
SOME EXTENDED MEANS AND HERMITE-HADAMARD

INEQUALITY FOR r-PREINVEX FUNCTIONS ON INVEX SET

DAH-YAN HWANG1 AND SILVESTRU SEVER DRAGOMIR2,3

Abstract. The necessary and sufficient conditions of weakly r-preinvex func-

tions on invex set are obtained and some generalizations of Hermite-Hadamard
inequality for weakly r-preinvex functions on invex set are established. From

the obtained results, some better extended mean inequalities are also given.

1. Introduction

The classical Hermite-Hadamard inequality for convex functions states that if
f : [a, b]→ R is convex, then

1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
.

The generalizations of Hermite-Hadamard inequality to the integral power mean of
positive convex and r-convex functions on an interval [a, b] are obtained in [5, 12,
13, 14, 19, 21]. The concept of r-convexity plays an important rose in statistics, see
[16]. In [15], Sun extended the Hermite-Hadamard inequality that subsumes the
relation between two-parameter mean and positive, twice-differentiable and convex
function on [a,b].

In [6], Hanson introduced the invex functions as a generalization of convex func-
tion. Hanson’s result inspired a great deal of subsequence work which has greatly
found the role and applications of invexity in nonlinear optimization and related
fields. In[4], Ben-Israel and Mond introduced the concept of the preinvex function
and showed that preinvexity implies invexity. The properties of preinvex function
in optimization, equilibrium problems and inequalities of variation were studied by
Noor [9, 10] and Weir and Mond [18]. Antczak [1, 2] introduced the concept of
r-invex and r-preinvex function and give a new method to solve nonlinear mathe-
matical programing problems. In [22], Zhao et al., obtained a characterization for
r-preinvex function. In [11], Noor gave some Hermite-Hadamard inequality for the
preinvex and log-preinvex functions. Further, in [17], Wasim Ui-Haq and Javed
Iqbal introduced Hermite-Hadamard inequality for r-preinvex functions.

The main purposes of this paper are to generalize the Hermite-Hadamard in-
equality that subsumes the relation between extended means and weakly r-preinvex
functions on invex set. The main methods are, via characteristic of weakly r-
preinvex functions on invex set, to establish the necessary and sufficient condition
of weakly r-preinvex functions on invex set. From the obtained results, we will get
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some new extended two-parameter mean inequalities for weakly r-preinvex func-
tions on invex set. Also, we noted that the obtained results are better than the
results given in [11, 17].

2. Preliminary definitions and results for weakly r-preinvex
functions

We shall also use a definition of an invex set with respect to η.

Definition 1. Let K ⊂ Rn be a nonempty set, η : K ×K → Rn and u ∈ K.Then
the set K is said to be invex at u with respect to η, if

u+ λη(v, u) ∈ K
for every v ∈ K and λ ∈ [0, 1]. K is said to be an invex set with respect to η, if K
is invex at each u ∈ K with respect to the same function η.

We note that the Definition 1 essentially says that there is a path starting from
u which is contained in K. It is not required that v should be an end point of the
path. If we demand that v should be an end point of the path for every pair u, v
then η(v, u) = v − u, and invexity reduces to convexity. Under this demand, we
have that every convex set is also an invex set with respect to η(v, u) = v − u, but
the converse is not true, see [7, 9].

In [3], Antczak introduced the following definition of an η-path on the basis of
the considerations of the invex sets.

Definition 2. Let K ⊂ Rn be a nonempty invex set with respect to η, u, v ∈ K. A
set Pux is said to be a closed η-path joining the points u and x = u + η(v, u) with
x ∈ K if

Pux := {u+ λη(v, u) : λ ∈ [0, 1]},
and P 0

ux is said to be a open η-path joining the points u and x = u + η(v, u) with
x ∈ K if

P 0
ux := {u+ λη(v, u) : λ ∈ (0, 1)}

We note that if η(v, u) = v−u then the set Pux = Puv = {λv+(1−λ)u : λ ∈ [0, 1]}
is a definition of segment line with the end points u and v.

In [4], Ben-Israel and Mond introduced the class of preinvex function with respect
to η on the optimization theory.

Definition 3. Let K ⊂ Rn be a nonempty invex set with respect to η. A function
f : K → R is said to be preinvex with respect to η, if there is a vector-value function
η : K ×K → Rn such that

f(u+ λη(v, u)) ≤ λf(v) + (1− λ)f(u)

for every u, v ∈ K and λ ∈ [0, 1].

We note that every convex function is preinvex function with respect to η(v, u) =
v − u, but the convese may not always be true.

We begin by recalling some relative definitions about r-preinvex function. The
detailed description of r-preinvex function was given by Antczak in [1]. The defi-
nition of r-preinvex functions is introduced as follows.
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Definition 4. Let K ⊂ Rn be a nonempty invex set with respect to η. A function
f : K → R+ is said to be r-preinvex with respect to η, if there is a vector-value
function η : K ×K → Rn such that

f(u+ λη(v, u)) ≤

{
(λf(v)r + (1− λ)f(u)r)

1
r , if r 6= 0,

f(v)λf(u)1−λ, if r = 0.

for every v, u ∈ K and λ ∈ [0, 1].

Note that 0-preinvex functions are logarithmic preinvex and 1-preinvex functions
are preinvex functions. It is obvious that if f is r-preinvex , then fr is preinvex
function for positive r.

In [8], Mohan and Neogy showed that a differentiable invex function is also
preinvex under the following Condition C.

Condition 1. Let K ⊂ Rn be a nonempty invex set with respect to η : K×K → Rn.
We say that the function η satisfies the Condition C if for any u, v ∈ K and
λ ∈ [0, 1], the following two identities hold.

< i > η(u, u+ λη(v, u)) = −λη(v, u);

< ii > η(v, u+ λη(v, u)) = (1− λ)η(v, u).

Applying Condition C, we have the following Lemma.

Lemma 1. Let K ⊂ Rn be a nonempty invex set with respect to η : K ×K → Rn,
and the function η satisfies the Condition C. Then the following identity holds

(α− β)η(v, u) = η(u+ αη(v, u), u+ βη(v, u))

for every u, v ∈ K and α, β ∈ [0, 1].

Proof. When α = β the identity holds, obviously. We will prove the case α > β.
Now, 0 < 1− β ≤ 1 and 0 < α−β

1−β ≤ 1, by < ii > and < i > in the Condition C, we

obtain

(α− β)η(v, u) =
(α− β)

1− β
η(v, u+ βη(v, u))

= η
(
u+ βη(v, u) +

α− β
1− β

η(v, u+ βη(v, u)), u+ βη(v, u)
)
.

Using < i > in the Condition C again, we get

1

1− β
η(v, u+ βη(v, u)) = η(v, u).

From the above two identities, the desired identity is obtained, immedetely. The
proof of the case α < β is similar. This completes the proof of lemma.

In [20], Yang et. al. gave the following Condition D to discuss the characteriza-
tion of prequasi-invex function.
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Condition 2. Let K ⊂ Rn be a nonempty invex set with respect to η : K×K → Rn,
and let f : K → R be invex with respect to the same η. we say that the function f
satisfies the Condition D if for any u, v ∈ K, the following inequality

f(u+ η(v, u)) ≤ f(v)

holds.

Recall that the integral power mean Mp of a positive function on [a, b] is a
function given by

Mp(f ; a, b) =


[

1
b−a

∫ b
a
fp(t)dt

] 1
p

, if p 6= 0,

exp
[

1
b−a

∫ b
a

ln f(t)dt
]
, if p = 0,

and the power mean Mr(x, y;λ) of order r of positive numbers x, y which is defined
by

Mr(x, y;λ) =

{
(λxr + (1− λ)yr)

1
r , if r 6= 0,

xλy1−λ, if r = 0,

see [7]. In [7, 14], Stolarsky introduces the following mean values E(r, s;x, y) to
generalize the extended logarithmic mean Lp(x, y) and alternative extended log-
arithmic mean Fr(x, y). This is given by E(r, s;x, x) = x if x = y > 0 and for
distinct numbers x, y by

E(r, s;x, y) =
[s
r

yr − xr

ys − xs
] 1

(r−s)

, rs(r − s) 6= 0,

E(r, 0;x, y) = E(0, r;x, y) =
[1

r

yr − xr

ln y − lnx

] 1
r

, r 6= 0,

E(r, r;x, y) = e
−1
r

[xxr

yyr

] 1
(xr−yr)

, r 6= 0,

E(0, 0;x, y) =
√
xy.

Clearly, for two positive numbers x, y, E(p + 1, 1;x, y) = Lp(x, y) and E(r +
1, r;x, y) = Fr(x, y).

In order to obtain our results, we will introduce the following new definitions.

Definition 5. Let K ⊂ Rn be a nonempty invex set with respect to η. A function
f : K → R is said to be weakly preinvex with respect to η, if there is a vector-value
function η : K ×K → Rn such that

f(u+ λη(v, u)) ≤ λf(u+ η(v, u)) + (1− λ)f(u),

for every v, u ∈ K and λ ∈ [0, 1].

A natural idea of weakly r-preinvexity may be investigated via power means.

Definition 6. Let K ⊂ Rn be a nonempty invex set with respect to η. A function
f : K → R+ is said to be weakly r-preinvex with respect to η, if there is a vector-
value function η : K ×K → Rn such that

f(u+ λη(v, u)) ≤Mr(f(u+ η(v, u)), f(u);λ)
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for every v, u ∈ K and λ ∈ [0, 1].

We note that if f is weakly r-preinvex function, then fr is weakly preinvex func-
tion for positive r, and if f is weakly 0-preinvex function, then log ◦ f is weakly
preinvex function. We also note that, in Definition 5 and Definition 6, if f further
satisfies the Condition D, then f is preinvex function and r-preinvex function, re-
spectively.

The extended mean of two-prameters for weakly r-preinvex function on invex
set is defined as follows.

Definition 7. Let K ⊂ Rn be a nonempty invex set with respect to a vector-value
function η : K × K → Rn, let f : K → R+ be an integrable on η-path Pux for
v, u ∈ K, λ ∈ [0, 1] and x = u+ η(v, u). We define the two-prameters mean of the
function f(u+ λη(v, u)) on [0, 1] with respect to λ by

Mp,q(f ;u, u+ η(v, u)) =


[ ∫ 1

0
fp(u+λη(v,u))dλ∫ 1

0
fq(u+λη(v,u))dλ

] 1
(p−q)

, if p 6= q,

exp
∫ 1
0
fq(u+λη(v,u)) ln f(u+λη(v,u))dλ∫ 1

0
fq(u+λη(v,u))dλ

, if p = q.

In particular, when q = 0, denote Mp,0(f ;u, u+ η(v, u)) = Mp(f ;u, u+ η(v, u))
is the integral power mean.

In order to prove our main results, the following properties of weakly r-preinvex
function are necessary.

Proposition 1. Let K ⊂ Rn be a nonempty invex set with respect to η : K×K →
Rn, η satisfies Condition C and u ∈ K, and let f : Pux → R for every v ∈ K,
λ ∈ [0, 1] and x = u+η(v, u) ∈ K. Suppose that r ≥ 0, then f is a weakly r-preinvex
function with respect to η if and only if fr is convex function with respect to λ.

Proof. Let φ(λ) = fr(u + λη(v, u)) for u, v ∈ K, λ ∈ [0, 1], u + λη(v, u) ∈ K, and
r ≥ 0. The first, assume that f is a weakly r-preinvex function with respect to η
and η satisfies Condition C. Obviously, fr is weakly preinvex function with respect
to the same η. Now, we will prove that φ(λ) is convex on [0, 1]. By lemma 1 and
fr is weakly preinvex, given α, β ∈ [0, 1] and for any λ ∈ [0, 1], we obtain

φ(β + λ(α− β))

= fr
(
u+ (β + λ(α− β))η(v, u)

)
= fr

(
u+ βη(v, u) + λ(α− β)η(v, u)

)
= fr

(
u+ βη(v, u) + λ(η(u+ αη(v, u), u+ βη(v, u))

)
(by lemma 1)

≤ λfr
(
u+ βη(v, u) + η(u+ αη(v, u), u+ βη(v, u))

)
+ (1− λ)fr

(
u+ βη(v, u)

)
= λfr

(
u+ αη(v, u)

)
+ (1− λ)fr

(
u+ βη(v, u)

)
(by lemma 1)

for r > 0, and, similarly,

φ(β + λ(α− β))

≤ fλ
(
u+ βη(v, u) + η(u+ αη(v, u), u+ βη(v, u))

)
f1−λ

(
u+ βη(v, u)

)
= fλ

(
u+ αη(v, u)

)
f1−λ

(
u+ βη(v, u)

)
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for r = 0. Therefore, we have

φ(β + λ(α− β)) ≤

{
λφ(α) + (1− λ)φ(β), if r > 0,

φλ(α)φ1−λ(β), if r = 0.

It is proved that fr(u+ λη(v, u)) is convex function with respect to λ.
The second, assume that fr(u + λη(v, u)) is convex function with respect to λ.

We will prove that f(u+ λη(v, u)) is a weakly r-preinvex function with respect to
η. By φ(λ) = fr(u+ λη(v, u)) is convex function with respect to λ, we obtain

φ(λ · 1 + (1− λ) · 0) ≤

{
λφ(1) + (1− λ)φ(0), if r > 0,

φλ(1)φ1−λ(0), if r = 0,

and then

fr(u+ λη(v, u)) ≤

{
λfr(u+ η(v, u)) + (1− λ)fr(u), if r > 0,

fλ(u+ η(v, u))f1−λ(u), if r = 0.

We have f is weakly r-preinvex with respect to η. This completes the proof of
proposition.

Proposition 2. Suppose that assumption in Proposition 1 is satisfied, and further,
let f be continuous on Pux and twice-differentiable on P 0

ux. Then f is a weakly r-
preinvex function with respect to η if and only if

rfr−2(u){(r − 1)[η(v, u)T∇f(u)]2 + f(u)η(v, u)T∇2f(u)η(v, u)} ≥ 0

for r > 0, and

{η(v, u)T∇2f(u)η(v, u)f(u)− [η(v, u)T∇f(u)]2}/f2(u) ≥ 0

for r = 0.

Proof. Let φ(λ) = fr(u + λη(v, u)) for u, v ∈ K, λ ∈ [0, 1], u + λη(v, u) ∈ K, and
r ≥ 0. Applying f is continuous and twice-differentiable weakly r-preinvex function
with respect to η, we obtain

φ′(λ) =

{
rfr−1(u+ λη(v, u))η(v, u)T∇f(u+ λη(v, u)), if r > 0,

η(v, u)T∇f(u+ λη(v, u))/f(u+ λη(v, u)), if r = 0,

and

φ′′(λ) =


rfr−2(u+ λη(v, u)){(r − 1)[η(v, u)T∇f(u+ λη(v, u))]2

+f(u+ λη(v, u))η(v, u)T∇2f(u+ λη(v, u))η(v, u)}, if r > 0,

{η(v, u)T∇2f(u+ λη(v, u))η(v, u)f(u+ λη(v, u))
−[η(v, u)T∇f(u+ λη(v, u))]2}/f2(u+ λη(v, u)), if r = 0,

and let λ→ 0+, we obtain

φ′′(λ) =


rfr−2(u){(r − 1)[η(v, u)T∇f(u)]2

+f(u)η(v, u)T∇2f(u)η(v, u)}, if r > 0,

{η(v, u)T∇2f(u)η(v, u)f(u)
−[η(v, u)T∇f(u)]2}/f2(u), if r = 0.

Applying Proposition 1 for r ≥ 0, we get φ(λ) = fr(u+λη(v, u)) is convex function
with respect to λ and then φ′′(λ) ≥ 0. This completes the desire.
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Conversely, assume that for every u, v ∈ K,

rfr−2(u){(r − 1)[η(v, u)T∇f(u)]2 + f(u)η(v, u)T∇2f(u)η(v, u)} ≥ 0

for r > 0, and

{η(v, u)T∇2f(u)η(v, u)f(u)− [η(v, u)T∇f(u)]2}/f2(u) ≥ 0

for r = 0. We will prove that f is a weakly r-preinvex function with respect
to η. Applying the assumption, we obtain, for every u, v ∈ K, λ in [0, 1], and
u+ λη(v, u) ∈ K,

rfr−2(u+ λη(v, u)){(r − 1)[η(v, u+ λη(v, u))T∇f(u+ λη(v, u))]2

+ f(u+ λη(v, u))η(v, u+ λη(v, u))T∇2f(u+ λη(v, u))η(v, u+ λη(v, u))} ≥ 0

for r > 0, and

{η(v, u+ λη(v, u))T∇2f(u+ λη(v, u))η(v, u+ λη(v, u))f(u+ λη(v, u+ λη(v, u)))

− [η(v, u+ λη(v, u))T∇f(u+ λη(v, u))]2}/f2(u+ λη(v, u)) ≥ 0

for r = 0. By < ii > in Condition C, we get

rfr−2(u+ λη(v, u)){(r − 1)[(1− λ)η(v, u)T∇f(u+ λη(v, u))]2

+ f(u+ λη(v, u))(1− λ)η(v, u)T∇2f(u+ λη(v, u))(1− λ)η(v, u)} ≥ 0

for r > 0, and

{(1− λ)2η(v, u)T∇2f(u+ λη(v, u))η(v, u)f(u+ λη(v, u+ λη(v, u)))

− [(1− λ)η(v, u)T∇f(u+ λη(v, u))]2}/f2(u+ λη(v, u)) ≥ 0

for r = 0. Thus, we have

φ′′(λ) = rfr−2(u+ λη(v, u)){(r − 1)[η(v, u)T∇f(u+ λη(v, u))]2

+f(u+ λη(v, u))η(v, u)T∇2f(u+ λη(v, u))η(v, u)} ≥ 0

for r > 0, and

φ′′(λ) = {η(v, u)T∇2f(u+ λη(v, u))η(v, u)f(u+ λη(v, u+ λη(v, u)))

−[η(v, u)T∇f(u+ λη(v, u))]2}/f2(u+ λη(v, u)) ≥ 0

for r = 0. This implies that φ(λ) = fr(u+λη(v, u)) is convex function with respect
to λ. Applying Proposition 1, we have that f is a weakly r-preinvex function with
respect to η. The proof of propositon is complete.

3. Hermite-Hadamard inequality for weakly r-preinvex function

For simplicity, in this section, we assume that K ⊂ Rn be a nonempty invex set
with respect to a vector value function η : K ×K → Rn. The following theorem is
our main result.

Theorem 1. Let f be a weakly r-preinvex function on invex K with r ≥ 0. Assume
that f be a positive and continuous function on Pax and twice-differentiable on P 0

ax

for every a, b ∈ K, λ ∈ [0, 1] and a < x = a+η(b, a), and let η satisfy Condition C.
Further, let g1, g2 : (0,∞)→ R, g2 be a positive integrable on [m,M ] and the ratio
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g1/g2 integrable on [m,M ], where m and M are the minimum and maximun of f
on Pax, respectively. If g1/g2 is increasing on [m,M ], then

(3.1)

∫ 1

0
g1(f(a+ λη(b, a)))dλ∫ 1

0
g2(f(a+ λη(b, a)))dλ

≤

∫ f(a+η(b,a))
f(a)

xr−1g1(x)dx∫ f(a+η(b,a))
f(a)

xr−1g2(x)dx

for f(a) 6= f(a+η(b, a)), the right-hand side of (3.1) is defined by g1(f(a))/g2(f(a))
for f(a) = f(a+η(b, a)), while if g1/g2 is decreasing, the inequality (3.1) is reversed.

Proof. Let φ(λ) = fr(a + λη(b, a)) for r 6= 0 and φ(λ) = ln f(a + λη(b, a)) for
r = 0. For convenience, let ψ(λ) = f(a+λη(b, a)). Applying f is weakly r-preinvex
function with respect to η, by Proposition 2, we have

φ′′(λ) = rf (r−2)(a){(r − 1)[η(b, a)T∇f(a)]2 + f(a)η(b, a)T∇2f(a)η(b, a)}.

is positive. We give only the proof in the case of r > 0 and g1/g2 being increasing,
since the proof in the other is analogous.

When f(a) 6= f(a+ η(b, a)). The inequality (3.1) is equivalent to

(3.2)

∫ 1

0
g1(ψ(λ)dλ∫ 1

0
g2(ψ(λ)dλ

≤
∫ 1

0
ψr−1(λ)g1(ψ(λ))ψ′(λ)dλ∫ 1

0
ψr−1(λ)g2(ψ(λ))ψ′(λ)dλ

.

We take notation

I =

∫ 1

0

g1(ψ(λ))dλ

∫ 1

0

ψr−1(µ)g2(ψ(µ))ψ′(µ)dµ

−
∫ 1

0

g2(ψ(λ))dλ

∫ 1

0

ψr−1(µ)g1(ψ(µ))ψ′(µ)dµ

=

∫ 1

0

∫ 1

0

g2(ψ(λ))g2(ψ(µ))ψr−1(µ)ψ′(µ)
[g1(ψ(λ))

g2(ψ(λ))
− g1(ψ(µ))

g2(ψ(µ))

]
dλdµ.(3.3)

Replacing λ and µ by each other in (3.3), we get

I =

∫ 1

0

∫ 1

0

g2(ψ(λ))g2(ψ(µ))ψr−1(λ)ψ′(λ)
[g1(ψ(µ))

g2(ψ(µ))
− g1(ψ(λ))

g2(ψ(λ))

]
dλdµ.(3.4)

Now, adding (3.3) and (3.4), we obtain

I =
1

2r

∫ 1

0

∫ 1

0

g2(ψ(λ))g2(ψ(µ))
[
(ψr(µ))′ − (ψr(λ))′

][g1(ψ(λ))

g2(ψ(λ))
− g1(ψ(µ))

g2(ψ(µ))

]
dλdµ.

(3.5)

If the derivative φ′(λ) = (ψr(λ))′ ≥ 0 for all λ ∈ (0, 1), from φ′′(λ) = (ψr(λ))′′ ≥ 0,
we have

1

r

[
(ψr(µ))′ − (ψr(λ))′)

][g1(ψ(λ))

g2(ψ(λ))
− g1(ψ(µ))

g2(ψ(µ))

]
≤ 0.

From (3.5), we get I ≤ 0. This implies that the inequality (3.2) holds and then (3.1)
holds. If the derivative φ′(λ) = (ψr(λ))′ ≤ 0 for all λ ∈ (0, 1), by the argument
similar to that used in the case of φ′(λ) = (ψr(λ))′ ≥ 0, we have I ≥ 0, This implies
that the inequality (3.1) holds. If the sign of derivative φ′(λ) = (ψr(λ))′ can be
changed, and φ(0) < φ(1) and then ψr(0) ≤ ψr(1), there exist a point α ∈ (0, 1)
such that φ′(α) = (ψr(α))′ = 0, and (ψr(λ))′ ≤ 0 for all λ ∈ [0, α] and (ψr(λ))′ ≥ 0
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for all λ ∈ [α, 1]. Therefore, there exist β ∈ (α, 1) such that ψ(0) = ψ(β). Thus,
we get∫ β

0

ψr−1(λ)g1(ψ(λ))ψ′(λ)dλ =

∫ ψ(α)

ψ(0)

xr−1g1(x)dx+

∫ ψ(β)

ψ(α)

xr−1g1(x)dx = 0,

and similarly, ∫ β

0

ψr−1(λ)g2(ψ(λ))ψ′(λ)dλ = 0,

and then we have that inequality (3.1) is equivalent to

(3.6)

∫ 1

0
g1(ψ(λ))dλ∫ 1

0
g1(ψ(λ))dλ

≤
∫ 1

β
ψr−1(λ)g1(ψ(λ))ψ′(λ)dλ∫ 1

β
ψr−1(λ)g2(ψ(λ))ψ′(λ)dλ

.

We take notation

I2 =

∫ 1

0

g1(ψ(λ))dλ

∫ 1

β

ψr−1(µ)g2(ψ(µ))ψ′(µ)dµ

−
∫ 1

0

g2(ψ(λ))dλ

∫ 1

β

ψr−1(µ)g1(ψ(µ))ψ′(µ)dµ

=
1

r

∫ 1

0

∫ 1

β

g2(ψ(λ))g2(ψ(µ))ψr−1(µ)ψ′(µ)
[g1(ψ(λ))

g2(ψ(λ))
− g1(ψ(µ))

g2(ψ(µ))

]
dλdµ,(3.7)

and considering

I21 =
1

r

∫ β

0

∫ 1

β

g2(ψ(λ))g2(ψ(µ))ψr−1(µ)ψ′(µ)
[g1(ψ(λ))

g2(ψ(λ))
− g1(ψ(µ))

g2(ψ(µ))

]
dλdµ,

and

I22 =
1

r

∫ 1

β

∫ 1

β

g2(ψ(λ))g2(ψ(µ))ψr−1(µ)ψ′(µ)
[g1(ψ(λ))

g2(ψ(λ))
− g1(ψ(µ))

g2(ψ(µ))

]
dλdµ.

When (λ, µ) ∈ [0, β]× [β, 1], we have λ ≤ µ and (ψr(µ))′ = rψr−1(µ)ψ′(µ) ≥ 0 for
all µ ∈ (β, 1), and then ψ′(µ) ≥ 0 for all µ ∈ (β, 1), thus

g1(ψ(λ))

g2(ψ(λ))
≤ g1(ψ(β))

g2(ψ(β))
≤ g1(ψ(µ))

g2(ψ(µ))
.

Thus, we have that I21 ≤ 0. By the result proved in case of φ′(λ) = (ψr(λ))′ ≥ 0,
we can get I22 ≤ 0. Therefore, I2 = I21 + I22 ≤ 0, and then (3.6) holds. It follows
that (3.1) holds. If the sign of the derivative φ′(λ) = (ψr(λ))′ can be changed and
ψ(0) ≥ ψ(1). Using the proof similar to case of φ(0) < φ(1), we can derive that
inequaluty (3.1) holds.

When f(a) = f(a+ η(b, a)), we have ψ(0) = ψ(1), and then φ(0) = φ(1). Since
φ′′ = (ψr(λ))′′ ≥ 0, we derive that φ′ = (ψr(λ))′ is continous and increasing for
λ ∈ (0, 1). There exist a point α ∈ (0, 1) such that (ψr(α))′ = 0 and (ψr(λ))′ ≤ 0
for all λ ∈ (0, α), and (ψr(λ))′ ≥ 0 for all λ ∈ (α, 1). Hence

g1(ψ(λ))

g2(ψ(λ))
≤ g1(ψ(1))

g2(ψ(1))
,

for all λ ∈ (0, 1). It follows that∫ 1

0

g1(ψ(λ))dλ ≤ g1(ψ(1))

g2(ψ(1))

∫ 1

0

g2(ψ(λ))dλ.
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Therefore, the inequality (3.1) is valid. This completes the proof of Theorem.

Remark 1. If take g1(x) = xp, g2(x) = xq for suitable real number p, q in (3.1), we
get the following extended mean inequality for the twice-differentiable and weakly
r-preinvex function f on invex set with respect to η satisfied condition C.

(3.8) Mp,q(f ; a, a+ η(b, a)) ≤ E(p+ r, q + r; f(a), f(a+ η(b, a))).

Moreover, if take q = 0 in (3.8), we obtain

(3.9) Mp(f ; a, a+ η(b, a)) ≤ E(p+ r, r; f(a), f(a+ η(b, a))),

If take r = 1 in (3.9), we have

Mp(f ; a, a+ η(b, a)) ≤ Lp(f(a), f(a+ η(b, a))),

and take p = 1 in (3.9), we have

(3.10)
1

η(b, a)

∫ a+η(b,a)

a

f(x)dx ≤ Fr(f(a), f(a+ η(b, a))).

Further moreover, if f satisfies the Condition D, from (3.10), we obtain

(3.11)
1

η(b, a)

∫ a+η(b,a)

a

f(x)dx ≤ Fr(f(a), f(a+ η(b, a))) ≤ Fr(f(a), f(b)).

We note that the inequality (3.11) is a refinement of the inequality given by Wasim
Ui-Haq and Javed Iqbal in [17]. For r = 1 or r = 0 in (3.11), we also note that the
inequality (3.11) is a refinement of the inequality given by Noor in [11].

Theorem 2. Let f be a weakly r-preinvex function on invex K with r ≥ 0. Assume
that f be a positive and continuous function on Pax for given a, b ∈ K, λ ∈ [0, 1]
and a < x = a + η(b, a). Further, let g : (0,∞) → R be a positive integrable on
[m,M ], where m,M as in Theorem (1). If g is increasing on [m,M ], then

(3.12)

∫ 1

0

g(f(a+ λη(b, a)))dλ ≤
r
∫ f(a+η(b,a))
f(a)

xr−1g(x)dx

fr(a+ η(b, a))− fr(a)

for f(a) 6= f(a + η(b, a)), the right-hand side of (3.12) is defined by g(f(a)) for
f(a) = f(a+ η(b, a)), while if g is decreasing, the inequality (3.12) is reversed.

Proof. Here we consider only the case when r > 0 and g is increasing, the proof
is analogous in other case. When f(a) 6= f(a + η(b, a)), by definition of weakly
r-preinvex function, we obtain

∫ 1

0

g(f(a+ λη(b, a)))dλ

≤
∫ 1

0

g
(
(λfr(a+ η(b, a)) + (1− λ)fr(a))1/r

)
dλ

=
r

fr(a+ η(b, a))− fr(a)

∫ f(a+η(b,a))

f(a)

g(x)xr−1dx.
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Similarly, when f(a) = f(a+ η(b, a)), we have∫ 1

0

g(f(a+ λη(b, a)))dλ

≤
∫ 1

0

g
(
(λfr(a+ η(b, a)) + (1− λ)fr(a))1/r

)
dλ

=g(f(a)),

immediately. The proof of Theorem is complete.

Remark 2. We note that it is not necessary that the function f in Theorem 2
is twice-differentiable. Similar to the remark 1, if take g(x) = xp in (3.12), we
obtain the following extended mean inequality for the weakly r-preinvex function f
on invex set with respect to η.

(3.13) Mp(f ; a, a+ η(b, a)) ≤ E(p+ r, r; f(a), f(a+ η(b, a))),

moreover, take r = 1 in (3.13), we have

Mp(f ; a, a+ η(b, a)) ≤ Lp(f(a), f(a+ η(b, a))),

and take p = 1 in (3.13), we have

(3.14)
1

η(b, a)

∫ a+η(b,a)

a

f(x)dx ≤ Fr(f(a), f(a+ η(b, a))).

Further moreover, if f satisfies Condition D, from (3.14), we obtain

(3.15)
1

η(b, a)

∫ a+η(b,a)

a

f(x)dx ≤ Fr(f(a), f(a+ η(b, a))) ≤ Fr(f(a), f(b)).

We note that the inequality (3.15) is a refinement of the inequality given by Wasim
Ui-Haq and Javed Iqbal in [17] and then is also a refinement of the inequality given
by Noor in [11].
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[13] C. E. M. Pearce, J. Pečarić, and V. Šimić, Stolarsky maens and Hadamard’s inequality, J.
Math. Anal. Appl., 220(1998), 99-109.

[14] K. B. Stolarsky, Generalization of the logarithmic mean, Math. Mag., 48(1975), 87-92.

[15] M. Sun, Inequalities for two-parameter mean of convex functions, Math. Practice Theory ,
27 (1997), 193-197 (in Chinese).

[16] B. Uhrin, Some remarks about the convolution of unimodal functions,Ann. Probab., 12(1984),

640-645.
[17] Wasim Ui-Haq and Javed Iqbal, Hermite-Hadamard-type inequalities for r-Preinvex

functions, Journal of Applied Mathematics, 2013, 2013, Article ID 126457, 5 pages.

http://dx.doi.org/10.1155/2013/126457
[18] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, Journal of

Mathematical Analysis and Applications, 136(1) (1988), 29-38.

[19] G.-S. Yang and D.-Y. Hwang, Refinements of Hadamard’s inequality for r-convex functions,
Indian J. Pure Appl. Math. 32(2001), 1571-1579.

[20] X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and Applications of Prequasi-Invex
Functions, Journal of Optimization Theory and Applications, 110(3) (2001), 645-668.

[21] G. Zabandan1, A. Bodaghi and A. Klman, The Hermite-Hadamard inequality for r-convex

functions, Journal of Inequalities and Applications, 2012, 2012:215. doi:10.1186/1029-242X-
2012-215

[22] K.-Q. Zhao, P.-J. Long and X. Wan, a characterization for r-preinvex function,Journal of

Chongqing Normal University(Natural Science), ,28(2) (2011), 1-5.

1Department of Information and Management, Taipei City University of Science and
Technology, No. 2, Xueyuan Rd., Beitou, 112, Taipei, TAIWAN

E-mail address: dyhuang@tpcu.edu.tw

2Mathematics, School of Engineering & Science, Victoria University, PO Box 14428,

Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

3School of Computational & Applied Mathematics, University of the Witwater-
srand, Private Bag 3, Johannesburg 2050, South Africa




