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SOME NEW REVERSES AND REFINEMENTS OF
INEQUALITIES FOR RELATIVE OPERATOR ENTROPY

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain new inequalities for relative operator en-
tropy S (A|B) in the case of operators satisfying the condition mA < B < MA,
with 0 <m < M.

1. INTRODUCTION

Kamei and Fujii [6], [7] defined the relative operator entropy S (A|B) , for positive
invertible operators A and B, by

(1.1) S(A|B) = A? (m (A—%BA—%))A%,
which is a relative version of the operator entropy considered by Nakamura-Umegaki

[12].
In general, we can define for positive operators A, B

S (A|B) = s- 1iI(I)1+S(A +¢elg|B)

if it exists, here 1 is the identity operator.

For the entropy function 7 (t) = —tInt, the operator entropy has the following
expression:

n(A)=—-AlnA=S5(A|1lg) >0

for positive contraction A. This shows that the relative operator entropy (1.1) is a
relative version of the operator entropy.

Following [8, p. 149-p. 155], we recall some important properties of relative
operator entropy for A and B positive invertible operators:
i) We have the equalities

1.2) S(A|B) = —AY? (lnAl/zB’lAl/Q) A2 = Bl (B*l/QAB*/?) BY2,

(
(
(ii) We have the inequalities
(1.3) S(A|B) < A(In||B|| —InA) and S (A|B) < B — A;
(iii) For any C, D positive invertible operators we have that
S(A+ B|C+ D) > S (A|C)+ S(B|D);
(iv) If B < C then
S(A|B) < S(A[C);
(v) If B,, | B then
S(A|Bn) | S(A[B);
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2 S.S. DRAGOMIRY2

(vi) For o > 0 we have
S (aAlaB) = aS (A|B);
(vii) For every operator T' we have

T*S(A|B)T < S (I AT|T*BT).

The relative operator entropy is jointly concave, namely, for any positive invertible
operators A, B, C, D we have

S{EA+(1—1)BtC+ (1 —)D) > tS (A|C) + (1 —t) S (B|D)

for any t € [0,1].

For other results on the relative operator entropy see [1], [4], [9], [10], [11] and
[13].

Observe that, if we replace in (1.2) B with A, then we get

S (B|A) = AY?y <A’1/QBA’1/2) AL/2
— A1/2 (_A71/23A71/2 In (Afl/QBAfl/Q)) A2,
therefore we have
(1.4) AL/2 <A*1/2BA*1/2 In (A*I/ZBA*/Z)) A2 = _5(B|A)

for positive invertible operators A and B.

It is well know that, in general S (A|B) is not equal to S (B|A).

n [15], A. Uhlmann has shown that the relative operator entropy S (A|B) can
be represented as the strong limit

AfB— A
(1.5) S (A|B) :s—tlirr(l) ﬁtf,

where
At B = A2 (A*l/QBA*“) A2y e 0,1]

is the weighted geometric mean of positive invertible operators A and B. For v = 1

we denote AfB. ’
This definition of the weighted geometric mean can be extended for any real
number v with v # 0.
For t > 0 and the positive invertible operators A, B we define the Tsallis relative
operator entropy (see also [3]) by

Af,B — A
e

The following result providing upper and lower bounds for relative operator
entropy in terms of T} (+|-) has been obtained in [6] for 0 < ¢ < 1. However, it hods
for any t > 0.

T, (A|B) :=

Theorem 1. Let A, B be two positive invertible operators, then for any t > 0 we
have

(1.6) T; (A|B) (Af;B)"' A < S(A|B) < T; (A|B).
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In particular, we have for ¢ = 1 that
(1.7) (lg —AB™') A< S(A|B) < B— A, [6]
and for t = 2 that

(1.8) % (1H - (AB‘1)2> A< S(AB) < % (BA™'B - A).
The case t = % is of interest as well. Since in this case we have
Tiss (AIB) =2 (2B — A)
and
1 _

Tio (AIB) (At1sB) " A =2 (14— A(A1B) ") 4,
hence by (1.6) we get
(1.9) 2 (1H - A(AﬁB)_1> A< S(AIB)<2(AtB—A) < B — A

Motivated by the above results, in this paper we obtain new inequalities for the
relative operator entropy in the case of operators satisfying the condition mA <
B < MA, with0 <m < M.

2. INEQUALITIES FOR LOG-FUNCTION
‘We have:

Theorem 2. For any a, b > 0 we have the inequalities

1 2 b —a 1 2
2.1 ——— (b— >Inb—1Ina— > —
(2.1) 2bmin {a, b} (b=a)”2Inb—Ina b ~ 2bmax{a,b} (b—a)
and

1 b— 1 2
2.2 _— > —l Ing> ——M—— .
(22) 2amin {a, b} (-0’ a nb+lna > 2amax {a, b} (b—a)

Proof. We have

b]. b
/—dtfb/ Edtf/dt:b(lnbflna)f(bfa)

(2.3) Inb—1Ina— / —dt

giving that

for any a, b > 0.
Let b > a > 0, then

1 /b b 1 /b
5/ (b—t)dtz/ b—dt>b/ (b— 1) dt
giving that

(2.4) / —dt > ib (b—a)*.

Let a > b > 0, then

%/ (t—b dt>/—dt /ﬂdt>1/ (t —b)dt
b b
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giving that
1 o [Pb—t
2. — (b — > —dt >
(25) G 0= > [t
Therefore, by (2.4) and (2.5) we get

1 byt 1
(b—a)22/ —dt > (b—a)?,

2min {a, b} ~ 2max {a, b}

for any a, b > 0.

By utilising the equality (2.3) we get the desired result (2.1). O
Corollary 1. For any y > 0 we have

1 2 Yy — 1 1 2

2.6 ——(y—1)" > Iny — > -1
(26) 2ymin {1, y} -1y 2y y  2ymax{ly} w-1)
and
2.7) syl (1)

' 2min {1,y} Y =Y y_QmaX{l,y} Y '

Remark 1. Since for any a, b > 0 we have max {a, b} min {a,b} = ab, then (2.1)
and (2.2) can also be written as

1 b—a\’ b—a 1 b—a\’
. — >1Inb— — > — mi
(2.8) 2amax{a,b}( ) >Inb—Ina 5 2am1n{a,b}( 5 )
and
2 2
1 - - 1 -
(2.9) %max{a,b} (baa) Z%—lmb—i—lnaz%min{a,b} (baa)
for any a, b > 0.
The inequalities can also be written as
1 y—1 2 y—1_1 y—1 2
2.10 —max{l,y () >Iny——— > —min{l,y} | ——
@) gmax(y) (S > Jmin{1y) (L
and
1 1
(2.11) Q—max{l,y} (y — 1)2>y—1-Iny> ?min{l,y} (y — 1)2,
Y Yy
for any y > 0.

In the recent paper [2] we obtained the following inequalities that provide upper

and lower bounds for the quantity Inb —Ina — ”’T“:
1 (b—a)’ b—a 1 (b—a)’
2.12 - > —Inb+Ina>=>———"—
(2.12) 2min® {a,b} = a notina = 2 max?2 {a, b}’
where a, b > 0 and
2
(2.13) (b—a) Zb_a—lnb—l—lna
ab a

for any a, b > 0.
It is natural to ask, which of the upper bounds for the quantity

b_a—lnb—HHa

as provided by (2.2), (2.12) and (2.13) is better?
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It has been shown in [2] that neither of the upper bounds in (2.12) and (2.13) is
always best.
Consider now the difference

Dy (a,b) = m(b—a)z
1 (b—a)

" 2 gmin? {a, b}

1 (b—a)’
2 min? {a, b}

(min{a,b} —a) <0,
which shows that upper bound in (2.2) is always better than the upper bound in

(2.12).
Consider the difference

D (a,b) = 2a mi;{a b} (-0 - = ;ba)
1

- m(b—a)2 (b—2min {a,b}),

which can take both positive and negative values for a, b > 0, showing that neither
of the bounds (2.2) and (2.13) is always best.
Now, consider the difference

R T o LR =
1

= Sema {apy (0~ @) (max{ab} —a) 20,

which shows that lower bound in (2.2) is always better than the lower bound in
(2.12).

Corollary 2. Ify € [k, K] C (0,00), then we have the local inequalities

1 (-1 y—1 1 (y—1)?
. >Iny — >
(2.14) 2min {1, k} =My “2max{l,K} y '’
2.1 — (-1’ >y—-1-lny>—- (y—1)°
(2.15) S (LR W2y MY i YT
(2.16) L ax {1 K}(y1>2>1 L k}<y1)2
. —max{1, — ) 2hy— —— > —min{l, —
2 Yy Y Y 2 Yy
and
1 (y—1)? . (y—1)°
(2.17) imax{l,K}iZy—l—lnyzimm{l,k}i.
y y

Proof. Tty € [k, K] C (0,00), then by analyzing all possible locations of the interval
[k, K] and 1 we have

min{1,k} <min{1l,y} < min {1, K}

and
max {1, k} <max{l,y} <max{l,K}.
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By using the inequalities (2.6) and (2.7) we have

. _(y-17>
2ymin {1, k} =17z
1 2 Yy — 1 1 2
. (y-1)?>ly— > 1
2ymin {1, y} (y—1)7" =y ~ 2ymax{1,y} &-1
1 2
> — (y—1
~ 2ymax{l, K} =1
and
1 2
-1’ >
Smin (LR ¢ U2
L 1Py T-ly>— (1)
s (y— 1-In (g
2min{l,y} Y =Y v= 2max {1,y} Y
>~ _(y—1)°
Z S (LK Y Y
for any y € [k, K], that prove (2.14) and (2.15).
The inequalities (2.16) and (2.17) follows by (2.16) and (2.17). O
If we consider the function f (y) = %, y > 0, then we observe that
=Yt ) =2
y)= "y an v =g

which shows that f is strictly decreasing on (0, 1), strictly increasing on [1, 00) and
strictly convex for y > 0. We also have f (i) = f(y) for y > 0.
By the properties of f we then have that

=D ¢ | <1,

_1)2
. max = max _72,@ ifk<1<K,
218 (y ) (k—1)
yE[k,K] ) k K
ED 51 < ke
= U (k, K)
and
UK 4 g <1
_1)2 1 <1
(2.19) %%Q’ V) oifk<1i<K, = u(kK).
YyE|k, )

E= i1 < k

We can provide now some global bounds as follows.
From (2.14) we then get for any y € [k, K] that

1 y—1 1
—U(k,K) >Iny — >
2min{1,k}U( i) 2y ~ 2max {1, K}

(2.20) u(k,K),
while from (2.17) we get for any y € [k, K| that

(2.21) %max{l,K}U(k,K) >y—1—Iny > %min{l,k}u(k,K).
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Consider
2.22 Z(k, K) := —1)?
(2.22) (k,K) yg%@ )
(1-k)®if K <1,
- max{(1—k)2,(K—1)2} ifk<1<K,
(K—-1)°ifl<k
and

(1-K)*if K <1,
(2.23) 2(k,K):= min (y—1*={ 0ifk<1<K,
velk K] (k—1)% if 1 < k.

By making use of (2.15) we get

1

(2.24) 2min {1 k}Z

(hK)zy—1- z(k, K),

1
lny>—-—
ny = 2max {1, K}

for any y € [k, K.

2
Consider the function g (y) = (yT_l) , y > 0, then we observe that

2(y—1 23 -2y
g ) =20 ana g () = 20220
Yy Y
which shows that g is strictly decreasing on (0, 1), strictly increasing on [1,00)
strictly convex for y € (0,3/2) and strictly concave on (3/2,00) .
Consider

2
(2.25) W (k,K) == max <y_1>
yE[k,K] Y
(L5) it K <1,
= max{(155)°, (K1)} ik <1< K,
(B=1)? it 1 < k
and
1-K .
B ) y—]_ 2_ (T) 1f[(<17
(2.26) w(k,K) = min | =——] = 0if k<1<K,
velRETA Y (B=1)? if 1 < k

Then by (2.16) we get
1

2.27 =

CEON

11
max {1, K} W (k,K) >Iny — 2~ > 5 min{L,k}w (k, K)
y

for any y € [k, K].

3. OPERATOR INEQUALITIES

We have the following:
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Lemma 1. Let x € [k, K] and t > 0, then we have

1 2t -1 11—zt
(3:1) 2min{1,k;t}< t ot >

1—at

>lnx —

1 zt—1 1-—at
> — >0
~ 2max {1, Kt} t t -

(3.2) ;max{l,Kt}t<1_x_t)2

t
l1—2 1. o (1—zt\?
>lnx — n Zimln{l,k}t " > 0.

Proof. Let y =" € [k', K']. By using the inequality (2.14) we have
t
t —t -1
—9) > _
5 min {1, ) (:r +x 2) >tlnx o
N 1
~ 2max {1, Kt}

(mt—km*t —2) >0
that is equivalent to (3.1).

From the inequality (2.16) we have for y =
xt —1

x

%max{l,Kt} (1 — 27t + x*%) >tlnx —
> %min {1, kt} (1 — 2zt 4 x*%) >0
that is equivalent to (3.2). O

We have:

Theorem 3. Let A, B be two positive invertible operators and the constants M >
m > 0 with the property that

(3.3) mA < B < MA.
Then for any t > 0 we have
(3.4) ﬂﬁ%7ﬂﬂmwwwf4mmrﬁA

> S(A|B) - T, (A|B) (A:B) " A

1 _ -1

> sy A1) (A L _ (At,B) )A >0

and
1 B 2

(3.5) 5 max {1, M} ¢ <Tt (A|B) (At B) 1) A

> S(A|B) - T; (A|B) (A4;B) ' A

> %min {1.m'}t (7, (AlB) (AﬁtB)—l)2 A>0,
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Proof. Since mA < B < M A and A is invertible, then by multiplying both sides
with A=1/2 we get mly < A=Y/2BA~1/2 < M. Denote X = A~/2BA~1/2 and by
using the functional calculus for X that has its spectrum contained in the interval
[m, M] and the inequality (3.1), we get

(3.6) _
2min {1, mt}
((14—1/21914—1/2)’f 1y 1 — (A—1/QBA—1/2)t>
t t
>l (Ail/zBAfl/z) B 1y — (A—l/t?BA—l/2)t
>_ b
~ 2max {1, Mt}
((Al/QBAl/z)t 1y lg-— (Al/QBAl/Z)_t>
t t
>0
for any ¢t > 0.

Now, if we multiply both sides of (3.6) by A'/2, then we get

1
(87) 2min {1, m!}
— — t _ _ —t
N ((A YV2BATV?) —1y 1y — (ATY2BATY?) )AW
t t

_(A-1/2BA-1/2) 7!
( )

A1/2
t

> Al/? (ln (A—1/2BA—1/2))A1/2_A1/21H
S 1
~ 2max {1, Mt}

— — t _ _ —t
N ((A V2BATY2) — 1y 1y — (ATV2BATY?) )AUQ

t t
>0

for any ¢ > 0.
Observe that

AY21n (A*1/2BA*1/2) AY2 = S(AB),

A-1/2BA-1/2 t—l B
e ) =i L“Bt 41 4m),
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A1/2

_ "
(38) A1/2 1H - (A 1/2BA 1/2) A1/2
t
R (A—1/2BA—1/2)75 (A_1/2BA_1/2)*t . (A_l/QBA_l/Q)ft
N t
_ ot
= A'/? (A7/2BATY) —1n (A—1/2BA—1/2)_t A1/2
t
_ 1/t
— Al/2 (A71/2BA71/2)" — 1HA1/2A71/2 <A71/2BA71/2)_tA71/2A
t

=T, (A|B) (At;B) " A
and then by (3.7) we get

1
2min {1,m'}
> S(A|B) ~ T, (AB) (At B) " A

T3 (AlB) (L — (A2.B) ™" 4)
> o T (A8 (1 = (A3B)™ ) > 0

that is equivalent to (3.4).
From the inequality (3.2) we also have

2
L 1 — (A-1/2BA-1/2) "
(39 zmax{LMt}t< ( ; )
- — —t
>In (A*1/23A71/2> g - (A=1/2BA-1/?)
t
— —-1/2 -1/2 —t\ 2
Z;min{lamt}tCH . tBA ) ) > 0.

Now, if we multiply both sides of (3.9) by A'/2, then we get

_ _ —ty\ 2
(3.10) 1rnaux{l Mt}tA1/2 (1H — (A72BATYZ) ) AL/2
2 b

t

1y — (A—l/zBA—l/Q)*t

> Al/2 (ln (A71/23A71/2)> AL/2 _ 71/2 :

1y — (A-12BA-1/2) 7"

t
From (3.8) we have, by multiplying both sides by A~1/2 that

1y — (A—l/zBA—l/z)*t
t

— A7V2T, (A|B) (A B) " A2,

A1/2
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Then

_ 19yt 2
e (1}1 _ (A 1/2BA 1/2) ) Y
t

2
= AV (A7V2T, (A|B) (A, B) T AV/2) " 412
= AY2ATVPT (A|B) (A4, B) "t AYPATVAT, (A|B) (Af,B) T AV A
=T, (A|B) (AtuB) "' Ti (A1 B) (A1, B) " A

= (T (41B) (41,B) ") 4,
which together with (3.10) produces the desired result (3.5).

There are some particular inequalities of interest as follows.
For ¢t = 1 we get from (3.4) and (3.5) that

(3.11) m(BfA) (A'-B A

> S(AB)- (1g—AB ) A

> m(B—A)(A—l—B-l)Azo
and
(3.12) S max {1, M} (1 — AB™)* A

> S(AB)— (lg—AB ') A

> %min{l,m} (1y —AB™1)? A >0.

For t = 1/2 we get from (3.4) and (3.5) that

(3.13) m (418~ A) (A7 — (43B) ") A

> S (A|B) -2 (1H —A (AﬁB)*l) A

> W (AtB — A) (A*l - (AtiB)_1> A>0
and
(3.14) max {1, \/M} (1H —A (AﬁB)*l)2 A

> S (A|B) -2 (1H - A(AﬁB)_l) A

> min {1, vm} (1 - A(AtiB)*l)2 A>0.
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For t = 2 we get from (3.4) and (3.5) that

(3.15) m (BAT'B—A) (A" -=B'AB™') A
> S (A|B) - % (1w = (4B7)*) 4
> m (BAT'B—A) (A" =B 'AB™)A>0
and
(3.16) imax{l,MZ} (1 - (AB*1)2)2A
> S (A|B) — % (1H - (AB*)Q) A

1 12\ 2
zzmln{l,mZ} (1H—(AB 1)) A>0.

We have the following:

Lemma 2. Let x € [m, M] and t > 0, then we have

1 2t 1\’ _ at—1 1 at—1\?
(3:17) 2min{1,mt}t< t >Z t _ln$22max{1,Mt}t( t >
and
(3.18) L max {1, M%) <xt -1 xt>
2 t t
xt—1
> —Inx

1 . -1 1—z7t
22m1n{1,mt}< remi n )
Proof. Let y = 2t € [m!, M']. By using the inequality (2.15) we have (3.17) and
by (2.17) we have (3.18). O
We also have:

Theorem 4. Let A, B be two positive invertible operators and the constants M >
m > 0 with the property (3.8). Then for any t > 0 we have

(3.19) mm (AIB) A~'T, (A| B)
> T, (A|B) — S (A|B)
1 -1
> mtﬂ (A|[B)A™'T, (A|B) > 0
and
(3.20) %max{l,Mt} T, (A|B) (1H — (A#,B)"" A)

> T; (A|B) — 5 (A|B)

> %min {1.m"} T, (A1B) (1 — (45.B) " 4) >0,
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Proof. If we use the inequality (3.17) for the selfadjoint operator X = A~'/2BA~1/2

that has its spectrum contained in the interval [m, M], then we get

| ((AwBAmy _ 1)2
t

2min {1, mt} t

(A—l/QBA—l/Q)t _1
>

~In(A72BA12)

- t
2
1 (A—1/2BA—1/2)75 1
> t >0
~ 2max {1, Mt} t -
for any ¢t > 0.
If we multiply both sides of this inequality by A'/? we get
2
A-V2BA-12)
(3.21) 1 e ( ) Al/?
2min {1, m*} t
—1/2p A-1/2\t _
> Al/2 (A BA ) 1A1/2 _AL/2 (ln (A’1/2BA’1/2)) AL/2
2
1 (A-12BA-12)0
> 1/2 1/2 5
- 2max{1,Mt}tA < t AT 20
for any t > 0.
Since ,
ATY2BATY?) —1
A1/2( ) A1/2:Tt (A‘B),
then .
A—I/QBA—I/Q -1
( - ) _ A—l/QTt (A|B) A—1/2
and
_ RN 2
A/2 ((A '/2BA 1/2) — 1) Al/2
t
_ A1/2A71/2Tt (A|B) A71/2A71/2Tt (A|B) A71/2A1/2
=T, (A|B) A~'T, (A|B)
for any t > 0.

By making use of (3.21) we then get (3.19).
By using inequality (3.18) we have

—1/2p A-1/2\t _ _(A-1/2p 4172\t
1max{1,Mt}<(A BATY2)" —1 1-(AY2BA') )
2 t t

—1/2 —1/2\t _
> (A BA ) 1 o (A—l/QBA—1/2>
t
—1/2p A-1/2\t _ _(A-1/2p 4172\t
> 1min{l,mt} <(A Bé ) —1 ! (4 tBA ) )

A\
S

b
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0.

If we multiply both sides of this inequality by A'/? we get

1
imax{l,Mt}Al/2 (

t t

(A2BA) 1 1 <A-1/QBA—1/2V> "

Y

—1/2p A-1/2\t _

> AL/2 (A BA ) 1141/2 _AL/2 (ln (A—l/QBA—1/2)) AL/2
- t

] A-V2BASYR) 1 1 (A-1/2BA-1
zfmin{l,mt}Al/Q <( ) _ (

2 t t
>0

for any ¢t > 0, and the inequality (3.20) is obtained.

For ¢t = 1 we get from (3.19) and (3.20) that

(3.22)

and

(3.23)

Fort =1/2

(3.24)

and

(3.25)

1
2min {1, m}
>B—-A-S(AB)
> b
~ 2max {1, M}

(B—A)A (B - A)
(B—A)A'(B-A)>0

%max{l, M} (B—A)(1g — B 'A)
>B- A-S(AB)
> %min{l,m} (B—A)(1g — B 'A) >0.

we get from (3.19) and (3.20) that
1

min {1, /m}
>2(AtB — A) — S(A|B)

(A4B — A) A1 (A4B — A)

1
. _(AHB-A)A Y (AHB-A)>0
zmaX{Lm}(ﬁ ) (At ) >

max {1, m} (AtB — A) (1H — (AtB)™! A)
> 2(AtB — A) — S (AB)
> min {1,v/m} (A$B — A) (1H —(A¢B)~ A) > 0.

For t = 2 we get from (3.19) and (3.20) that

(3.26)

1

—1p -1 —1pn
T (L] (PAT B - 4) 4 (BA'B - A)

> % (BA™'B—A) — S(A|B)

1

R —-1p _ -1 —1p _
Z4max{1,M2} (BAT'B—A)A™' (BAT'B—-A) >0
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and
(3.27) imax {1,M} (BAT'B - A) (1 — (B714)")
1 -1
>3 (BAT'B— 4) - 5(A|B)
> min {1L,m?} (BAB - ) (1~ (B74)°) > 0.

4. SOME GLOBAL BOUNDS
For [m, M] C (0,00) and ¢ > 0 and by the use of (2.18) we define

(mt—l)Q
T

if M <1,
(41) Uy (m. M) =U (m", M*) = { max{ (-1 Q171 } ifm <1< M,

@21 i1 <m

and by (2.19)

_mt)?
0= 5 s <1,

(4.2) uy (m, M) :=u(m',M") =4 0ifm <1< M,
(m'-1)” .
2 if 1 <m.

m

By (2.20) and (2.21) we have for y = ' € [m!, M'] and ¢ > 0 that

1 1—at 1

4. _ M)>Inzx — >
(43) 2tmin{1,mt}Ut (m, M) 2 Inz t ~ 2tmax {1, Mt}

Ut (va)a

and

xt—1

1 1
(4.4) gtmax{l,Mt}Ut(m,M)Z fln:czz—tmin{l,mt}ut(m,M),

where x € [m, M] and t > 0.
Using (2.22) and (2.23) we define
(4.5) Zy (m,M) :=Z (mt7Mt)
(1—mt)* it M <1,
_ max{(l —mt)?, (M — 1)2} ifm<1<M,
(Mt—1)% if1<m

(1— MY if M <1,
(4.6) zt (m, M) ::z(mt,Mt): 0ifm<1<M,

(mt —1)* if 1 < m.
By (2.24) we have for y = z* € [m', M| and ¢ > 0 that

1 zt -1 1
—— 7 M) > —1 >
2¢tmin {1,m?} " (m, M) = ne= 2tmax{17Mt}Zt

where x € [m, M] and ¢t > 0.

(4.7) (m, M),
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Utilising (2.25) and (2.26) we can define
(4.8) Wi (m, M) =

t 2 t 2
max (1:””]) ,(MMfl) } ifm<1< M,

. N2
(Agwfl) ifl<m
and
(1;},4‘)2 if M <1,
(4.9) wy (m, M) ::W(mt,Mt): 0ifm<1<M,

oo if 1 <m.
By (2.24) we have for y = z' € [m!, M*] and ¢t > 0 that

—xt
t

1 1 1
(4.10) 57 max {1, M*} Wy (m, M) > Inz — > 5 min {1,m"} wy (m, M),

where x € [m, M] and t > 0.

Theorem 5. Let A, B be two positive invertible operators and the constants M >
m > 0 with the property (3.8). Then for any t > 0 we have
1 -1
YR Tram—— M)A > A|B) - T, (A|B) (Af;B) " A
st Ly Ut (MDA 2 S(AIB) T, (AIB) (42,B)
1

_ M)A
2tmax{17Mt}ut(m’ )4,

%max (LMY W, (m, M)A > S(AB)— T, (AB) (At,B) " A

Y

1.
Emln{l,mt}wt(m,M)A,
1
—7 M)A > T:(A|B)—-S(A|B
s A A 2 TL(AIB) - S (AlB)

1

— M)A
2t max {1, Mt}zt (m, M)

and
1
%max{l,Mt}Ut(m,M)A > T;(A|B)— S (A|B)
1 .
> %mln{l,mt}ut(m,M)A.

The proof follows by the inequalities (4.4), (4.5), (4.7) and (4.10) in a similar
way as the one from the proof of Theorem 3 and we omit the details.

For t = 1, t = 1/2 and t = 2 one can obtain some particular inequalities of
interest, however the details are not provided here.
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