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ON SOME INEQUALITIES FOR THE (p, k)-ANALOGUES OF
THE DIGAMMA AND POLYGAMMA FUNCTIONS

K. NANTOMAH*

ABSTRACT. In this paper, we establish several inequalities involving the (p, k)-
analogues of the Digamma and Polygamma functions. Consequently, we re-
cover some previous results as particular cases of the results of this paper.

1. INTRODUCTION

In [4], the authors introduced a new two-parameter deformation of the classical
Gamma function, called the (p, k)-analogue of the Gamma function. It is defined
forpeN, k> 0and z € R as

p L tk p
r = 7t 1—— dt
pi(2) /0 ( pk‘)

_ (e ) (ph)
a(r 4+ k) (@ +2k) ... (z + pk)

satisfying the identities:

pkx
I‘p,k(a: + k) = x_i_p—k_H{Fp,k(m), (1)
F _ p+ 1 a—1 +
pi(ak) = Tk Iy(a), a€R
(k) = 1.

The (p, k)-analogue of the Digamma function is defined as the logarithmic deriv-
ative of I'y x(x). That is

i) = LT ()

dx
Ly -3 )
kYT ko)

1 00 1 - e—k(p—l-l)t
—_ _1 _ - - -t

: n(pk) /0 = dt (3)
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Also, the (p, k)-analogue of the Polygamma functions is defined as

Y ) = ()
B P (—1)™ m!
B HZ:O (nk 4 x)m+! (4)
o0 — e klp+1)t
—_ (_1)m+1/0 (%) tmef:pt dt (5)

for m € N, where @D;O,Z(:p) = 1, x(z). It follows easily from (4) that,

m > (0 ifmis odd,
o (@) = {

<0 ifmis even.

From the identity (1), the following relations are established.

1 1
¢p,k($+k) wpk( ) 5 I—f-pk—i—k’
wz(:;) (x+k)— wz(:;) () = (=1)™m! — (=1)"m! m € N.

xmtl (x + pk + k)mt+1’

Also, from

(i) @/)pk(l’

(i) o (x) is decreasing if m is odd.
(

(i) o™

4), the following properties are deduced for x > 0.

\_//\

is 1ncreasmg

x) is increasing if m is even.

2. MAIN RESULTS

We now present the main findings of the paper in this section.

Theorem 2.1. Letx >0, 0 <y <1, pe N and k > 0. Then the inequality
7vbp,k (ZL’ + y) > Q/}p,k(x) + wp,k (y) (7)
holds true.

Proof. Let F(x) = Ypr(x +y) — Ypr(z) — ¥pi(y) for a fixed y. Then,

Fi(z) = vpu(z+y) = dpulw) = Z [(nk’ + 15 +y)?  (nk j— x)?

< 0.



That implies F' is decreasing. Further,
lim F(iL‘) = xh_{{.lo [wp,k(x + y) - wp,k<x) - wp,k(y)]

T—00
1 P 1 P 1 b 1
= lim |——In(pk) =) ————
Pt k:n(p) ;%nk+x+y+;%nk+x+nz%nk+y

p

1 1
= ——In(pk
p n(p )+nzzonk+y>0

Therefore F(x) > 0 yielding the result (7).

Theorem 2.2. Let z > 0,y > 0, p € N and k > 0. Then for a positive odd
integer m, the inequality

i (@ ) < 0 (@) + 07 () (8)
holds true.
Proof. Let G(z) = w(mk)(x +y) — 1&(77,;) (x) — @DXZ) (y) for a fixed y. Then,

G'(z) = v (@ +y) — 0l (@)

p

Z D)™ 2 (m +1)! Zp: (=1)™+2(m 4 1)!

nk +x + y)mt2 (nk + x)m+2

n=0

m—+2 - 1 !
= (Um0t [

. 1 1
_ 1) _
(m+1) HZ:O {(nk:—i—x—i—y)"“r2 (nk:—l—x)m“} >0

since m is odd. That implies G is increasing. Further,

m+1 m! (_1)m+1m! (_1)m+1m! :|

li li —
200 Gz ~ s Z { nk+x +y)mtt (nk+ )™t (nk+y)mH

m+1m|

_Z (nk + y)mt1

= — — <
— (nk + y>m+1

Therefore G(z) < 0 yielding the result (8).

Theorem 2.3. Let x >0,y >0, p € N and k > 0. Then for a positive even
integer m, the inequality

Vi @+ y) > o5 (@) + e () (9)
holds true.
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Proof. Let H(x) = qﬁ](jw,;)(x +y) — w(m) (x) — w;k (y) for a fixed y. Then,

H'(z) = 55 @+ y) — oy (@)

~ (= 1)m+2(m+1) ~ (=)™ (m + 1)

n=0

n—=

- < (nk +x +y)mt? a Z (nk 4 x)m+2

= (=" (m+ 1)1y { !

— | (nk 4z +y)m*?

~ (nk +1x)m+2]

p
1 1
= 1)! — 0
(m+1) ;} {(nk+x+y)m+2 (nk—l—x)m*?} =

since m is even. Thus, H is decreasing. Further,

T—r00

- i (—1)m+1m!
“ (nk +y)m+!
p

> Gty >0
= —_ >
— (nk+y)m+l

Therefore H(z) > 0 yielding the result (9).

m+1m| (_1)m+1m!
lim H(x) = li _
im H(x) et Z [ nk+a+y)m (nk +z)mtL

B (—1)™*m! ]
(nk +y)m+t

Theorem 2.4. Let x,y >0, p € N and k > 0. Then for m € N, the inequality

W@ ) > [ e + )]
holds true.

Proof. Suppose that m is odd. Then,
1

(10)

1

) = ot ) = GOy

>0

Hence,
zpl(jf;)(x) > wl(:;) (x+y) > 0.

By a similar procedure, we obtain

YU (y) > YU (@ +y) > 0.
Then by multiplying (11) and (12) we obtain

(m) (1)) (m) ?
¢p7k ('T),l?prg (y) > 77Z}p’k (Z’ + y) .

Next, suppose that m is even. Then

U (x) < 4y (x4 y) <0,

Uy (y) <y (@ +y) <0.

(nk + x + y)m+!

(11)

(12)



Similarly, by multiplying (13) and (14) we obtain
U @ ) > (U@ + )]

2
concluding the proof.

Remark 2.5. Let p — oo in (7), (8), (9) and (10), then we recover the results
of [5] as a particular case.

Remark 2.6. Let £k — 1 in (7), (8), (9) and (10), then we recover the results of
[0] as a particular case.

Remark 2.7. Let p — oo as k — 1in (7), (8), (9) and (10), then we recover the
results of Theorems 2.2, 2.3 and 2.4 of [3].

Theorem 2.8. Letpe N, k>0, « € N and x; > 0 for eachi =1,2,...,«a. If
m 1S a positive odd integer, then the inequality

[Tvi @) = v (Z )] (15)
i=1 i=1
Proof. We proceed as follows.

o p m+1 _1\Ym+1,,1
(m) (. \ () , _ (=)m™Tml }
wp,lc (ivl) ¢p,k (; ﬂfz> = { nk + 951 m+1 (nk + 2?21 xi)erl
b 1
‘ {(n’f + o) (k4 Y )m“}

holds true.

I
S

> 0.

n=

zb;f',i)(xl) > @Uﬁ) (Z xz> > 0.
=1

Continuing with this technique, we obtain the following.

¢ﬁw»zwﬁ§3ﬂ>a
=1

YU () > ) (Z x) >0,

Hence,

P (2a) > 0

Then multiplying these inequalities yields,

Hmwmwdzﬁ]
=1 =1

as required.



6 K. NANTOMAH
Remark 2.9. Let a = 2, ; = z and 29 = y in (15), then we recover the

result (10).

Theorem 2.10. Let x,y,a > 1 such that % +% <1 and i +% =1 . Then for
p € N and k > 0, the inequality

Q=
=

i (ay) < (v @) (L) (16)

18 valid for a positive odd integer m.

Proof. From the hypothesis, it follows that xy > x + y. Then since 1/}1(:;) (x) is
decreasing for odd m, and by using the Hoélder’s inequality for finite sums, we
obtain

hS]

VU (wy) < YT (x +y) =

which completes the proof.

Theorem 2.11. Let p e N, k£ >0, s > 1, %—I—% =1 and m,n € N such that
o 4 % € N. Then, the inequality

1 1
s n t
Y (y)

(5+9) m
i @) < el @)

(17)

holds for x > 0 and y > 0.



Proof. From the series representation (4), we obtain

P
(mgny m o n 1
ui ey = (5+3

)%

p (m

Note: In the proof, we have used the Holder’s inequality for finite sums and the
fact that (2 + 2)! < (m!) (n!)7, which follows from the logarithmic convexity of
the factorial function.

Corollary 2.12. Let p € N, k > 0 and m € N. Then the inequality

2
m m—+1
o (@) U (2)|

.k

w(m+2) (:L‘) ’ Z

holds for x > 0.
Proof. Let x =y, s=t =2 and n =m + 2 in Theorem 2.11.
Corollary 2.13. Letpe N, k>0, m € N and % + % = 1. Then the inequality

o=

1
s

o @+ )| < iR (@)

holds for x > 0 and y > 0.

o )] (18)
Proof. Let m = n in Theorem 2.11.

Remark 2.14. It is interesting to note that, by letting s = ¢ = 2 in (18), we
obtain a result which coincides with (10).

Theorem 2.15. Let m € N, B > 1 and x > 0. Then for p € N and k > 0, the
following inequalities

(exp wz()’k) (x)) > exp w;;l)(x). exp ¢;§,k 1)(33), if m is odd (19)

B
<exp 1/1]32) (x)) < exp w;?;ﬂ)(ac). exp ¢](:,;_1)(x), if m is even. (20)

are satisfied.
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Proof. By relation (4), we obtain

o () = i () = 95 (@)
- DM (=) D) S (=D m - 1)
- (nk + z)m ; (nk+azyme2 = (nk 4 2)™
el s A D s (=)
=1 LZ:O (nk + x)m+1 ; (nk + x)m+2 nzzg (nk +x)™
_ m+1 ¢ m! ¢ m+1)! —~ (m—1)!
= (=1 [ZW+ZW+;(%HW
> (<)0

respectively for odd(even) m. This implies,

W (@) > U (@) + 0 ()
and
W (@) < U (@) + 0 ()

respectively for odd and even m. Then for § > 1, we have

By (@) 2 0 (2) > 0,5 (@) + (@), (21)
and

B (@) < ) (0) < 0 (@) + i (@), (22)
By exponentiating the inequalities (21) and (22), we obtain the desired results.

Remark 2.16. Let § = 2 in Theorem 2.15, then we obtain the result of Theorem
2.7 of [1].

Remark 2.17. Let f =2, p — oo and k£ — 1 in Theorem 2.15, then we obtain
the result of Theorem 3.2 of [1].

Lemma 2.18. Let a, b, ¢, d, a, B be positive real numbers such that a + bx <
c+dz, pd < ab, P, (a+bx) >0 and Y, p(c+dx) > 0. Then

abi, (¢ + da:)w}/,’k(a + bx) — Bdipy (a+ bx)wé,k(c +dz) > 0.

Proof. Note that, ¢, () is increasing and w;yk(x) is decreasing for z > 0. Then,
since 0 < a + bxr < ¢+ dx, we have,

0 < prla+br) <hpp(c+dr) and oy, (a+bx) > ) (c+dx) > 0.

That implies;

Ypr(c+dx), (a+bx) > Py p(c+ de), (¢ +dr) > Py p(a + br)y, (e + dz).
Moreover, ab > Bd > 0 implies;

by k(c+dx)y,  (a+bx) > abiy, i (a+bx)yy, , (ct+dx) > Bdyy, r(a+bx)y, , (c+dz).
Therefore,

aby k(¢ + dx)yy,  (a + br) — Bdipy, (a + bx)y, ;. (c + dx) > 0.



Theorem 2.19. Define a function T for p € N and k > 0 by

_ Ypr(a+bx)®
pr(c+dx)s’
where a, b, ¢, d, a, B are positive real numbers such that a+bx < c+dz, fd < ab,

Ypi(a+bx) >0 and 1, ,(c+dx) > 0. Then T is increasing on x € [0,00) and
the inequality

T(x) z € [0, 00)

Up(a)” < Up(a + bx)® < Upla + )"
Upk(c)® T Upr(c+dx)’ T hpp(c+ d)f
holds for z € [0, 1].

Proof. Let A(x) = InT(x). That is,

(23)

o) = n O — o+ ba) — Bl vpale + da).
Then,
() = ab p(a+bx) Y L p(c+dx)

Vpr(a+ bz) Yy (c+ dr)
abiy, . (a + bz )y (c + dx) — Bdipy, (¢ + da)iy i(a + bx) -
pr?k(a + bx)ﬂ}p’k(c + dl‘) -

resulting from Lemma 2.18. That implies T is increasing on z € [0,00) and for
every x € [0, 1] we have,

T0)<T(x) <T(1)
yielding the result (23).

Remark 2.20. Let p — oo in Theorem 2.19, then we obtain the k-analogue
of (23) as presented in Theorem 3.7 of [7].

Remark 2.21. Let £ — 1 in Theorem 2.19, then we obtain the p-analogue
of (23).

Remark 2.22. Let p — oo as kK — 1 in Theorem 2.19, then we obtain Theorem
2.3 of [2].

Remark 2.23. Results similar to (23) can also be found in [3] for the (¢, k) and
(p, q) analogues of the Digamma function.

Lemma 2.24 ([1]). Let m be a positive odd integer. Then the inequality

2
v @it (@) = o @) 2o
holds for p € N, k>0 and x > 0.

(m+1)
Lemma 2.25. For a positive odd integer m, let H(x) = w”’gjn)(())
p.k \ T

, where p € N

and k > 0. Then H is increasing for x > 0.
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Proof. Direct differentiation yields
m m—+2 m+1
Uk @ (@) — [ (@)
[ (@)
Then by Lemma 2.24, we conclude that H'(x) > 0 ending the proof.

H'(x)

Lemma 2.26. Let u>w >0, p € N, k> 0 and m a positive odd integer. Then
for 0 < x <y, we have

m+1 m+1
;7,: )(33) _ wwf,,;f )(y)
Y (x) VI (y)

Proof. Let H(z) be defined as in Lemma 2.25. Then for 0 < = < y we have,
H(z) < H(y) < 0 since H(z) is increasing. This together with the fact that
u>w >0 gives uH (z) — wH (y) < 0 yielding the desired result.

U <0.

Theorem 2.27. Define a function U for p € N, k > 0 and m a positive odd
integer by
(m) «
a-+ bx
U(ZL’) = ¢I();:)( ) )
Y, (¢ +dx)P
where a, b, ¢, d, o, B are positive real numbers such that a + bx < ¢+ dx and

Bd < ab. Then U is decreasing on x € [0,00) and the inequality
U (@ (0t ba)® 4 (et b)°

x € [0,00)

.k
Uy ()7 U (e dw)® T i (e + d)?
is valid for x € [0, 1].
Proof. Let §(x) = InU(z). That is,
5(z) = aln wz(:z)(a +bz) — Bln w;?;)(c +dx).

(24)

Then,
5(z) = bz/JI(:ZH)(a + bx) B 6d¢gz+l)(c + dz)
R TP I,
Y, (a+bx) Y, (¢ +dx)

Since 0 < a + bxr < ¢+ dr and 0 < Bd < ab, then by Lemma 2.26, we conclude
that ¢'(z) < 0. Thus, 6(x) is decreasing on = € [0,00). Therefore, U is also
decreasing on x € [0, 00) and for x € [0, 1], we have U(0) > U(z) > U(1) yielding
the result (24).

Remark 2.28. Let b = d = a = f = 1 in Theorem 2.27. Then by allowing
p — oo as k — 1, we recover the result of Theorem 2.9 of [2].

3. CONCLUSION

In this work, we have established several inequalities involving the (p, k)-analogues
of the Digamma and Polygamma functions. As a consequence, some previous re-
sults are recovered as particular cases of the results of this paper.
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