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JENSEN-OSTROWSKI INEQUALITIES AND INTEGRATION
SCHEMES VIA THE DARBOUX EXPANSION

PIETRO CERONE, SEVER S. DRAGOMIR, AND EDER KIKIANTY

ABSTRACT. Using Darboux’s formula, which is a generalisation of Taylor’s
formula, we derive some Jensen-Ostrowski type inequalities. Applications for
quadrature rules and f-divergence measures (specifically, for higher-order x-
divergence) are also given.

1. INTRODUCTION

In 1938, Ostrowski proved the following inequality [13]: Let f : [a,b] — R be
continuous on [a, b] and differentiable on (a,b) such that f': (a,b) — R is bounded
n (a,b), e, ||[f'l == sup |f(t)] < oco. Then
te(a,b)

2
1 o — atb
szt <b—2> 1]l (= a),

for all & € [a,b] and the constant § is the best possible.

Ostrowski’s inequality has been developed for non-differentiable functions. In
particular, when x = (a + b)/2, this inequality gives an error estimate to the
midpoint rule: f; f@)dt = (b—a)f (2£2).

The midpoint rule is the simplest form of quadrature rules. Derivative-based
quadrature rules have been developed due to the larger number of parameters which
contributes to its precision and order of accuracy [2]. Wiersma [17] introduced a
quadrature rule that is similar to the Euler-Maclaurin formula.

In Wang and Guo [16], the Euler-Maclaurin formula, or simply Euler’s formula,
is derived from Darboux’s formula. Darboux’s formula also generalises Taylor’s
formula (with integral remainder).

€
b
(1.1) \f(x) =l AL

Proposition 1 (Darboux’s formula). Let f(z) be an analytic function along the
straight line from a point a to the point z, and let p(t) be an arbitrary polynomial
of degree n. Then,

(1.2) P (0){f(2) - fa)}

n

=D (D)™ Hz = a)™ e (W) (2) = " (0) £ (a)}
m=1

+(=1)"(z —a)"*! /0 p(t) [ Va+ (2 — a)t] dt.
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Taylor’s formula (with integral remainder) is a special case, with ¢(t) = (¢t — 1)"
[16].
In [5], inequalities are derived by utilising Taylor’s formula:

e +§: Co 0@ L [y s

These inequalities also generalises Ostrowski’s inequality and Jensen’s inequality
for general integrals (and are referred to as Jensen-Ostrowski type inequality). In
particular, an Ostrowski type inequality in [5, p. 68] gives the following quadrature
rule

n Z OV (g — C)EHL
(1.3) /“f b-a)fQ+ Y (o= — =9
k=1

(k+1)!
for ¢ € [a,b] and the error estimate is given by

(a2 s b=

||f(n+1) ||[a,b],oo (n T 2)|

In this paper, we generalise the inequalities given in [5] by considering Darboux’s
formula in place of Taylor’s formula. We consider the application of these inequal-
ities to obtain numerical integration schemes. We also present the applications for
f-divergence measures, specifically for the higher-order y-divergence.

2. PRELIMINARIES

This section serves as a reference point for the facts concerning Euler’s formula
as well as Jensen-Ostrowski type inequalities.

2.1. Euler’s formula. The explicit expression for the Bernoulli polynomial is

(2.1) = ki ( )gokw

where

n—1

1
o =1, an 1;:0 IR 0 (n=>2)

The Bernoulli numbers are given by

1 _
(2.2) po=1 p1=—5, pu= (=1 "' By, and @op1 =0 (k> 2).
The first ten Bernoulli numbers and the first seven Bernoulli polynomials are
given in the following:

1 1 1 1 5

By == By= —, Bs=— —— =

76 27300 T 4 17 30 >~ 66
691 _ T, 3617 43867 174611
6797300 7T @ 87 5100 707 98 0 0T 330
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1
po(r) =1, @i(z) =2~ 5, @a(v)=2" -2+,
1 ? 3 1 0 1
— -1 = — 3_ 2,2 - — _2 =
p3(x) = w(z—1) (= 5 L E AR p4(z) = 2 — 22° + 22 30"
1 1 5 1
pala) =afa—1) (2 3) (-2 - 3) =2 = Jot 4 2a L
1 1
@6()*x6*3x5+§$4*51‘2+5.

Choosing the Bernoulli polynomial ¢,,(¢) in place of ¢(t) and replacing n by 2n
in Darboux’s formula (1.2) gives Euler’s formula:

23 )~ f@
Zz—a Z —a Bl
LI e Z Eor B e - 1)

(Z _ CL)2n-|—1

(2n)! /0 Pon(t) T ((1 = t)a + t2) dt.

2.2. Jensen-Ostrowski type inequalities. Jensen-Ostrowski type inequalities
are introduced by Dragomir in [8] and has been further developed in the following
papers: [3], [4], [5], [8], [9], and [10]. In what follows, we recall a general form of
the Jensen-Ostrowski inequalities [5].

Let (€2, A, 1) be a measurable space with [, du = 1, consisting of a set 2, a
o-algebra A of subsets of 2, and a countably additive and positive measure p on
A with values in the set of extended real numbers. We have the following result:

Proposition 2. Let f : I € R — C (T interval of R) be such that f(™ is absolutely
continuous on I and a € I. If g : Q — I is Lebesgue p-measurable on 2, f o
g, (g—a), fO (1 =s)a+sg) € LI, p) for all k € {1,...,n+1}, and s €
[0,1], then we have

k
1 n
|/fogd,u fla Zf(k) / k:!) dﬂkml)!/ﬂ(ga) Hdﬂ

S(n+1</ Ig—aI"“Hf”“) (1—€)a+Lg) - AH[M dﬂ)

arilllg —a" ! ||Q,ooH LA (=0 a+bg) = Mgy o H :

)

n+1
< el lg —al || [IF+D (1 =0 a+tg) - )‘H[o,l].,oo H 7
< .q
p>1, % +1=1
el = al™ | £+ (L= 0+ £9) = Ay ﬂ ’
Q,00
for any A € C.

Here (and throughout the text), ¢ denotes the identity function on [0, 1], namely
L(t) =t, for t € [0,1]. We also use the notation

p
(/|k )P du(t ) b1 ke L@ )

1kllop ==
es8 Sup k()] p=00, k€ Loo(Q, p);
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and

(/ 7(s) |pds)1/p, p>1, f e L(0, 1))

esssup |f(s)], p=o00, f € L([0,1]).
s€[0,1]

I1fll0,17, =

Inequalities of Jensen and Ostrowski type are obtained by setting x = fQ gdu and
A = 0, respectively, in Proposition 2.

Proposition 3. Under the assumptions of Proposition 2, we have the following
Ostrowski type inequality:

(2.4) ‘/Qfogdu—f Zf’“) /gko

15 / 9= d.
Q

St

We also have the following Jensen type inequality:

‘/Qfogdu—f(/ﬂgdu>—if(’“) (Agdpa)/ﬂWdu
Lol

du.
3. IDENTITIES

(2.5)

S +1) il

Throughout the paper, we consider the measure space (€2, A, u) with [, dp =1,
consisting of a set €2, a g-algebra A of subsets of A, and a countably additive and
positive measure p on A with values in the set of extended real numbers.

Lemma 1. Let f : I € R — C (I interval of R) be such that f(™ is absolutely
continuous on I and a € I. Let o(t) be an arbitrary polynomial of degree n.
If g - Q — I is Lebesque p-measurable on Q, fog, (9—a)™, (g—a)™ (f™ o
g), fOTY((1—t)a+tg) € L(Qp) for allm € {1,...,n+ 1}, and t € [0,1], then
we have

(3.1) /fogdu £(0) = Pagp(@,A) + R g (a, V),

for all A € C, where P, ,(a,\) = P, ,(a,\; f,g) is defined by

(3.2) P ,(a,N)

n

= — (—1)’”‘1{@‘"‘m)(l)/g(g—a)m(f(m)og)du

—a)™ (=1)"A ' _ o)t
=) dﬂ}ﬂp(n)(o)/o so(t)dt/Q(Q )" dp,
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and Ry, ,(a,\) = Ry ,(a, X; f,g) is defined by

(3.3) R, ,(a,N)
= 0 Lot ([ e [0 - a1 ] )

- <—1>”@(%<0) / 0 / (9 ([£11 — t)a+ 0] A] d)

Proof. From Proposition 1, we have

1 - m— m n—m m
[(z) = fla) = S0<n>(0)mZ:1(—1> Nz = o)™ (et (1) ) (2)
n—m m )‘(_1)”(2 B a)n+1 !
—pm=m)(0) £ (a)} + 20 (0) /Ocp(t)dt
—1)"(z —a)"tt 1
4 1)@(@)(0)) /Oga(t) [f(”“)[(lft)athz}f)\} dt.

By replacing z with ¢(t) and integrating on 2, we have

/Qfogdu—f(a)

1 - - n—m m m
- m;(—l)m 1{90( )(1)/Q(g—a) (f'™ o g)dp

0@ [ ara + S e [ - arta

+;(—n)1()g) /Q(g —a)"*t (/01 o(t) [f“l“ [(1—t)a+tg) — )\] dt)

The last equality in (3.3) follows by Fubini’s theorem. O

Lemma 2. Let f : I € R— C (I interval of R) be such that f™ is abso-
lutely continuous on I and a € I. Let pan(t) be the Bernoulli polynomials. If
g : Q — I is Lebesgue pu-measurable on 0, fog, (g—a)™, (g—a)™ (f0™ o
g), fEt) (1 —t)a+tg) € L(Q,p) for allm € {1,...,2n+ 1}, and t € [0,1],
then we have

(3.4) / Fogdi— f(a) = Pa(a,A) + Ru(a, \),

for all X € C, where P,(a,\) = Py(a,\; f,g) is defined by
35 Ry = [ Qw )+ 1 o) dn

/Q O (38 0 g — £58)(0)) dp

k=1

+A/O <P2n()d’5/ﬂ(g_(a)2n+1du

2n)!
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and R, (a,\) = Ry(a, \; f,g) is defined by

— q)2nt1 1
Roey) = [ e~ a 1)~ A at]

1 _ )2+l
(3.6) - /O won(t) /Q W {f@”“)((l—t)athg)—)\} dyu dt.

The proof follows by the Euler’s formula (2.3) and similar arguments to those in
the proof of Lemma 1. We omit the proof.

Remark 1. Recall that By = ¢ and @2(t) = t?—t+£; and note that fol wa(t)dt = 0.
Take n = 1 in Lemma 2, we have

(3.7) Afwmhf@

12
+/Q (9_2“)3 [/01 <t2—t+é> (£ —t)a +tg) — N dt| dpu.

_[l=a) / 1 20 p7 d
_/QT[f(a)+f og] du——/g(g—a) [f"og—f"(a)]du

4. JENSEN-OSTROWSKI INEQUALITIES

Utilising the identities obtain in Section 3, we derive some inequalities of Jensen-
Ostrowski inequalities.

Theorem 1. Let f : I € R — C (I interval of R) be such that f is abso-
lutely continuous on I and a € I. Let ©(t) be an arbitrary polynomial of degree
n. If g : Q — I is Lebesque p-measurable on Q, fog, (g—a)™, (g—a)™ (f™ o
g), fOTY((1—t)a+tg) € L(Qp) for allm € {1,...,n+1}, and t € [0,1], then
we have

@) | [ sogdu- @ P

1
[20] (/ :
< dt ([ 1o = al™ I fnringllio 0 4
(A MO s i,

(P P ST

+1
([ 0 ) ] W=l st Ve
~ o le™(0)] p>1, LT+i=1,

q
H lg — a" ™ ||Ql H | frt1,9(a )\)”[0,1],00”9’00 ’

for any X € C, where foi14(a,\) = fPHD[(1— ) a+ Lg] — \. Here, Py, ,(a,N) is
as defined in (3.2).
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Proof. Taking the modulus in (3.1), we have

‘/fogdu (@)= Pl )

SW / |so<t>|( / \g—aw“\f<"+1>[<1—t>a+tg]—A\ du) dt

1
)| dt | pemg tg] AH d
< |/ o)l (/ g —al"™" || f —Oattol = Al

for any A € C. We obtain the desired result by applying Hélder’s inequality. ([

Corollary 1. Under the assumptions of Theorem 1, we have

(4.2) ‘/fogdu fla) = Poy(a, 0)‘

<(/ 1 Lo ) LD ([ 1= ar ).

We also have the following Jensen type inequality

e
S(/ ety ) 150l </ ‘ o]

Here, P, ,(a, ) is as defined in (3.2).
Proof. Let A =0 in (3.1), and take the modulus to obtain

(4.3)

+1
du) .

’/fogdu fa) - n¢<a0>\

< /1 hii() dt (/ lg — a|" ™t Hf(n+1) [(1-20)a +£g]H[071]m du) )

For any t € 2 and almost every s € [0, 1], we have

[FOTD((1 = s)a+sg(t) | < esssup [F D (w)] = [ fOTD ) 1 oo
ucl

Therefore, we have

[ @ —nateg| < essup [ (- s)atsg(0) |
[0,1],00 s€[0,1], teQ

(4.5) < |

The desired inequality follows from (4.4) and (4.5). O

Utilising (2.3) and applying similar arguments to those in Theorem 1 and Corol-
lary 1, we have the following results. We omit the proofs.

Theorem 2. Let f : I C R— C (I interval of R) be such that f) is abso-
lutely continuous on I and a € I. Let po,(t) be the Bernoulli polynomials. If
g : Q — I is Lebesgue p-measurable on Q and fog, (g—a)™, (g—a)™ (f™ o
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g), et (1—t)a+tg) € L(Q,p) for allm € {1,...,2n+1}, and t € [0,1],
then we have

/ fogdu— f(a) - Pa(a, \)
Q

1
lan (t)] / 2n41
< dt [ |g— . A d
< [t [ o= o g0l

(4.6)

llg = P g [Mfon sl Mg,

2n+1
_ </1 |S02n(t)| dt> H|g — a‘ n+ HQ,P HHf2n+1,g((la)\)||[071]700H97qa
“\Jo (@2n) SHe=1Lp>1,

|||9 - a\anHQ,l H||f2n+179(a’ >‘)”[0»1]’°°Hsz,oo’

for any X € C, where foni1.4(a,\) = "D (1 =) a+ Lg) — \. Here, Py(a, \) is
as defined in (3.5).

Corollary 2. Under the assumptions of Theorem 2, we have

(4.7) \ [ 1o 9= 1(@) - Pufa0)

1
0 ) v ([ 1y oot )
< </0 (2n)] dt) (FaSskansd| /Q|g 2e+l g )

frest () ()
([ B [ ool )

Here, P,(a,)\) is as defined in (3.5).

and

(4.8)

Remark 2. Set n =1 in Corollary 2, we have

[ rogau— s~ [ =9 (p(a) 4 0 g] di
Q Q

(4.9) .

1

3/

27 11 " ”fWHIOO/ 3
—a og— a)ldp| < ——— —al’du.
@- @l og - @l < = g apa
The following terminology introduced in [8] will be required for alternate Jensen-
Ostrowski inequality results. For «,T" € C and [a,b] an interval of real numbers,
define the sets of complex-valued functions [8]

Uap (7, 1) = {h : [a,b] — C|Re {(I‘ — h(t))(h(t) — 7)} >0 for ae. t € [mb]}

and

+ T
A[mb](fy,F) = {h : [a,b] — (C| ’h(t) - ,YT

1
< i\F—y\ for a.e. t € [a,b}}.

The following representation results may be stated [8].

Proposition 4. For any v,I' € C and v # I, we have
() U[(Lb] (v,T) and A[%b] (7,T) are nonempty, conver and closed sets;
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(“) U[_a,b} (7) F) = A[a7b] (’Ya F); and
(i) Ulap)(7.T) = {h : [a,b] = C [(Re(T') — Re(h(t))) (Re(h(t)) — Re(7))
+ (Im(T") — Im(h(t))) (Im(h(t)) — Im(v)) > 0 for a.e. t € [a,b]} .

We have the following Jensen-Ostrowski inequality for functions with bounded
higher (n + 1)-th derivatives:

Theorem 3. Let f : I € R — C (I interval of R) be such that f) is absolutely
continuous on I and a € I. For some v,I' € C, v # I, assume that fort) ¢
Udap (1,T) = Ay (v,T). If g : Q@ — I is Lebesque p-measurable on €, f o

g, (g—a)", (g—a)" (f0™ og), FOV((1—t)a+tg) € L(Qp) for all m €
{1,...,n+ 1}, and t € [0,1], then

(4.10) y/fogdu fa) n¢<a”;I)‘

1
I'—1l / nt1 ()]
§ — [ lg—4 du/ dt.
2 Jo [¢™(0)]
Here, P, ,(a,\) is as defined in (3.2).

Proof. Let A= (y+71")/2 in (3.1), we have

/fogdu fla) — w(av—;F>

= 0 g oot ([ e [ttt - 55 ar)

Since f+1) € Ap, 4 (v,T), we have

v+T

(111) FO (1~ t)a +1g) ~ L] < 50—

for almost every ¢ € [0,1] and s € Q. Multiply (4.11) with |¢(¢)| > 0 and integrate
over [0, 1], we obtain

Aﬂww|

for any s € Q2. Now, we have

L/fogdu fa) - nw(a”ﬁgr>

1
T Qm—aWH(/’wunﬁw“wu—oa+w] ] )

T — ] / +1
< lg—al” du Iso )| dt.
2/ (0)]

This completes the proof. O

r
f("+1)((1_7§)a_|_1fg)—L dt < |F ’Y|/|<P )| dt,

Similarly, we have the following via Euler’s formula (2.3) and Lemma 2:

Theorem 4. Let f : I € R — C (I interval of R) be such that f is absolutely
continuous on I and a € I. For some v,T' € C, v # T, assume that f*"+1) ¢
U[a,b] (v,T) = A[mb] (v,T). If g : Q — I is Lebesgue p-measurable on Q and f o
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g (g—a)", (g=a)" (f™ o g), fEV((1—t)a+tg) € L(Qp) for all m €
{1,...,2n+ 1}, and t € [0,1], then we have

(4.12) ‘/fogdu fla) - ( W;F)‘

el 2n+1

Here, P,(a, ) is as defined in (3.5).

5. QUADRATURE RULES

In this section, we present quadrature rules based on the inequalities presented
in Section 4. Composite rules using any of the given rules (in this section) may be
stated by the usual manner of breaking up the interval [a, b] into some number n
of subintervals, computing an approximation for each subinterval, then adding up
all the results.

Let g : [a,b] — [a,b] defined by g(¢t) =t and u(t) =t/(b— a) in Corollary 1. We
have the following quadrature rule:

’ _ - _1\ym—1 (‘0(”_"0(1) ’ _ o \m g(m)
[ i~ p-ar@+ e {@(n)m) |

Q

) e [
o (p(n)(o) f( )<x)/a (t—.’l?) dt}
n (n—m) b
_ (b—a)f(x)erZ_l(—l)m_l{90@(”)(0()1) | =
‘P(n_m)(o) - (b _ x)m-i—l _ (a _ m)m—i—l
oy 1o ml )b

with the following error estimate:

1
o (t)] n n
[ O ([t ) 1

1 t x_an+2+ b—l’n+
_ / 0] dt(( )"+ (b — ) >||f<n+1>||[a,b],w
o le™(0)] 2

for x € [a, b].
Similarly, Corollary 2 gives us

b
3 | F0d= b= a)f@) = 516-0)70) - (a= /()

I'(x) (b—2)* = (a—2x) /a kBk( k)! =) [FPR () — @O ()] dt

1 ! (x — a)2n+2 +(b— z)2nt?
N (2n+1)
271)' (A |<p2n(t)‘ dt) Hf ”[a,b],oo o 12 ,
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for all x € [a, b], thus we have the following quadrature rule:

[ H0a = - af@ g (0= 050 - @)

for x € [a, b].
When n = 1, we have

b
(5.1) ‘2 [ H0dt = 0= arf@) - S (- 2)5(0) - (@ 0)f(a)
fa

) 2 2 1 2 ¢l 2 pl
— =2 —(a—2)* ] + SO -2)*/'(0) = (a —2)*f'(a)]
f”(l‘) 1 " 4 4
g =) = (o= o)) < el e el — @)+ (= 2",

for « € [a, b], thus we have the following quadrature rule:

b 3 2
[ r0a = Ze-af@+ (b= 050 - @-0)f)

o f1@) [0 -2~ (@ 2] = 5516~ 227/ 6) ~ (@~ 2)/'(@)]

]‘ "
o M@= o)~ (a - ).

6. APPLICATIONS FOR f-DIVERGENCE

Assume that a set ) and the o-finite measure p are given. Consider the set of
all probability densities on p to be

P {ilp: 0o Rp0 20, [ pwauin =1},

We recall the definition of some divergence measures which we use in this text.

Definition 1. Let p,q € P and k > 2.
1. The Kullback-Leibler divergence [11]:

(6.1) Dt (p.0) = [ (01 [zgﬂ dn(t). pacP.

2. The y2-divergence:

(6.2) Do) = [ o0 [@8) 1] du(t), pacP.
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3. Higher order x-divergence [1]:

k
63 Dulpa) = [ Wdu(t)— L (45 1) woaun.

k

Iq (t) — p(®)| / q(t)
6.4) D x(p,q = —= — 1| p(t)du(t).
( ) Ix| ( ) pk 1( ) ) o p(t) ( ) ( )
Furthermore, (6.3) and (6 4) can be generalised as follows [12]:

—a k k
63) Dealpa) = [ Wduu): / (q(”—) p(t) du(t),

p p(t)
(6.6) Dyyjea(pra) = chm(w: / ]‘ﬁgg—akm)dum.
A. Csiszér f-divergence [6]:
(6.7) It (p,q) == /Qp(t)f [ng du(t), p,q€P,

where f is convex on (0,00). It is assumed that f(u) is zero and strictly convex
at u=1.

Remark 3. (1) We note that when k = 2, (6.3) coincides with (6.2).
(2) The Kullback-Leibler divergence and the y2-divergence are particular in-
stances of Csiszar f-divergence. For the basic properties of Csiszar f-
divergence, we refer the readers to [6], [7], and [15].

Example 1. (i) Let f: (0,00) — R be defined by f(t) = —tlog(t), and f'(t) =
log(t) + 1. We have

Iy (p.q) —/Qp(t)zglog [Zg;] du(t) :/Qq(t) log {ZE?H du(t) = Drr(q,p),
and
Iy (p,q) = /Qp(t) {log [pg] +1} dp(t)
= —/Qp(t) log {th)} du(t) + 1= —Dgr(p,q) + 1.

t
(ii) Let g: (0,00) — R be defined by ¢(t) = —log(t) and ¢'(t) = —1/t. We have

Iy (p,q) = —/Qp(t) log [28] dp(t) Z/Qp(f) log Bgﬂ du(t) = Drr(p, q),

and

2
Iy (p,q) = —/QZ((;)) du(t) = — [Dy2(q,p) + 1] .

Note the use of the following identity:

2 2
68 Dulan = | q<t>[(§g§) 1] ant) = [ 2 (o) 1.
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Proposition 5. Let f : (0,00) — R be a convex function with the property that
f(1) = 0. Let ¢(t) be an arbitrary polynomial of degree n. Assume that p,q € P
and there exists constants 0 <r <1 < R < oo such that

(6.9) r < ig <R, forp-a.e te.

Ifa € [r, R) and f™ is absolutely continuous on [r, R], then we have the inequalities

1 - m—1 n—m m
I.0) = @)+ Sy 2 0" {0 @D 0

< </01 M)t)l)| dt) £ )00 Dy (0 0)-

™) (0
Proof. We choose g(t) = ¢(t)/p(t) in Corollary 1, and note that [, p(t)du = 1. The
proof is straightforward and therefore we omit the details. O

Proposition 6. Let f : (0,00) — R be a convexr function with the property that
f(1) =0. Let pa,(t) be the Bernoulli polynomials. Assume that p,q € P and there
exists constants 0 <r <1 < R < oo such that

q(t)
(6.10) r < o) <R, forp-a.e. te.

Ifa € [r, R] and f®™ is absolutely continuous on [r, R], then we have the inequalities

i) - 5@ - L0 -0 - 5 [aor (B9 au+ 51000

2 ) ) p )
"y —an(n2k
B [ e (25 e
=1
( t) ||

k
([

Proof. We choose g(t) = q(t)/p(t) in Corollary 2, and note that [, p(t)du = 1. The
proof is straightforward and therefore we omit the details. O

(r,R],00 D) [20+1,0(P, 4),

Corollary 3. Let f : (0,00) — R be a convex function with the property that

f(1) = 0. Assume that p,q € P and there exists constants 0 < r <1 < R < o0
such that r < qgg < R, for p-a.e. t € Q. Ifa € [r,R] and I is absolutely
continuous on [r, R], then we have the inequalities

i) - 5@ - L0 -0 - 5 [aor (43) aut 510

2 p(t)
1 (q(t) — ap(t))? q(t) f"(a)
+E p(t) f (p(t)) dﬂ 12 DXQ,a(paQ)‘
1" W, 51,00 Dixl?,a (0, @)

18\f

Proof. We choose g(t) = q(t)/p(t) in (4.9) and note that [, p(t)du = 1. The proof
is straightforward and therefore we omit the details. (I
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Example 2. We consider the convex function f : (0,00) — R, f(t) = tlog(t). We
have

() =log(t) +1 and fE(t) = (—1)k=*V(k-2)1, fork>2.

Thus, ||f(k)||[T)R] = r~(F=D(k — 2)!. Recall from Example 1 Part (i) that I(p,q) =
Dk (q,p). We also have

Therefore, Proposition 5 gives us:

n (n—m)
610 |Dicclap) - atosta) - o 3 (m -2 50 D)
m=1
)" (1)Dy 1 (a0) |
(=D ([ _Lett)
<t () e <>dt)DX'"*““<p’q)'

In particular, when a = 1, we have

n (n—m)
(6.12) Dir(a,p) = ) (m—2)! {wam (p.q)

— ¢(™(0)

m—1 (n—m)(l)
1) *"@(n)() Dxm<q,p>}]

n — 1
< (/ Iw(”) dt) Diyjn+1(p; )-

We also have

fyoor (3) o - (bg(iﬁ%) )
~ oo (49 i it
g

= DKL(q p)+1,
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and from Example 1 Part (i) that I (p,q) = —Dk1(p, q)+1. Therefore, Proposition
6 gives us

log(a) + 1 1 1 aDgkr(p,q) a
BT _a)~-D e SV VI
5 (1—a) = 5Dxr(a:p) - 5 5 +3

kBk —2)! l/Wdu(t)_%wH
Q

Dk1.(q,p) — alog(a) —

-
-y

2k—1 2%k—1
— > (t) a

= |Dkr(g,p) — 5 log( Ja+1)+(a—1) - %(DKL(q,p) +aDkr(p,q))

1 Bk [ QkD szpa(p,q)H

gz ok | Do (0P) - = oae
k=1

(2n—1)! /1 |p2n(t)]
< Dy, j2nt1
= r2n 0 (QTL)' dt |x|2n+ ,a(p7 Q)
_ /1 P2 @) )\ Pixtzn+1.a ()
0o 2n r2n ’

In particular, when a = 1, we have

(6.13)

Di1(q,p) — Dkr(p:q Z = [Dye(a,p) = Dy (. q)]‘

1
Dy, 2n+1
< (/ |2n (t)] dt) I |2n+ (p,Q).
0 2n r2n

We note that

(at) ~ ap(t)? 0 (40 [ )~ ap(t)?
/ / () ) = | 0

p(t)
2
= 1-2a+ad? /Q Z((?) du(t)

= 1-2a+ QQ(sz(q,p) +1)
= a’Dya(q.p) + (1 —a)”.
Note the use of (6.8). Thus, Corollary 3 gives us

‘DKL((LP) - %k’g(a)(@ +1)+(a—1)— %(DKL(‘LP) +aDkr(p,q))

b4 [ *Dy2(g,p) + (1 —a)? — %DXQ,a(p’ Q)} ’

12
< Digpalp:9)
18v/3r2
In particular, when a = 1, we have
1 Dyyiz(p, @)
6.14 D - D — D, —D,» X .
(6.14) k1(a,p) = Dicr(p.q) + ¢ [Dy2(4,p) = Dy (p,q)]‘ < o3

Example 3. We consider the convex function g : (0,00) — R, g(t) = —log(t). We
have

g® () = (=)t F(k —1)!, for k>1.
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Thus, Hg(k)”[nR] = r~*. From Example 1 Part (ii) , we have I,(p,q) = Dk (p,q).
Proposition 5 gives us

(6.15)  |Dkr(p.q) + log(a Z": {(na:)(O)Dxm,a(p, q)
—90(”‘"’)(1)/Q <1 - “Et;) p(t) du}‘
= r:—;—l ( |(p(n )DXI"+1
In particular, when a = 1, we have
(6.16) Dkr(p,q) — (,0(%)(0) zn: (m —1)! {so("‘m)(O)Dxm (p.q)
—so("‘m)(l)/Q (1 — ];Eg)mp(t) duH
< 75 ([ oty ) P
We have

and Iy (p,q) = —[D,2(q,p) + 1] from Example 1 Part (ii). Proposition 6 gives us

(6.17) |DKL<p, g) +log(a) + —(1—a) + ~ — 4(Dya(a.p) + 1)

2a 2 2
n kBk - ai ) i
1; /Q (1 t)) p(t) du a2k D2k o(p, Q)] |

Dy, j2n+1 a( ,q)
S(/ |p2n (t |dt> B r2n+l :

In particular, when a = 1, we have

(6.18) ‘DKL(pa q) — %Dﬁ (¢,p)
- n (—1)kBk _M 2k B
S |L(-5) row DX”‘“””H

Dy, 2n+1(p, q)
Hixn AP, 9)
</ [pon (t |dt> a1 .

Corollary 3 gives us

(6.19) Dgr(p,q) +log(a) + %(1 —a)+ % — =(Dy2(q,p) +1)

1 p(t)\’ 1
1 /. (1 - aq(t)) p(t)dn— 755 Dx2.a(p, )

< D|x\3,a(pa Q)
VAT I




JENSEN-OSTROWSKI INEQUALITIES 17

In particular, when a = 1, we have

2
(6.20) DKL(p,q)—ngz(q,p)Jr% —1+/Q() p(t) dp — Dy2(p, q)
Dyy3(p,q)
= 9v/3r3

‘We note the use of

A(l_{;égyp(t)dﬂ - /Q p(t)_QWJF(M 2p(t) dp

o \q(t)
2
— 1o+ | (zg?) p(t) dp
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