SOME NEW REVERSES AND REFINEMENTS OF INEQUALITIES FOR RELATIVE OPERATOR ENTROPY

S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper we obtain new inequalities for relative operator entropy S(A|B) in the case of operators satisfying the condition $mA \leq B \leq MA$, with 0 < m < M.

1. Introduction

Kamei and Fujii [6], [7] defined the relative operator entropy S(A|B), for positive invertible operators A and B, by

(1.1)
$$S(A|B) := A^{\frac{1}{2}} \left(\ln \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) \right) A^{\frac{1}{2}},$$

which is a relative version of the operator entropy considered by Nakamura-Umegaki [12].

In general, we can define for positive operators A, B

$$S(A|B) := s\text{-}\lim_{\varepsilon \to 0+} S(A + \varepsilon 1_H|B)$$

if it exists, here $\mathbf{1}_H$ is the identity operator.

For the entropy function $\eta(t) = -t \ln t$, the operator entropy has the following expression:

$$\eta(A) = -A \ln A = S(A|1_H) \ge 0$$

for positive contraction A. This shows that the relative operator entropy (1.1) is a relative version of the operator entropy.

Following [8, p. 149-p. 155], we recall some important properties of relative operator entropy for A and B positive invertible operators:

(i) We have the equalities

$$(1.2) \quad S\left(A|B\right) = -A^{1/2} \left(\ln A^{1/2} B^{-1} A^{1/2}\right) A^{1/2} = B^{1/2} \eta \left(B^{-1/2} A B^{-1/2}\right) B^{1/2};$$

(ii) We have the inequalities

(1.3)
$$S(A|B) \le A(\ln ||B|| - \ln A) \text{ and } S(A|B) \le B - A;$$

(iii) For any C, D positive invertible operators we have that

$$S(A+B|C+D) \ge S(A|C) + S(B|D);$$

(iv) If $B \leq C$ then

$$S(A|B) \leq S(A|C)$$
;

(v) If $B_n \downarrow B$ then

$$S(A|B_n) \downarrow S(A|B)$$
;

1

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A30,

 $Key\ words\ and\ phrases.$ Inequalities for Logarithm, Relative operator entropy, Operator entropy.

(vi) For $\alpha > 0$ we have

$$S(\alpha A|\alpha B) = \alpha S(A|B);$$

(vii) For every operator T we have

$$T^*S(A|B)T < S(T^*AT|T^*BT).$$

The relative operator entropy is *jointly concave*, namely, for any positive invertible operators A, B, C, D we have

$$S(tA + (1 - t) B|tC + (1 - t) D) \ge tS(A|C) + (1 - t) S(B|D)$$

for any $t \in [0, 1]$.

For other results on the relative operator entropy see [1], [4], [9], [10], [11] and [13].

Observe that, if we replace in (1.2) B with A, then we get

$$S(B|A) = A^{1/2} \eta \left(A^{-1/2} B A^{-1/2} \right) A^{1/2}$$

= $A^{1/2} \left(-A^{-1/2} B A^{-1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right) A^{1/2},$

therefore we have

(1.4)
$$A^{1/2} \left(A^{-1/2} B A^{-1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) \right) A^{1/2} = -S \left(B | A \right)$$

for positive invertible operators A and B.

It is well know that, in general S(A|B) is not equal to S(B|A).

In [15], A. Uhlmann has shown that the relative operator entropy S(A|B) can be represented as the strong limit

$$(1.5) S(A|B) = s - \lim_{t \to 0} \frac{A \sharp_t B - A}{t},$$

where

$$A\sharp_{\nu}B:=A^{1/2}\left(A^{-1/2}BA^{-1/2}\right)^{\nu}A^{1/2},\ \nu\in[0,1]$$

is the weighted geometric mean of positive invertible operators A and B. For $\nu = \frac{1}{2}$ we denote $A \sharp B$.

This definition of the weighted geometric mean can be extended for any real number ν with $\nu \neq 0$.

For t > 0 and the positive invertible operators A, B we define the Tsallis relative operator entropy (see also [3]) by

$$T_t(A|B) := \frac{A\sharp_t B - A}{t}.$$

The following result providing upper and lower bounds for relative operator entropy in terms of $T_t(\cdot|\cdot)$ has been obtained in [6] for $0 < t \le 1$. However, it hods for any t > 0.

Theorem 1. Let A, B be two positive invertible operators, then for any t > 0 we have

(1.6)
$$T_t(A|B)(A\sharp_t B)^{-1} A \le S(A|B) \le T_t(A|B).$$

In particular, we have for t = 1 that

$$(1.7) (1_H - AB^{-1}) A \le S(A|B) \le B - A, [6]$$

and for t = 2 that

(1.8)
$$\frac{1}{2} \left(1_H - \left(A B^{-1} \right)^2 \right) A \le S \left(A | B \right) \le \frac{1}{2} \left(B A^{-1} B - A \right).$$

The case $t = \frac{1}{2}$ is of interest as well. Since in this case we have

$$T_{1/2}(A|B) := 2(A\sharp B - A)$$

and

$$T_{1/2}(A|B)(A\sharp_{1/2}B)^{-1}A = 2(1_H - A(A\sharp B)^{-1})A,$$

hence by (1.6) we get

(1.9)
$$2\left(1_{H} - A\left(A\sharp B\right)^{-1}\right)A \le S\left(A|B\right) \le 2\left(A\sharp B - A\right) \le B - A.$$

Motivated by the above results, in this paper we obtain new inequalities for the relative operator entropy in the case of operators satisfying the condition $mA \leq B \leq MA$, with 0 < m < M.

2. Inequalities for Log-function

We have:

Theorem 2. For any a, b > 0 we have the inequalities

(2.1)
$$\frac{1}{2b\min\{a,b\}} (b-a)^2 \ge \ln b - \ln a - \frac{b-a}{b} \ge \frac{1}{2b\max\{a,b\}} (b-a)^2$$

and

$$(2.2) \qquad \frac{1}{2a\min\left\{a,b\right\}} \left(b-a\right)^2 \geq \frac{b-a}{a} - \ln b + \ln a \geq \frac{1}{2a\max\left\{a,b\right\}} \left(b-a\right)^2.$$

Proof. We have

$$\int_{a}^{b} \frac{b-t}{t} dt = b \int_{a}^{b} \frac{1}{t} dt - \int_{a}^{b} dt = b (\ln b - \ln a) - (b-a)$$

giving that

(2.3)
$$\ln b - \ln a - \frac{b-a}{b} = \frac{1}{b} \int_a^b \frac{b-t}{t} dt$$

for any a, b > 0.

Let b > a > 0, then

$$\frac{1}{a} \int_{a}^{b} (b-t) dt \ge \int_{a}^{b} \frac{b-t}{t} dt \ge \frac{1}{b} \int_{a}^{b} (b-t) dt$$

giving that

(2.4)
$$\frac{1}{2a}(b-a)^2 \ge \int_a^b \frac{b-t}{t} dt \ge \frac{1}{2b}(b-a)^2.$$

Let a > b > 0, then

$$\frac{1}{b} \int_{b}^{a} (t-b) dt \ge \int_{a}^{b} \frac{b-t}{t} dt = \int_{b}^{a} \frac{t-b}{t} dt \ge \frac{1}{a} \int_{b}^{a} (t-b) dt$$

giving that

(2.5)
$$\frac{1}{2b} (b-a)^2 \ge \int_a^b \frac{b-t}{t} dt \ge \frac{1}{2a} (b-a)^2.$$

Therefore, by (2.4) and (2.5) we get

$$\frac{1}{2\min\{a,b\}} (b-a)^2 \ge \int_a^b \frac{b-t}{t} dt \ge \frac{1}{2\max\{a,b\}} (b-a)^2,$$

for any a, b > 0.

By utilising the equality (2.3) we get the desired result (2.1).

Corollary 1. For any y > 0 we have

$$(2.6) \qquad \frac{1}{2y \min\{1, y\}} (y - 1)^2 \ge \ln y - \frac{y - 1}{y} \ge \frac{1}{2y \max\{1, y\}} (y - 1)^2$$

and

(2.7)
$$\frac{1}{2\min\{1,y\}} (y-1)^2 \ge y - 1 - \ln y \ge \frac{1}{2\max\{1,y\}} (y-1)^2.$$

Remark 1. Since for any a, b > 0 we have $\max\{a, b\} \min\{a, b\} = ab$, then (2.1) and (2.2) can also be written as

$$(2.8) \qquad \frac{1}{2a} \max\{a, b\} \left(\frac{b-a}{b}\right)^2 \ge \ln b - \ln a - \frac{b-a}{b} \ge \frac{1}{2a} \min\{a, b\} \left(\frac{b-a}{b}\right)^2$$

and

$$(2.9) \qquad \frac{1}{2b} \max\{a, b\} \left(\frac{b-a}{a}\right)^2 \ge \frac{b-a}{a} - \ln b + \ln a \ge \frac{1}{2b} \min\{a, b\} \left(\frac{b-a}{a}\right)^2$$

for any a, b > 0.

The inequalities can also be written as

$$(2.10) \frac{1}{2} \max\{1, y\} \left(\frac{y-1}{y}\right)^2 \ge \ln y - \frac{y-1}{y} \ge \frac{1}{2} \min\{1, y\} \left(\frac{y-1}{y}\right)^2$$

and

$$(2.11) \qquad \frac{1}{2y} \max\{1, y\} (y - 1)^2 \ge y - 1 - \ln y \ge \frac{1}{2y} \min\{1, y\} (y - 1)^2,$$

for any y > 0.

In the recent paper [2] we obtained the following inequalities that provide upper and lower bounds for the quantity $\ln b - \ln a - \frac{b-a}{b}$:

(2.12)
$$\frac{1}{2} \frac{(b-a)^2}{\min^2 \{a,b\}} \ge \frac{b-a}{a} - \ln b + \ln a \ge \frac{1}{2} \frac{(b-a)^2}{\max^2 \{a,b\}},$$

where a, b > 0 and

$$(2.13) \qquad \frac{(b-a)^2}{ab} \ge \frac{b-a}{a} - \ln b + \ln a$$

for any a, b > 0.

It is natural to ask, which of the upper bounds for the quantity

$$\frac{b-a}{a} - \ln b + \ln a$$

as provided by (2.2), (2.12) and (2.13) is better?

It has been shown in [2] that neither of the upper bounds in (2.12) and (2.13) is always best.

Consider now the difference

$$D_1(a,b) := \frac{1}{2a\min\{a,b\}} (b-a)^2 - \frac{1}{2} \frac{(b-a)^2}{\min^2\{a,b\}}$$
$$= \frac{1}{2} \frac{(b-a)^2}{a\min^2\{a,b\}} (\min\{a,b\} - a) \le 0,$$

which shows that upper bound in (2.2) is always better than the upper bound in (2.12).

Consider the difference

$$D_{2}(a,b) := \frac{1}{2a\min\{a,b\}} (b-a)^{2} - \frac{(b-a)^{2}}{ab}$$
$$= \frac{1}{2ab\min\{a,b\}} (b-a)^{2} (b-2\min\{a,b\}),$$

which can take both positive and negative values for a, b > 0, showing that neither of the bounds (2.2) and (2.13) is always best.

Now, consider the difference

$$d(a,b) := \frac{1}{2a \max\{a,b\}} (b-a)^2 - \frac{1}{2} \frac{(b-a)^2}{\max^2\{a,b\}}$$
$$= \frac{1}{2a \max^2\{a,b\}} (b-a)^2 (\max\{a,b\}-a) \ge 0,$$

which shows that lower bound in (2.2) is always better than the lower bound in (2.12).

Corollary 2. If $y \in [k, K] \subset (0, \infty)$, then we have the local inequalities

$$(2.14) \qquad \frac{1}{2\min\{1,k\}} \frac{(y-1)^2}{y} \ge \ln y - \frac{y-1}{y} \ge \frac{1}{2\max\{1,K\}} \frac{(y-1)^2}{y},$$

(2.15)
$$\frac{1}{2\min\{1,k\}} (y-1)^2 \ge y - 1 - \ln y \ge \frac{1}{2\max\{1,K\}} (y-1)^2,$$

$$(2.16) \qquad \frac{1}{2}\max\left\{1,K\right\} \left(\frac{y-1}{y}\right)^2 \geq \ln y - \frac{y-1}{y} \geq \frac{1}{2}\min\left\{1,k\right\} \left(\frac{y-1}{y}\right)^2$$

and

(2.17)
$$\frac{1}{2}\max\{1,K\}\frac{(y-1)^2}{y} \ge y - 1 - \ln y \ge \frac{1}{2}\min\{1,k\}\frac{(y-1)^2}{y}.$$

Proof. If $y \in [k, K] \subset (0, \infty)$, then by analyzing all possible locations of the interval [k, K] and 1 we have

$$\min\{1, k\} \le \min\{1, y\} \le \min\{1, K\}$$

$$\max\{1, k\} < \max\{1, y\} < \max\{1, K\}$$
.

By using the inequalities (2.6) and (2.7) we have

$$\frac{1}{2y \min\{1, k\}} (y - 1)^{2} \ge \frac{1}{2y \min\{1, y\}} (y - 1)^{2} \ge \ln y - \frac{y - 1}{y} \ge \frac{1}{2y \max\{1, y\}} (y - 1)^{2}$$

$$\ge \frac{1}{2y \max\{1, K\}} (y - 1)^{2}$$

and

$$\frac{1}{2\min\{1,k\}} (y-1)^{2} \ge \frac{1}{2\min\{1,y\}} (y-1)^{2} \ge y - 1 - \ln y \ge \frac{1}{2\max\{1,y\}} (y-1)^{2}$$
$$\ge \frac{1}{2\max\{1,K\}} (y-1)^{2}$$

for any $y \in [k, K]$, that prove (2.14) and (2.15).

The inequalities (2.16) and (2.17) follows by (2.16) and (2.17).

If we consider the function $f(y) = \frac{(y-1)^2}{y}$, y > 0, then we observe that

$$f'(y) = \frac{y^2 - 1}{y^2}$$
 and $f''(y) = \frac{2}{y^3}$,

which shows that f is strictly decreasing on (0,1), strictly increasing on $[1,\infty)$ and strictly convex for y>0. We also have $f\left(\frac{1}{y}\right)=f\left(y\right)$ for y>0.

By the properties of f we then have that

(2.18)
$$\max_{y \in [k,K]} \frac{(y-1)^2}{y} = \begin{cases} \frac{(k-1)^2}{k} & \text{if } K < 1, \\ \max\left\{\frac{(k-1)^2}{k}, \frac{(K-1)^2}{K}\right\} & \text{if } k \le 1 \le K, \\ \frac{(K-1)^2}{K} & \text{if } 1 < k \end{cases}$$
$$=: U(k,K)$$

and

(2.19)
$$\min_{y \in [k,K]} \frac{(y-1)^2}{y} = \begin{cases} \frac{(1-K)^2}{K} & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ \frac{(k-1)^2}{k} & \text{if } 1 < k \end{cases} =: u(k,K).$$

We can provide now some global bounds as follows. From (2.14) we then get for any $y \in [k, K]$ that

$$(2.20) \qquad \frac{1}{2\min\{1,k\}}U(k,K) \ge \ln y - \frac{y-1}{y} \ge \frac{1}{2\max\{1,K\}}u(k,K),$$

while from (2.17) we get for any $y \in [k, K]$ that

(2.21)
$$\frac{1}{2}\max\{1,K\}U(k,K) \ge y - 1 - \ln y \ge \frac{1}{2}\min\{1,k\}u(k,K).$$

Consider

(2.22)
$$Z(k,K) := \max_{y \in [k,K]} (y-1)^{2}$$

$$= \begin{cases} (1-k)^{2} & \text{if } K < 1, \\ \max\left\{ (1-k)^{2}, (K-1)^{2} \right\} & \text{if } k \le 1 \le K, \\ (K-1)^{2} & \text{if } 1 < k \end{cases}$$

and

(2.23)
$$z(k,K) := \min_{y \in [k,K]} (y-1)^2 = \begin{cases} (1-K)^2 & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ (k-1)^2 & \text{if } 1 < k. \end{cases}$$

By making use of (2.15) we get

(2.24)
$$\frac{1}{2\min\{1,k\}}Z(k,K) \ge y - 1 - \ln y \ge \frac{1}{2\max\{1,K\}}Z(k,K),$$

for any $y \in [k, K]$.

Consider the function $g(y) = \left(\frac{y-1}{y}\right)^2$, y > 0, then we observe that

$$g'(y) = \frac{2(y-1)}{y^2}$$
 and $g''(y) = \frac{2(3-2y)}{y^4}$,

which shows that g is strictly decreasing on (0,1), strictly increasing on $[1,\infty)$ strictly convex for $y \in (0,3/2)$ and strictly concave on $(3/2,\infty)$.

Consider

$$(2.25) W(k,K) := \max_{y \in [k,K]} \left(\frac{y-1}{y}\right)^2$$

$$= \begin{cases} \left(\frac{1-k}{k}\right)^2 & \text{if } K < 1, \\ \max\left\{\left(\frac{1-k}{k}\right)^2, \left(\frac{K-1}{K}\right)^2\right\} & \text{if } k \le 1 \le K, \end{cases}$$

$$\left(\frac{K-1}{K}\right)^2 & \text{if } 1 < k \end{cases}$$

and

$$(2.26) w\left(k,K\right) := \min_{y \in [k,K]} \left(\frac{y-1}{y}\right)^2 = \left\{ \begin{array}{l} \left(\frac{1-K}{K}\right)^2 \text{ if } K < 1, \\ 0 \text{ if } k \leq 1 \leq K, \\ \left(\frac{k-1}{k}\right)^2 \text{ if } 1 < k. \end{array} \right.$$

Then by (2.16) we get

$$(2.27) \qquad \frac{1}{2} \max \{1, K\} W(k, K) \ge \ln y - \frac{y-1}{y} \ge \frac{1}{2} \min \{1, k\} w(k, K)$$

for any $y \in [k, K]$.

3. Operator Inequalities

We have the following:

Lemma 1. Let $x \in [k, K]$ and t > 0, then we have

(3.1)
$$\frac{1}{2\min\{1, k^t\}} \left(\frac{x^t - 1}{t} - \frac{1 - x^{-t}}{t} \right)$$
$$\geq \ln x - \frac{1 - x^{-t}}{t}$$
$$\geq \frac{1}{2\max\{1, K^t\}} \left(\frac{x^t - 1}{t} - \frac{1 - x^{-t}}{t} \right) \geq 0$$

and

(3.2)
$$\frac{1}{2} \max \left\{ 1, K^t \right\} t \left(\frac{1 - x^{-t}}{t} \right)^2 \\ \ge \ln x - \frac{1 - x^{-t}}{t} \ge \frac{1}{2} \min \left\{ 1, k^t \right\} t \left(\frac{1 - x^{-t}}{t} \right)^2 \ge 0.$$

Proof. Let $y = x^t \in [k^t, K^t]$. By using the inequality (2.14) we have

$$\frac{1}{2\min\{1, k^t\}} \left(x^t + x^{-t} - 2 \right) \ge t \ln x - \frac{x^t - 1}{x^t}$$

$$\ge \frac{1}{2\max\{1, K^t\}} \left(x^t + x^{-t} - 2 \right) \ge 0$$

that is equivalent to (3.1).

From the inequality (2.16) we have for $y = x^t$

$$\frac{1}{2} \max \left\{ 1, K^t \right\} \left(1 - 2x^{-t} + x^{-2t} \right) \ge t \ln x - \frac{x^t - 1}{x^t}$$

$$\ge \frac{1}{2} \min \left\{ 1, k^t \right\} \left(1 - 2x^{-t} + x^{-2t} \right) \ge 0$$

that is equivalent to (3.2).

We have:

Theorem 3. Let A, B be two positive invertible operators and the constants M > m > 0 with the property that

$$(3.3) mA \le B \le MA.$$

Then for any t > 0 we have

(3.4)
$$\frac{1}{2\min\{1, m^t\}} T_t (A|B) \left(A^{-1} - (A\sharp_t B)^{-1} \right) A$$
$$\geq S (A|B) - T_t (A|B) (A\sharp_t B)^{-1} A$$
$$\geq \frac{1}{2\max\{1, M^t\}} T_t (A|B) \left(A^{-1} - (A\sharp_t B)^{-1} \right) A \geq 0$$

(3.5)
$$\frac{1}{2} \max \{1, M^{t}\} t \left(T_{t} (A|B) (A\sharp_{t}B)^{-1}\right)^{2} A$$

$$\geq S (A|B) - T_{t} (A|B) (A\sharp_{t}B)^{-1} A$$

$$\geq \frac{1}{2} \min \{1, m^{t}\} t \left(T_{t} (A|B) (A\sharp_{t}B)^{-1}\right)^{2} A \geq 0.$$

Proof. Since $mA \leq B \leq MA$ and A is invertible, then by multiplying both sides with $A^{-1/2}$ we get $m1_H \leq A^{-1/2}BA^{-1/2} \leq M$. Denote $X = A^{-1/2}BA^{-1/2}$ and by using the functional calculus for X that has its spectrum contained in the interval [m, M] and the inequality (3.1), we get

(3.6)
$$\frac{1}{2\min\{1, m^t\}}$$

$$\left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1_H}{t} - \frac{1_H - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t}\right)$$

$$\geq \ln\left(A^{-1/2}BA^{-1/2}\right) - \frac{1_H - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t}$$

$$\geq \frac{1}{2\max\{1, M^t\}}$$

$$\left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1_H}{t} - \frac{1_H - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t}\right)$$

$$\geq 0$$

for any t > 0.

Now, if we multiply both sides of (3.6) by $A^{1/2}$, then we get

$$(3.7) \quad \frac{1}{2\min\{1, m^t\}}$$

$$A^{1/2} \left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1_H}{t} - \frac{1_H - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t} \right) A^{1/2}$$

$$\geq A^{1/2} \left(\ln\left(A^{-1/2}BA^{-1/2}\right) \right) A^{1/2} - A^{1/2} \frac{1_H - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t} A^{1/2}$$

$$\geq \frac{1}{2\max\{1, M^t\}}$$

$$A^{1/2} \left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1_H}{t} - \frac{1_H - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t} \right) A^{1/2}$$

$$\geq 0$$

for any t > 0.

Observe that

$$A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) A^{1/2} = S(A|B),$$

$$A^{1/2} \frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} A^{1/2} = \frac{A\sharp_t B - A}{t} = T_t \left(A|B\right),$$

$$(3.8) A^{1/2} \frac{1_H - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t} A^{1/2}$$

$$= A^{1/2} \frac{\left(A^{-1/2}BA^{-1/2}\right)^t \left(A^{-1/2}BA^{-1/2}\right)^{-t} - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t} A^{1/2}$$

$$= A^{1/2} \frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1_H}{t} \left(A^{-1/2}BA^{-1/2}\right)^{-t} A^{1/2}$$

$$= A^{1/2} \frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1_H}{t} A^{1/2} A^{-1/2} \left(A^{-1/2}BA^{-1/2}\right)^{-t} A^{-1/2} A$$

$$= T_t \left(A|B\right) \left(A\sharp_t B\right)^{-1} A$$

and then by (3.7) we get

$$\frac{1}{2\min\{1, m^{t}\}} T_{t} (A|B) \left(1_{H} - (A\sharp_{t}B)^{-1} A\right)$$

$$\geq S (A|B) - T_{t} (A|B) (A\sharp_{t}B)^{-1} A$$

$$\geq \frac{1}{2\max\{1, M^{t}\}} T_{t} (A|B) \left(1_{H} - (A\sharp_{t}B)^{-1} A\right) \geq 0$$

that is equivalent to (3.4).

From the inequality (3.2) we also have

(3.9)
$$\frac{1}{2} \max \left\{ 1, M^t \right\} t \left(\frac{1_H - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right)^2$$

$$\geq \ln \left(A^{-1/2} B A^{-1/2} \right) - \frac{1_H - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t}$$

$$\geq \frac{1}{2} \min \left\{ 1, m^t \right\} t \left(\frac{1_H - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right)^2 \geq 0.$$

Now, if we multiply both sides of (3.9) by $A^{1/2}$, then we get

$$(3.10) \quad \frac{1}{2} \max \left\{ 1, M^t \right\} t A^{1/2} \left(\frac{1_H - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right)^2 A^{1/2}$$

$$\geq A^{1/2} \left(\ln \left(A^{-1/2} B A^{-1/2} \right) \right) A^{1/2} - A^{1/2} \frac{1_H - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} A^{1/2}$$

$$\geq \frac{1}{2} \min \left\{ 1, m^t \right\} t A^{1/2} \left(\frac{1_H - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right)^2 A^{1/2} \geq 0.$$

From (3.8) we have, by multiplying both sides by $A^{-1/2}$, that

$$\frac{1_H - \left(A^{-1/2}BA^{-1/2}\right)^{-t}}{t} = A^{-1/2}T_t \left(A|B\right) \left(A\sharp_t B\right)^{-1} A^{1/2}.$$

Then

$$A^{1/2} \left(\frac{1_H - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right)^2 A^{1/2}$$

$$= A^{1/2} \left(A^{-1/2} T_t \left(A | B \right) \left(A \sharp_t B \right)^{-1} A^{1/2} \right)^2 A^{1/2}$$

$$= A^{1/2} A^{-1/2} T_t \left(A | B \right) \left(A \sharp_t B \right)^{-1} A^{1/2} A^{-1/2} T_t \left(A | B \right) \left(A \sharp_t B \right)^{-1} A^{1/2} A^{1/2}$$

$$= T_t \left(A | B \right) \left(A \sharp_t B \right)^{-1} T_t \left(A | B \right) \left(A \sharp_t B \right)^{-1} A$$

$$= \left(T_t \left(A | B \right) \left(A \sharp_t B \right)^{-1} \right)^2 A,$$

which together with (3.10) produces the desired result (3.5).

There are some particular inequalities of interest as follows. For t = 1 we get from (3.4) and (3.5) that

(3.11)
$$\frac{1}{2\min\{1,m\}} (B-A) (A^{-1} - B^{-1}) A$$

$$\geq S(A|B) - (1_H - AB^{-1}) A$$

$$\geq \frac{1}{2\max\{1,M\}} (B-A) (A^{-1} - B^{-1}) A \geq 0$$

and

(3.12)
$$\frac{1}{2} \max \{1, M\} \left(1_H - AB^{-1}\right)^2 A$$
$$\geq S(A|B) - \left(1_H - AB^{-1}\right) A$$
$$\geq \frac{1}{2} \min \{1, m\} \left(1_H - AB^{-1}\right)^2 A \geq 0.$$

For t = 1/2 we get from (3.4) and (3.5) that

(3.13)
$$\frac{1}{\min\{1,\sqrt{m}\}} (A\sharp B - A) \left(A^{-1} - (A\sharp B)^{-1}\right) A$$

$$\geq S (A|B) - 2 \left(1_H - A (A\sharp B)^{-1}\right) A$$

$$\geq \frac{1}{\max\{1,\sqrt{M}\}} (A\sharp B - A) \left(A^{-1} - (A\sharp B)^{-1}\right) A \geq 0$$

(3.14)
$$\max \left\{ 1, \sqrt{M} \right\} \left(1_H - A \left(A \sharp B \right)^{-1} \right)^2 A$$

$$\geq S \left(A | B \right) - 2 \left(1_H - A \left(A \sharp B \right)^{-1} \right) A$$

$$\geq \min \left\{ 1, \sqrt{m} \right\} \left(1_H - A \left(A \sharp B \right)^{-1} \right)^2 A \geq 0.$$

For t = 2 we get from (3.4) and (3.5) that

(3.15)
$$\frac{1}{4\min\{1, m^2\}} \left(BA^{-1}B - A\right) \left(A^{-1} - B^{-1}AB^{-1}\right) A$$
$$\geq S\left(A|B\right) - \frac{1}{2} \left(1_H - \left(AB^{-1}\right)^2\right) A$$
$$\geq \frac{1}{4\max\{1, M^2\}} \left(BA^{-1}B - A\right) \left(A^{-1} - B^{-1}AB^{-1}\right) A \geq 0$$

and

(3.16)
$$\frac{1}{4} \max \left\{ 1, M^2 \right\} \left(1_H - \left(AB^{-1} \right)^2 \right)^2 A$$
$$\geq S \left(A|B \right) - \frac{1}{2} \left(1_H - \left(AB^{-1} \right)^2 \right) A$$
$$\geq \frac{1}{4} \min \left\{ 1, m^2 \right\} \left(1_H - \left(AB^{-1} \right)^2 \right)^2 A \geq 0.$$

We have the following:

Lemma 2. Let $x \in [m, M]$ and t > 0, then we have

$$(3.17) \quad \frac{1}{2\min\{1,m^t\}}t\left(\frac{x^t-1}{t}\right)^2 \ge \frac{x^t-1}{t} - \ln x \ge \frac{1}{2\max\{1,M^t\}}t\left(\frac{x^t-1}{t}\right)^2$$

and

(3.18)
$$\frac{1}{2} \max \left\{ 1, M^t \right\} \left(\frac{x^t - 1}{t} - \frac{1 - x^{-t}}{t} \right)$$
$$\geq \frac{x^t - 1}{t} - \ln x$$
$$\geq \frac{1}{2} \min \left\{ 1, m^t \right\} \left(\frac{x^t - 1}{t} - \frac{1 - x^{-t}}{t} \right).$$

Proof. Let $y = x^t \in [m^t, M^t]$. By using the inequality (2.15) we have (3.17) and by (2.17) we have (3.18).

We also have:

Theorem 4. Let A, B be two positive invertible operators and the constants M > m > 0 with the property (3.3). Then for any t > 0 we have

(3.19)
$$\frac{1}{2\min\{1, m^t\}} t T_t(A|B) A^{-1} T_t(A|B)$$

$$\geq T_t(A|B) - S(A|B)$$

$$\geq \frac{1}{2\max\{1, M^t\}} t T_t(A|B) A^{-1} T_t(A|B) \geq 0$$

(3.20)
$$\frac{1}{2} \max \left\{ 1, M^{t} \right\} T_{t} (A|B) \left(1_{H} - (A\sharp_{t}B)^{-1} A \right)$$

$$\geq T_{t} (A|B) - S (A|B)$$

$$\geq \frac{1}{2} \min \left\{ 1, m^{t} \right\} T_{t} (A|B) \left(1_{H} - (A\sharp_{t}B)^{-1} A \right) \geq 0.$$

Proof. If we use the inequality (3.17) for the selfadjoint operator $X = A^{-1/2}BA^{-1/2}$ that has its spectrum contained in the interval [m, M], then we get

$$\frac{1}{2\min\{1, m^t\}} t \left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} \right)^2 \\
\ge \frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} - \ln\left(A^{-1/2}BA^{-1/2}\right) \\
\ge \frac{1}{2\max\{1, M^t\}} t \left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} \right)^2 \ge 0$$

for any t > 0.

If we multiply both sides of this inequality by $A^{1/2}$ we get

$$(3.21) \qquad \frac{1}{2\min\{1, m^t\}} t A^{1/2} \left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} \right)^2 A^{1/2}$$

$$\geq A^{1/2} \frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} A^{1/2} - A^{1/2} \left(\ln\left(A^{-1/2}BA^{-1/2}\right) \right) A^{1/2}$$

$$\geq \frac{1}{2\max\{1, M^t\}} t A^{1/2} \left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} \right)^2 A^{1/2} \geq 0$$

for any t > 0.

Since

$$A^{1/2} \frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} A^{1/2} = T_t \left(A|B\right),$$

then

$$\frac{\left(A^{-1/2}BA^{-1/2}\right)^{t}-1}{t}=A^{-1/2}T_{t}\left(A|B\right)A^{-1/2}$$

and

$$A^{1/2} \left(\frac{\left(A^{-1/2}BA^{-1/2}\right)^t - 1}{t} \right)^2 A^{1/2}$$

$$= A^{1/2}A^{-1/2}T_t (A|B) A^{-1/2}A^{-1/2}T_t (A|B) A^{-1/2}A^{1/2}$$

$$= T_t (A|B) A^{-1}T_t (A|B)$$

for any t > 0.

By making use of (3.21) we then get (3.19).

By using inequality (3.18) we have

$$\frac{1}{2} \max \left\{ 1, M^t \right\} \left(\frac{\left(A^{-1/2} B A^{-1/2} \right)^t - 1}{t} - \frac{1 - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right) \\
\ge \frac{\left(A^{-1/2} B A^{-1/2} \right)^t - 1}{t} - \ln \left(A^{-1/2} B A^{-1/2} \right) \\
\ge \frac{1}{2} \min \left\{ 1, m^t \right\} \left(\frac{\left(A^{-1/2} B A^{-1/2} \right)^t - 1}{t} - \frac{1 - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right) \\
\ge 0,$$

for any t > 0.

If we multiply both sides of this inequality by $A^{1/2}$ we get

$$\frac{1}{2} \max \left\{ 1, M^{t} \right\} A^{1/2} \left(\frac{\left(A^{-1/2} B A^{-1/2} \right)^{t} - 1}{t} - \frac{1 - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right) A^{1/2}
\geq A^{1/2} \frac{\left(A^{-1/2} B A^{-1/2} \right)^{t} - 1}{t} A^{1/2} - A^{1/2} \left(\ln \left(A^{-1/2} B A^{-1/2} \right) \right) A^{1/2}
\geq \frac{1}{2} \min \left\{ 1, m^{t} \right\} A^{1/2} \left(\frac{\left(A^{-1/2} B A^{-1/2} \right)^{t} - 1}{t} - \frac{1 - \left(A^{-1/2} B A^{-1/2} \right)^{-t}}{t} \right) A^{1/2}
> 0$$

for any t > 0, and the inequality (3.20) is obtained.

For t = 1 we get from (3.19) and (3.20) that

(3.22)
$$\frac{1}{2\min\{1, m\}} (B - A) A^{-1} (B - A)$$
$$\geq B - A - S(A|B)$$
$$\geq \frac{1}{2\max\{1, M\}} (B - A) A^{-1} (B - A) \geq 0$$

and

(3.23)
$$\frac{1}{2} \max \{1, M\} (B - A) (1_H - B^{-1}A)$$

$$\geq B - A - S(A|B)$$

$$\geq \frac{1}{2} \min \{1, m\} (B - A) (1_H - B^{-1}A) \geq 0.$$

For t = 1/2 we get from (3.19) and (3.20) that

(3.24)
$$\frac{1}{\min\{1,\sqrt{m}\}} (A\sharp B - A) A^{-1} (A\sharp B - A) \\ \ge 2 (A\sharp B - A) - S (A|B) \\ \ge \frac{1}{\max\{1,\sqrt{M}\}} (A\sharp B - A) A^{-1} (A\sharp B - A) \ge 0$$

and

(3.25)
$$\max \left\{ 1, \sqrt{M} \right\} (A \sharp B - A) \left(1_H - (A \sharp B)^{-1} A \right) \\ \ge 2 (A \sharp B - A) - S (A | B) \\ \ge \min \left\{ 1, \sqrt{m} \right\} (A \sharp B - A) \left(1_H - (A \sharp B)^{-1} A \right) \ge 0.$$

For t = 2 we get from (3.19) and (3.20) that

(3.26)
$$\frac{1}{4\min\{1, m^2\}} (BA^{-1}B - A) A^{-1} (BA^{-1}B - A)$$

$$\geq \frac{1}{2} (BA^{-1}B - A) - S(A|B)$$

$$\geq \frac{1}{4\max\{1, M^2\}} (BA^{-1}B - A) A^{-1} (BA^{-1}B - A) \geq 0$$

and

(3.27)
$$\frac{1}{4} \max \left\{ 1, M^2 \right\} \left(BA^{-1}B - A \right) \left(1_H - \left(B^{-1}A \right)^2 \right)$$
$$\geq \frac{1}{2} \left(BA^{-1}B - A \right) - S\left(A|B \right)$$
$$\geq \frac{1}{4} \min \left\{ 1, m^2 \right\} \left(BA^{-1}B - A \right) \left(1_H - \left(B^{-1}A \right)^2 \right) \geq 0.$$

4. Some Global Bounds

For $[m, M] \subset (0, \infty)$ and t > 0 and by the use of (2.18) we define

$$(4.1) \quad U_{t}\left(m, M\right) := U\left(m^{t}, M^{t}\right) = \begin{cases} \frac{\left(m^{t} - 1\right)^{2}}{m^{t}} & \text{if } M < 1, \\ \max\left\{\frac{\left(m^{t} - 1\right)^{2}}{m^{t}}, \frac{\left(M^{t} - 1\right)^{2}}{M^{t}}\right\} & \text{if } m \leq 1 \leq M, \\ \frac{\left(M^{t} - 1\right)^{2}}{M^{t}} & \text{if } 1 < m \end{cases}$$

and by (2.19)

(4.2)
$$u_t(m, M) := u(m^t, M^t) = \begin{cases} \frac{(1-M^t)^2}{M^t} & \text{if } M < 1, \\ 0 & \text{if } m \le 1 \le M, \\ \frac{(m^t - 1)^2}{m^t} & \text{if } 1 < m. \end{cases}$$

By (2.20) and (2.21) we have for $y = x^t \in [m^t, M^t]$ and t > 0 that

$$(4.3) \quad \frac{1}{2t \min\{1, m^t\}} U_t(m, M) \ge \ln x - \frac{1 - x^{-t}}{t} \ge \frac{1}{2t \max\{1, M^t\}} u_t(m, M),$$

and

$$(4.4) \quad \frac{1}{2t} \max \left\{ 1, M^{t} \right\} U_{t}\left(m, M\right) \geq \frac{x^{t} - 1}{t} - \ln x \geq \frac{1}{2t} \min \left\{ 1, m^{t} \right\} u_{t}\left(m, M\right),$$

where $x \in [m, M]$ and t > 0.

Using (2.22) and (2.23) we define

(4.5)
$$Z_{t}(m, M) := Z\left(m^{t}, M^{t}\right)$$

$$= \begin{cases} (1 - m^{t})^{2} & \text{if } M < 1, \\ \max\left\{\left(1 - m^{t}\right)^{2}, \left(M^{t} - 1\right)^{2}\right\} & \text{if } m \leq 1 \leq M, \\ \left(M^{t} - 1\right)^{2} & \text{if } 1 < m \end{cases}$$

and

(4.6)
$$z_t(m, M) := z(m^t, M^t) = \begin{cases} (1 - M^t)^2 & \text{if } M < 1, \\ 0 & \text{if } m \le 1 \le M, \\ (m^t - 1)^2 & \text{if } 1 < m. \end{cases}$$

By (2.24) we have for $y=x^t\in[m^t,M^t]$ and t>0 that

$$(4.7) \qquad \frac{1}{2t \min\{1, m^t\}} Z_t\left(m, M\right) \ge \frac{x^t - 1}{t} - \ln x \ge \frac{1}{2t \max\{1, M^t\}} z_t\left(m, M\right),$$
where $x \in [m, M]$ and $t > 0$.

Utilising (2.25) and (2.26) we can define

$$(4.8) W_t(m, M) := W\left(m^t, M^t\right)$$

$$= \begin{cases} \left(\frac{1-m^t}{m^t}\right)^2 & \text{if } M < 1, \\ \max\left\{\left(\frac{1-m^t}{m^t}\right)^2, \left(\frac{M^t - 1}{M^t}\right)^2\right\} & \text{if } m \le 1 \le M, \\ \left(\frac{M^t - 1}{M^t}\right)^2 & \text{if } 1 < m \end{cases}$$

and

$$(4.9) w_t(m, M) := W\left(m^t, M^t\right) = \begin{cases} \left(\frac{1-M^t}{M^t}\right)^2 & \text{if } M < 1, \\ 0 & \text{if } m \le 1 \le M, \\ \left(\frac{m^t - 1}{m^t}\right)^2 & \text{if } 1 < m. \end{cases}$$

By (2.24) we have for $y = x^t \in [m^t, M^t]$ and t > 0 that

$$(4.10) \quad \frac{1}{2t} \max \left\{ 1, M^t \right\} W_t(m, M) \ge \ln x - \frac{1 - x^{-t}}{t} \ge \frac{1}{2t} \min \left\{ 1, m^t \right\} w_t(m, M),$$
where $x \in [m, M]$ and $t > 0$.

Theorem 5. Let A, B be two positive invertible operators and the constants M > m > 0 with the property (3.3). Then for any t > 0 we have

$$\frac{1}{2t \min\{1, m^{t}\}} U_{t}(m, M) A \geq S(A|B) - T_{t}(A|B) (A\sharp_{t}B)^{-1} A
\geq \frac{1}{2t \max\{1, M^{t}\}} u_{t}(m, M) A,$$

$$\frac{1}{2t} \max \left\{ 1, M^{t} \right\} W_{t} \left(m, M \right) A \geq S\left(A | B \right) - T_{t} \left(A | B \right) \left(A \sharp_{t} B \right)^{-1} A$$

$$\geq \frac{1}{2t} \min \left\{ 1, m^{t} \right\} w_{t} \left(m, M \right) A,$$

$$\frac{1}{2t \min\{1, m^t\}} Z_t(m, M) A \ge T_t(A|B) - S(A|B)
\ge \frac{1}{2t \max\{1, M^t\}} z_t(m, M) A$$

and

$$\frac{1}{2t} \max \left\{ 1, M^t \right\} U_t \left(m, M \right) A \geq T_t \left(A | B \right) - S \left(A | B \right)$$

$$\geq \frac{1}{2t} \min \left\{ 1, m^t \right\} u_t \left(m, M \right) A.$$

The proof follows by the inequalities (4.4), (4.5), (4.7) and (4.10) in a similar way as the one from the proof of Theorem 3 and we omit the details.

For t = 1, t = 1/2 and t = 2 one can obtain some particular inequalities of interest, however the details are not provided here.

References

- S. S. Dragomir, Some inequalities for relative operator entropy, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 145. [http://rgmia.org/papers/v18/v18a145.pdf].
- [2] S. S. Dragomir, Reverses and refinements of several inequalities for relative operator entropy, Preprint RGMIA Res. Rep. Coll. 19 (2015), Art. [http://rgmia.org/papers/v19/].
- [3] S. Furuichi, K. Yanagi, K. Kuriyama, Fundamental properties for Tsallis relative entropy, J. Math. Phys. 45 (2004) 4868–4877.
- [4] S. Furuichi, Precise estimates of bounds on relative operator entropies, Math. Ineq. Appl. 18 (2015), 869–877.
- [5] S. Furuichi and N. Minculete, Alternative reverse inequalities for Young's inequality, J. Math Inequal. 5 (2011), Number 4, 595–600.
- [6] J. I. Fujii and E. Kamei, Uhlmann's interpolational method for operator means. Math. Japon. 34 (1989), no. 4, 541–547.
- [7] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory. Math. Japon. 34 (1989), no. 3, 341–348.
- [8] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space. Monographs in Inequalities, 1. Element, Zagreb, 2005. xiv+262 pp.+loose errata. ISBN: 953-197-572-8.
- [9] I. H. Kim, Operator extension of strong subadditivity of entropy, J. Math. Phys. 53(2012), 122204
- [10] P. Kluza and M. Niezgoda, Inequalities for relative operator entropies, Elec. J. Lin. Alg. 27 (2014), Art. 1066.
- [11] M. S. Moslehian, F. Mirzapour, and A. Morassaei, Operator entropy inequalities. Collog. Math., 130 (2013), 159–168.
- [12] M. Nakamura and H. Umegaki, A note on the entropy for operator algebras. Proc. Japan Acad. 37 (1961) 149–154.
- [13] I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376-383.
- [14] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
- [15] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Comm. Math. Phys. Volume 54, Number 1 (1977), 21-32.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

²School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa