
ON SOME INEQUALITIES FOR THE (p, k)-ANALOGUES OF
THE DIGAMMA AND POLYGAMMA FUNCTIONS

K. NANTOMAH∗

Abstract. In this paper, we establish several inequalities involving the (p, k)-
analogues of the Digamma and Polygamma functions. Consequently, we re-
cover some previous results as particular cases of the results of this paper.

1. Introduction

In [4], the authors introduced a new two-parameter deformation of the classical
Gamma function, called the (p, k)-analogue of the Gamma function. It is defined
for p ∈ N, k > 0 and x ∈ R+ as

Γp,k(x) =

∫ p

0

tx−1
(

1− tk

pk

)p
dt

=
(p+ 1)!kp+1(pk)

x
k
−1

x(x+ k)(x+ 2k) . . . (x+ pk)

satisfying the identities:

Γp,k(x+ k) =
pkx

x+ pk + k
Γp,k(x), (1)

Γp,k(ak) =
p+ 1

p
ka−1Γp(a), a ∈ R+

Γp,k(k) = 1.

The (p, k)-analogue of the Digamma function is defined as the logarithmic deriv-
ative of Γp,k(x). That is

ψp,k(x) =
d

dx
ln Γp,k(x)

=
1

k
ln(pk)−

p∑
n=0

1

(nk + x)
(2)

=
1

k
ln(pk)−

∫ ∞
0

1− e−k(p+1)t

1− e−kt
e−xt dt (3)
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Also, the (p, k)-analogue of the Polygamma functions is defined as

ψ
(m)
p,k (x) =

dm

dxm
ψp,k(x)

=

p∑
n=0

(−1)m+1m!

(nk + x)m+1
(4)

= (−1)m+1

∫ ∞
0

(
1− e−k(p+1)t

1− e−kt

)
tme−xt dt (5)

for m ∈ N, where ψ
(0)
p,k(x) ≡ ψp,k(x). It follows easily from (4) that,

ψ
(m)
p,k (x) =

{
> 0 ifm is odd,

< 0 ifm is even.
(6)

From the identity (1), the following relations are established.

ψp,k(x+ k)− ψp,k(x) =
1

x
− 1

x+ pk + k
,

ψ
(m)
p,k (x+ k)− ψ(m)

p,k (x) =
(−1)mm!

xm+1
− (−1)mm!

(x+ pk + k)m+1
, m ∈ N.

Also, from (4), the following properties are deduced for x > 0.

(i) ψp,k(x) is increasing.

(ii) ψ
(m)
p,k (x) is decreasing if m is odd.

(iii) ψ
(m)
p,k (x) is increasing if m is even.

2. Main Results

We now present the main findings of the paper in this section.

Theorem 2.1. Let x > 0, 0 < y < 1, p ∈ N and k > 0. Then the inequality

ψp,k(x+ y) > ψp,k(x) + ψp,k(y) (7)

holds true.

Proof. Let F (x) = ψp,k(x+ y)− ψp,k(x)− ψp,k(y) for a fixed y. Then,

F ′(x) = ψ′p,k(x+ y)− ψ′p,k(x) =

p∑
n=0

[
1

(nk + x+ y)2
− 1

(nk + x)2

]
< 0.



3

That implies F is decreasing. Further,

lim
x→∞

F (x) = lim
x→∞

[ψp,k(x+ y)− ψp,k(x)− ψp,k(y)]

= lim
x→∞

[
−1

k
ln(pk)−

p∑
n=0

1

nk + x+ y
+

p∑
n=0

1

nk + x
+

p∑
n=0

1

nk + y

]

= −1

k
ln(pk) +

p∑
n=0

1

nk + y
> 0.

Therefore F (x) ≥ 0 yielding the result (7).

Theorem 2.2. Let x > 0, y > 0, p ∈ N and k > 0. Then for a positive odd
integer m, the inequality

ψ
(m)
p,k (x+ y) < ψ

(m)
p,k (x) + ψ

(m)
p,k (y) (8)

holds true.

Proof. Let G(x) = ψ
(m)
p,k (x+ y)− ψ(m)

p,k (x)− ψ(m)
p,k (y) for a fixed y. Then,

G′(x) = ψ
(m+1)
p,k (x+ y)− ψ(m+1)

p,k (x)

=

p∑
n=0

(−1)m+2(m+ 1)!

(nk + x+ y)m+2
−

p∑
n=0

(−1)m+2(m+ 1)!

(nk + x)m+2

= (−1)m+2(m+ 1)!

p∑
n=0

[
1

(nk + x+ y)m+2
− 1

(nk + x)m+2

]

= −(m+ 1)!

p∑
n=0

[
1

(nk + x+ y)m+2
− 1

(nk + x)m+2

]
> 0

since m is odd. That implies G is increasing. Further,

lim
x→∞

G(x) = lim
x→∞

p∑
n=0

[
(−1)m+1m!

(nk + x+ y)m+1
− (−1)m+1m!

(nk + x)m+1
− (−1)m+1m!

(nk + y)m+1

]

= −
p∑

n=0

(−1)m+1m!

(nk + y)m+1

= −
p∑

n=0

m!

(nk + y)m+1
< 0

Therefore G(x) ≤ 0 yielding the result (8).

Theorem 2.3. Let x > 0, y > 0, p ∈ N and k > 0. Then for a positive even
integer m, the inequality

ψ
(m)
p,k (x+ y) > ψ

(m)
p,k (x) + ψ

(m)
p,k (y) (9)

holds true.
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Proof. Let H(x) = ψ
(m)
p,k (x+ y)− ψ(m)

p,k (x)− ψ(m)
p,k (y) for a fixed y. Then,

H ′(x) = ψ
(m+1)
p,k (x+ y)− ψ(m+1)

p,k (x)

=

p∑
n=0

(−1)m+2(m+ 1)!

(nk + x+ y)m+2
−

p∑
n=0

(−1)m+2(m+ 1)!

(nk + x)m+2

= (−1)m+2(m+ 1)!

p∑
n=0

[
1

(nk + x+ y)m+2
− 1

(nk + x)m+2

]

= (m+ 1)!

p∑
n=0

[
1

(nk + x+ y)m+2
− 1

(nk + x)m+2

]
< 0

since m is even. Thus, H is decreasing. Further,

lim
x→∞

H(x) = lim
x→∞

p∑
n=0

[
(−1)m+1m!

(nk + x+ y)m+1
− (−1)m+1m!

(nk + x)m+1
− (−1)m+1m!

(nk + y)m+1

]

= −
p∑

n=0

(−1)m+1m!

(nk + y)m+1

=

p∑
n=0

m!

(nk + y)m+1
> 0

Therefore H(x) ≥ 0 yielding the result (9).

Theorem 2.4. Let x, y > 0, p ∈ N and k > 0. Then for m ∈ N, the inequality

ψ
(m)
p,k (x)ψ

(m)
p,k (y) >

[
ψ

(m)
p,k (x+ y)

]2
(10)

holds true.

Proof. Suppose that m is odd. Then,

ψ
(m)
p,k (x)− ψ(m)

p,k (x+ y) = (−1)m+1m!

p∑
n=0

[
1

(nk + x)m+1
− 1

(nk + x+ y)m+1

]
> 0

Hence,

ψ
(m)
p,k (x) > ψ

(m)
p,k (x+ y) > 0. (11)

By a similar procedure, we obtain

ψ
(m)
p,k (y) > ψ

(m)
p,k (x+ y) > 0. (12)

Then by multiplying (11) and (12) we obtain

ψ
(m)
p,k (x)ψ

(m)
p,k (y) >

[
ψ

(m)
p,k (x+ y)

]2
.

Next, suppose that m is even. Then

ψ
(m)
p,k (x) < ψ

(m)
p,k (x+ y) < 0, (13)

ψ
(m)
p,k (y) < ψ

(m)
p,k (x+ y) < 0. (14)
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Similarly, by multiplying (13) and (14) we obtain

ψ
(m)
p,k (x)ψ

(m)
p,k (y) >

[
ψ

(m)
p,k (x+ y)

]2
concluding the proof.

Remark 2.5. Let p → ∞ in (7), (8), (9) and (10), then we recover the results
of [5] as a particular case.

Remark 2.6. Let k → 1 in (7), (8), (9) and (10), then we recover the results of
[6] as a particular case.

Remark 2.7. Let p→∞ as k → 1 in (7), (8), (9) and (10), then we recover the
results of Theorems 2.2, 2.3 and 2.4 of [8].

Theorem 2.8. Let p ∈ N, k > 0, α ∈ N and xi > 0 for each i = 1, 2, . . . , α. If
m is a positive odd integer, then the inequality

α∏
i=1

ψ
(m)
p,k (xi) ≥

[
ψ

(m)
p,k

(
α∑
i=1

xi

)]α
(15)

holds true.

Proof. We proceed as follows.

ψ
(m)
p,k (x1)− ψ(m)

p,k

(
α∑
i=1

xi

)
=

p∑
n=0

[
(−1)m+1m!

(nk + x1)m+1
− (−1)m+1m!

(nk +
∑α

i=1 xi)
m+1

]

= m!

p∑
n=0

[
1

(nk + x1)m+1
− 1

(nk +
∑α

i=1 xi)
m+1

]
≥ 0.

Hence,

ψ
(m)
p,k (x1) ≥ ψ

(m)
p,k

(
α∑
i=1

xi

)
> 0.

Continuing with this technique, we obtain the following.

ψ
(m)
p,k (x2) ≥ ψ

(m)
p,k

(
α∑
i=1

xi

)
> 0,

ψ
(m)
p,k (x3) ≥ ψ

(m)
p,k

(
α∑
i=1

xi

)
> 0,

...
...

ψ
(m)
p,k (xα) ≥ ψ

(m)
p,k

(
α∑
i=1

xi

)
> 0.

Then multiplying these inequalities yields,
α∏
i=1

ψ
(m)
p,k (xi) ≥

[
ψ

(m)
p,k

(
α∑
i=1

xi

)]α
as required.
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Remark 2.9. Let α = 2, x1 = x and x2 = y in (15), then we recover the
result (10).

Theorem 2.10. Let x, y, a > 1 such that 1
x

+ 1
y
≤ 1 and 1

a
+ 1

b
= 1 . Then for

p ∈ N and k > 0, the inequality

ψ
(m)
p,k (xy) ≤

(
ψ

(m)
p,k (x)

) 1
a
(
ψ

(m)
p,k (y)

) 1
b

(16)

is valid for a positive odd integer m.

Proof. From the hypothesis, it follows that xy ≥ x + y. Then since ψ
(m)
p,k (x) is

decreasing for odd m, and by using the Hölder’s inequality for finite sums, we
obtain

ψ
(m)
p,k (xy) ≤ ψ

(m)
p,k (x+ y) =

p∑
n=0

m!

(nk + x+ y)m+1

=

p∑
n=0

(m!)
1
a (m!)

1
b

(nk + x+ y)
m+1
a (nk + x+ y)

m+1
b

≤
p∑

n=0

(m!)
1
a

(nk + x)
m+1
a

.
(m!)

1
b

(nk + y)
m+1

b

≤

(
p∑

n=0

m!

(nk + x)m+1

) 1
a
(

p∑
n=0

m!

(nk + y)m+1

) 1
b

=
(
ψ

(m)
p,k (x)

) 1
a
(
ψ

(m)
p,k (y)

) 1
b

which completes the proof.

Theorem 2.11. Let p ∈ N, k > 0, s > 1, 1
s

+ 1
t

= 1 and m,n ∈ N such that
m
s

+ n
t
∈ N. Then, the inequality

∣∣∣ψ(m
s
+n

t
)

p,k (x+ y)
∣∣∣ ≤ ∣∣∣ψ(m)

p,k (x)
∣∣∣ 1s ∣∣∣ψ(n)

p,k (y)
∣∣∣ 1t (17)

holds for x > 0 and y > 0.
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Proof. From the series representation (4), we obtain∣∣∣ψ(m
s
+n

t
)

p,k (x+ y)
∣∣∣ =

(m
s

+
n

t

)
!

p∑
i=0

1

(ik + x+ y)
m
s
+n

t
+1

=

p∑
i=0

(
m
s

+ n
t

)
!

(ik + x+ y)
m+1

s (ik + x+ y)
n+1
t

≤
p∑
i=0

(
m
s

+ n
t

)
!

(ik + x)
m+1

s (ik + y)
n+1
t

≤
p∑
i=0

(m!)
1
s

(ik + x)
m+1

s

.
(n!)

1
t

(ik + y)
n+1
t

≤

(
p∑
i=0

m!

(ik + x)m+1

) 1
s
(

p∑
i=0

n!

(ik + y)n+1

) 1
t

=
∣∣∣ψ(m)

p,k (x)
∣∣∣ 1s ∣∣∣ψ(n)

p,k (y)
∣∣∣ 1t .

Note: In the proof, we have used the Hölder’s inequality for finite sums and the
fact that

(
m
s

+ n
t

)
! ≤ (m!)

1
s (n!)

1
t , which follows from the logarithmic convexity of

the factorial function.

Corollary 2.12. Let p ∈ N, k > 0 and m ∈ N. Then the inequality∣∣∣ψ(m)
p,k (x)

∣∣∣ ∣∣∣ψ(m+2)
p,k (x)

∣∣∣ ≥ ∣∣∣ψ(m+1)
p,k (2x)

∣∣∣2
holds for x > 0.

Proof. Let x = y, s = t = 2 and n = m+ 2 in Theorem 2.11.

Corollary 2.13. Let p ∈ N, k > 0, m ∈ N and 1
s

+ 1
t

= 1. Then the inequality∣∣∣ψ(m)
p,k (x+ y)

∣∣∣ ≤ ∣∣∣ψ(m)
p,k (x)

∣∣∣ 1s ∣∣∣ψ(m)
p,k (y)

∣∣∣ 1t (18)

holds for x > 0 and y > 0.

Proof. Let m = n in Theorem 2.11.

Remark 2.14. It is interesting to note that, by letting s = t = 2 in (18), we
obtain a result which coincides with (10).

Theorem 2.15. Let m ∈ N, β ≥ 1 and x > 0. Then for p ∈ N and k > 0, the
following inequalities(

expψ
(m)
p,k (x)

)β
> expψ

(m+1)
p,k (x). expψ

(m−1)
p,k (x), if m is odd (19)(

expψ
(m)
p,k (x)

)β
< expψ

(m+1)
p,k (x). expψ

(m−1)
p,k (x), if m is even. (20)

are satisfied.
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Proof. By relation (4), we obtain

ψ
(m)
p,k (x)− ψ(m+1)

p,k (x)− ψ(m−1)
p,k (x)

=

p∑
n=0

(−1)m+1m!

(nk + x)m+1
−

p∑
n=0

(−1)m+2(m+ 1)!

(nk + x)m+2
−

p∑
n=0

(−1)m(m− 1)!

(nk + x)m

= (−1)m

[
p∑

n=0

−m!

(nk + x)m+1
−

p∑
n=0

(m+ 1)!

(nk + x)m+2
−

p∑
n=0

(m− 1)!

(nk + x)m

]

= (−1)m+1

[
p∑

n=0

m!

(nk + x)m+1
+

p∑
n=0

(m+ 1)!

(nk + x)m+2
+

p∑
n=0

(m− 1)!

(nk + x)m

]
> (<)0

respectively for odd(even) m. This implies,

ψ
(m)
p,k (x) > ψ

(m+1)
p,k (x) + ψ

(m−1)
p,k (x)

and

ψ
(m)
p,k (x) < ψ

(m+1)
p,k (x) + ψ

(m−1)
p,k (x)

respectively for odd and even m. Then for β ≥ 1, we have

βψ
(m)
p,k (x) ≥ ψ

(m)
p,k (x) > ψ

(m+1)
p,k (x) + ψ

(m−1)
p,k (x), (21)

and

βψ
(m)
p,k (x) ≤ ψ

(m)
p,k (x) < ψ

(m+1)
p,k (x) + ψ

(m−1)
p,k (x). (22)

By exponentiating the inequalities (21) and (22), we obtain the desired results.

Remark 2.16. Let β = 2 in Theorem 2.15, then we obtain the result of Theorem
2.7 of [4].

Remark 2.17. Let β = 2, p → ∞ and k → 1 in Theorem 2.15, then we obtain
the result of Theorem 3.2 of [1].

Lemma 2.18. Let a, b, c, d, α, β be positive real numbers such that a + bx ≤
c+ dx, βd ≤ αb, ψp,k(a+ bx) > 0 and ψp,k(c+ dx) > 0. Then

αbψp,k(c+ dx)ψ′p,k(a+ bx)− βdψp,k(a+ bx)ψ′p,k(c+ dx) ≥ 0.

Proof. Note that, ψp,k(x) is increasing and ψ′p,k(x) is decreasing for x > 0. Then,
since 0 < a+ bx ≤ c+ dx, we have,
0 < ψp,k(a+ bx) ≤ ψp,k(c+ dx) and ψ′p,k(a+ bx) ≥ ψ′p,k(c+ dx) > 0.
That implies;
ψp,k(c+ dx)ψ′p,k(a+ bx) ≥ ψp,k(c+ dx)ψ′p,k(c+ dx) ≥ ψp,k(a+ bx)ψ′p,k(c+ dx).
Moreover, αb ≥ βd > 0 implies;
αbψp,k(c+dx)ψ′p,k(a+bx) ≥ αbψp,k(a+bx)ψ′p,k(c+dx) ≥ βdψp,k(a+bx)ψ′p,k(c+dx).
Therefore,
αbψp,k(c+ dx)ψ′p,k(a+ bx)− βdψp,k(a+ bx)ψ′p,k(c+ dx) ≥ 0.
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Theorem 2.19. Define a function T for p ∈ N and k > 0 by

T (x) =
ψp,k(a+ bx)α

ψp,k(c+ dx)β
, x ∈ [0,∞)

where a, b, c, d, α, β are positive real numbers such that a+bx ≤ c+dx, βd ≤ αb,
ψp,k(a + bx) > 0 and ψp,k(c + dx) > 0. Then T is increasing on x ∈ [0,∞) and
the inequality

ψp,k(a)α

ψp,k(c)β
≤ ψp,k(a+ bx)α

ψp,k(c+ dx)β
≤ ψp,k(a+ b)α

ψp,k(c+ d)β
(23)

holds for x ∈ [0, 1].

Proof. Let λ(x) = lnT (x). That is,

λ(x) = ln
ψp,k(a+ bx)α

ψp,k(c+ dx)β
= α lnψp,k(a+ bx)− β lnψp,k(c+ dx).

Then,

λ′(x) = αb
ψ′p,k(a+ bx)

ψp,k(a+ bx)
− βd

ψ′p,k(c+ dx)

ψp,k(c+ dx)

=
αbψ′p,k(a+ bx)ψp,k(c+ dx)− βdψ′p,k(c+ dx)ψp,k(a+ bx)

ψp,k(a+ bx)ψp,k(c+ dx)
≥ 0

resulting from Lemma 2.18. That implies T is increasing on x ∈ [0,∞) and for
every x ∈ [0, 1] we have,

T (0) ≤ T (x) ≤ T (1)

yielding the result (23).

Remark 2.20. Let p → ∞ in Theorem 2.19, then we obtain the k-analogue
of (23) as presented in Theorem 3.7 of [7].

Remark 2.21. Let k → 1 in Theorem 2.19, then we obtain the p-analogue
of (23).

Remark 2.22. Let p→∞ as k → 1 in Theorem 2.19, then we obtain Theorem
2.3 of [2].

Remark 2.23. Results similar to (23) can also be found in [3] for the (q, k) and
(p, q) analogues of the Digamma function.

Lemma 2.24 ([4]). Let m be a positive odd integer. Then the inequality

ψ
(m)
p,k (x)ψ

(m+2)
p,k (x)−

[
ψ

(m+1)
p,k (x)

]2
≥ 0.

holds for p ∈ N, k > 0 and x > 0.

Lemma 2.25. For a positive odd integer m, let H(x) =
ψ
(m+1)
p,k (x)

ψ
(m)
p,k (x)

, where p ∈ N
and k > 0. Then H is increasing for x > 0.
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Proof. Direct differentiation yields

H ′(x) =
ψ

(m)
p,k (x)ψ

(m+2)
p,k (x)− [ψ

(m+1)
p,k (x)]2

[ψ
(m)
p,k (x)]2

.

Then by Lemma 2.24, we conclude that H ′(x) ≥ 0 ending the proof.

Lemma 2.26. Let u ≥ w > 0, p ∈ N, k > 0 and m a positive odd integer. Then
for 0 < x ≤ y, we have

u
ψ

(m+1)
p,k (x)

ψ
(m)
p,k (x)

− w
ψ

(m+1)
p,k (y)

ψ
(m)
p,k (y)

≤ 0.

Proof. Let H(x) be defined as in Lemma 2.25. Then for 0 < x ≤ y we have,
H(x) ≤ H(y) < 0 since H(x) is increasing. This together with the fact that
u ≥ w > 0 gives uH(x)− wH(y) ≤ 0 yielding the desired result.

Theorem 2.27. Define a function U for p ∈ N, k > 0 and m a positive odd
integer by

U(x) =
ψ

(m)
p,k (a+ bx)α

ψ
(m)
p,k (c+ dx)β

, x ∈ [0,∞)

where a, b, c, d, α, β are positive real numbers such that a + bx ≤ c + dx and
βd ≤ αb. Then U is decreasing on x ∈ [0,∞) and the inequality

ψ
(m)
p,k (a)α

ψ
(m)
p,k (c)β

≥
ψ

(m)
p,k (a+ bx)α

ψ
(m)
p,k (c+ dx)β

≥
ψ

(m)
p,k (a+ b)α

ψ
(m)
p,k (c+ d)β

(24)

is valid for x ∈ [0, 1].

Proof. Let δ(x) = lnU(x). That is,

δ(x) = α lnψ
(m)
p,k (a+ bx)− β lnψ

(m)
p,k (c+ dx).

Then,

δ′(x) = αb
ψ

(m+1)
p,k (a+ bx)

ψ
(m)
p,k (a+ bx)

− βd
ψ

(m+1)
p,k (c+ dx)

ψ
(m)
p,k (c+ dx)

Since 0 < a + bx ≤ c + dx and 0 < βd ≤ αb, then by Lemma 2.26, we conclude
that δ′(x) ≤ 0. Thus, δ(x) is decreasing on x ∈ [0,∞). Therefore, U is also
decreasing on x ∈ [0,∞) and for x ∈ [0, 1], we have U(0) ≥ U(x) ≥ U(1) yielding
the result (24).

Remark 2.28. Let b = d = α = β = 1 in Theorem 2.27. Then by allowing
p→∞ as k → 1, we recover the result of Theorem 2.9 of [2].

3. Conclusion

In this work, we have established several inequalities involving the (p, k)-analogues
of the Digamma and Polygamma functions. As a consequence, some previous re-
sults are recovered as particular cases of the results of this paper.
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