 <
α ≤ 1. Then x(t) has a zero between any two successive zeros of y(t). Thus the
zeros of x and y occur alternately.

Theorem 7 (Sturm Comparison Theorem). Let x(t) and y(t) be non-trivial solu-
tions of

(3.2) D2
αx(t) + r(t)x(t) = 0

(3.3) D2
αy(t) + r1(t)y(t) = 0.

respectively, where r(t) ≥ r1(t) for t > a are given continuous functions. Then
exactly one of the following conditions holds:

(1) x(t) has at least one zero between any two zeros of y(t),
(2) r(t) = r1(t) for all t > a, and x(t) is a constant multiple of y(t).
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The Sturm’s comparison theorem for conformable fractional differential equa-
tions deals with functions x(t) and y(t) satisfying equations (3.2) and (3.3). If
r1(t) ≥ r(t), then solutions of (3.3) oscillate more rapidly than solutions of (3.2).
More precisely, if x(t) is a non-trivial solution of (3.2) for which x(t1) = x(t2),
t1 < t2, and r1(t) ≥ r(t) for t1 ≤ t ≤ t2, then y(t) has a zero in (t1, t2]. Now,
we give the following Riccati equations for conformable fractional differential equa-
tions;

(3.4) Dαu(t) = u2(t) + r(t)

(3.5) Dαv(t) = v2(t) + r1(t).

Assume that r(t), r1(t) are given continuous functions on (τ1, τ2) . By the substi-

tutions u(t) = −Dαx(t)
x(t) , v(t) = −Dαy(t)

y(t) in (3.4) and (3.5), respectively, we obtain

the equations (3.2) and (3.3). In the following theorems we give the comparison
theorems for conformable fractional differential equations.

Theorem 8. Let x and y be non-trivial solutions of (3.2) and (3.3), respectively,
such that x(t) does not vanish on [τ1, τ2] , y(τ1) 6= 0 and the inequality

(3.6) −Dαx(τ1)

x(τ1)
+

t∫
τ1

r(s)dαs >

∣∣∣∣∣∣−Dαy(τ1)

y(τ1)
+

t∫
τ1

r1(s)dαs

∣∣∣∣∣∣
holds for all t on [τ1, τ2] . Then y(t) does not vanish on [τ1, τ2] and

(3.7) −Dαx(t)

x(t)
>

∣∣∣∣Dαy(t)

y(t)

∣∣∣∣ , τ1 ≤ t ≤ τ2.
Proof. Since x(t) does not vanish on [τ1, τ2] , u(t) = −Dαx(t)

x(t) is continuous on [τ1, τ2]

and satisfies the Riccati equation (3.4), which is equivalent to the integral equation.
Then by using the (2.5) we have

(3.8) u(t) = u(τ1) +

t∫
τ1

u2(s)dαs+

t∫
τ1

r(s)dαs.

By the hypothesis (3.6), we get

(3.9) u(t) ≥ −Dαx(τ1)

x(τ1)
+

t∫
τ1

r(s)dαs > 0.

Since y(τ1) 6= 0, v(t) = −Dαy(t)
y(t) is continuous on some interval [τ1, δ] , τ1 < δ ≤ τ2.

On this interval, the equation (3.4) is well defined and implies the following integral
equation

(3.10) v(t) = v(τ1) +

t∫
τ1

v2(s)dαs+

t∫
τ1

r1(s)dαs.



ON INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS 5

Therefore, by using (3.6) and (3.9) in (3.10), we have

v(t) ≥ v(τ1) +

t∫
τ1

r1(s)dαs

≥ −u(τ1)−
t∫

τ1

r(s)dαs ≥ −u(t)

and consequently, u(t) ≥ −v(t). In order to obtain

(3.11) |v(t)| ≤ u(t) on τ1 ≤ x ≤ δ,

it is sufficient to show that u(t) ≥ v(t) on this interval. Suppose to the contrary that
there exists a point t0 on [τ1, δ] such that u(t0) < v(t0). Thus, since |v(τ1)| ≤ u(τ1)
from (3.6) (with t = τ1) and u and v are continuous on [τ1, δ] , there exists t1 in
τ1 < t1 ≤ t0 such that v(t1) = u(t1) and v(t) ≤ u(t) for τ1 < t ≤ t1. Because
u(t) ≥ −v(t) was establishes, it follows that |v(t)| ≤ u(t) for τ1 < t ≤ t1, and
consequently

t∫
τ1

v2(s)dαs ≤
t∫

τ1

u2(s)dαs.

By using (3.6),(3.8), (3.10), it follows that

v(t1) = v(τ1) +

t1∫
τ1

v2(s)dαs+

t1∫
τ1

r1(s)dαs

< u(τ1) +

t1∫
τ1

u2(s)dαs+

t1∫
τ1

r(s)dαs = u(t1),

this is a contradiction with the fact that v(t1) = u(t1). Hence (3.11) holds on any
interval [τ1, δ] of continuity of v, τ1 < δ ≤ τ2, but this implies that v is continuous
on the entire interval [τ1, τ2] , because u(t) is bounded and v(t) has only poles at its
points of discontinuity. Thus (3.11) holds on all of the interval [τ1, τ2]. This result
proves (3.7), and since the left member is bounded on [τ1, τ2] , y(t) cannot have a
zero on this interval. The proof is complete. �

Theorem 9. Let x and y be non-trivial solutions of (3.2) and (3.3), respectively,
such that x(t) does not vanish on [τ1, τ2] , y(τ1) 6= 0 and the inequality

(3.12)
Dαx(τ2)

x(τ2)
+

τ2∫
t

r(s)dαs >

∣∣∣∣∣∣Dαy(τ2)

y(τ2)
+

τ2∫
t

r1(s)dαs

∣∣∣∣∣∣
holds for all t on [τ1, τ2] . Then y(t) does not vanish on [τ1, τ2] and

(3.13)
Dαx(t)

x(t)
>

∣∣∣∣Dαy(t)

y(t)

∣∣∣∣ , τ1 ≤ t ≤ τ2.
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Proof. Let new functions x1, y1, λ, λ1 be defined on τ1 ≤ t ≤ τ2 by the following
equations

x1(t) = x(τ1 + τ2 − t) y1(t) = y(τ1 + τ2 − t)

λ(t) = r(τ1 + τ2 − t) λ1(t) = r1(τ1 + τ2 − t).
Then x1(t) does not vanish on [τ1, τ2] , y1(τ1) = y(τ2) 6= 0 and

−Dαx(τ1)

x(τ1)
+

τ1+τ2−t∫
τ1

λ(s)dαs =
Dαx(τ2)

x(τ2)
+

τ2∫
t

r(s)dαs

−Dαy(τ1)

y(τ1)
+

τ1+τ2−t∫
τ1

λ1(s)dαs =
Dαy(τ2)

y(τ2)
+

τ2∫
t

r1(s)dαs.

Thus the hypothesis (3.12) is equivalent to the hypothesis (3.6). Since t ∈ [τ1, τ2]
if and only if τ1 + τ2 − t ∈ [τ1, τ2], and the conclusion (3.13) follows from Theorem
8. �

Theorem 10. Let x(t) and y(t) be non-trivial solutions of the equations

(3.14) D2
αx(t)− 2b(t)Dαx(t) + r(t)x(t) = 0, t > 0,

(3.15) D2
αy(t)− 2c(t)Dαy(t) + r1(t)y(t) = 0, t > 0,

respectively, where r and r1 are continuous functions such that r(t) ≤ r1(t) with
the initial conditions:

(3.16) Dαx(t1) + σx(t1) = 0

(3.17) Dαy(t1) + τy(t1) = 0

where σ and τ are constants. If b(t)Dαy(t) > c(t)Dαx(t), Then between any two
consecutive zeroes τ1 and τ2 of x(t), there exists at least one zero of y(t) unless
r(t) ≡ r1(t) on [τ1, τ2].

Proof. Let τ1 and τ2 with 0 < τ1 < τ2 be consecutive zeroes of x(t). Assume
x(t) > 0 on [τ1, τ2] (if not, consider −x(t) or −y(t) which have these properties).
Consequently, by arguments in the proof of Theorem 6,

Dαx(τ1) > 0, and aDαx(τ2) < 0.

Suppose that y(t) does not have a zero on [τ1, τ2]. Let y(t) > 0 on [τ1, τ2]. Multi-
plying the equation satisfied by x(t), with y(t), and vice versa, and then subtract
the two equations we get[
y(t)D2

αx(t)− x(t)D2
αy(t)

]
+ 2 [cx(t)Dαy(t)− by(t)Dαx(t)] + x(t)y(t)(r − r1) = 0.

Rewriting the last equation as

Dα [y(t)Dαx(t)− x(t)Dαy(t)] = −2 [cx(t)Dαy(t)− by(t)Dαx(t)]− x(t)y(t)(r − r1)

Integrating on both sides of the last equation from τ1 to τ2, we obtain

y(t)Dαx(t)−x(t)Dαy(t)|τ2τ1 = −2Iα [cx(t)Dαy(t)− by(t)Dαx(t)]−Iα(x(t)y(t)(r−r1))



ON INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS 7

The left hand side of equation (7) is non-positive. The right hand side is strictly
positive unless r(t) ≡ r1(t) on [τ1, τ2]. Thus, if r(t) 6= r(t) on [τ1, τ2], we arrive at
a contradiction. This finishes the proof of theorem. �

Now in order to test the result of Theorem 6, we present a numerical example
of equations 3.14 and 3.15.

Example 1. Let us consider the coupled of equations

(3.18) D2
αx(t) +

3

2
cot (
√
t+ π)Dαx(t) + x(t) = 0, t > 0,

(3.19) D2
αy(t) +

3

2
ε1 cot (

√
t+ π)Dαy(t) + ε1y(t) = 0, t > 0,

where ε1 ∈ R. And x(t) and y(t) be non-trivial solutions of the equations such that

(3.20) x(t) = cos(
√
t+ π)

(3.21) y(t) = cos(
√
ε1t)

According to Figure 1 we can say that the solution y(t) oscillates faster than the

50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Function x(t) (black), function y(t) with ε1 = 0.3 (red)
and ε1 = 5 (blue).

solution x(t) whenever ε1 > 1. Otherwise the solution y(t) oscillates slower than
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the solution x(t) with ε1 < 1 and one of its zeros will not lie between two consecutive
zeros of x(t).

By means of the transformation

u(t) = −Dαx(t)

x(t)
, v(t) = −Dαy(t)

y(t)

equations (3.14) and (3.15) are transformed into Riccati equations

(3.22) Dαu(t) = u2(t) + 2b(t)u(t) + r(t)

(3.23) Dαv(t) = v2(t) + 2e(t)v(t) + r1(t).

and the initial conditions

−Dαx(τ1)

x(τ1)
= σ , −Dαy(τ1)

y(τ1)
= τ

for (3.14) and (3.15), become initial values

(3.24) u(τ1) = σ, v(τ1) = τ

for (3.22) and (3.23). The differential equations (3.14) and (3.15) subject to (3.24)
can be written as equivalent integral equations

(3.25) u(t) = σ +

t∫
τ1

u2(s)dαs+

t∫
τ1

2b(s)u(s)dαs+

t∫
τ1

r(s)dαs

(3.26) v(t) = τ +

t∫
τ1

v2(s)dαs+

t∫
τ1

2e(s)v(s)dαs+

t∫
τ1

r1(s)dαs.

It is obvious from these equations that if τ ≥ σ ≥ 0, e(t) ≥ b(t) ≥ 0 and

t∫
τ1

r1(s)dαs ≥
t∫

τ1

r(s)dαs

on an interval [τ1, τ2] , then v(t) ≥ u(t) ≥ 0 as long as v(t) can be continued on
[τ1, τ2] . Since the singularities of u(t) and v(t) correspond to the zeros of x(t) and
y(t), respectively, these observations lead to the following comparison theorem for
(3.14) and (3.15).

Theorem 11. Suppose x is a non-trivial solutions of (3.14) satisfying −Dαx(τ1)
x(τ1)

=

σ ≥ 0, x(τ2) = 0. If
i) e(t) ≥ b(t) ≥ 0 for τ1 ≤ t ≤ τ2

ii)
t∫
τ1

r1(s)dαs ≥
t∫
τ1

r(s)dαs ≥ 0, for τ1 ≤ t ≤ τ2,

then every solution of (3.15) satisfying −Dαy(τ1)
y(τ1)

= σ has a zero in (τ1, τ2].

We note that the integral equations (3.25) and (3.26) can be written as follows

u(t) = σ +

t∫
τ1

(u(s) + b(s))
2
dαs+

t∫
τ1

(
r(s)− b2(s)

)
dαs
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v(t) = τ +

t∫
τ1

(v(s) + e(s))
2
dαs+

t∫
τ1

(
r1(s)− e2(s)

)
dαs.

This formulation shows that the condition ii) of Theorem 11 can be replaced by

t∫
τ1

(
r1(s)− e2(s)

)
dαs ≥

t∫
τ1

(
r(s)− b2(s)

)
dαs ≥ 0.

4. Concluding remarks

In this investigation, the aim was to present some inequalities for conformable
fractional integrals through the instrument of the Sturm’s comparison and separa-
tion theorems. Since the obtained results are general forms of earlier works they
would help for the future studies.
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