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REPRESENTATION OF OPERATOR PERSPECTIVES FOR
CONTINUOUSLY n-TIME DIFFERENTIABLE FUNCTIONS
WITH APPLICATIONS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain some representations of operator per-
spectives for continuously n-time differentiable functions. Applications for
weighted operator geometric mean, relative operator entropy and some expo-
nential perspectives, are also provided.

1. INTRODUCTION

Let f be a continuous function defined on the interval I of real numbers, B a self-
adjoint operator on the Hilbert space H and A a positive invertible operator on H.
Assume that the spectrum Sp (A_l/QBA_l/Q) C I. Then by using the continuous
functional calculus, we can define the perspective Py (B, A) by setting

Py (B, A) = AV2f (A‘l/QBA‘l/Q) A2,
If A and B are commutative, then
Ps(B,A)=Af (BA™)

provided Sp (BA_I) cl.
It is well known that (see [9] and [8] or [10]), if f is an operator convex function
defined in the positive half-line, then the mapping

(B,A) — Py (B,A)

defined in pairs of positive definite operators, is operator convex.

In the recent paper [2] we established the following reverse inequality for the
perspective Py (B, A).

Let f : [m, M] — R be a convez function on the real interval [m, M|, A a positive
invertible operator and B a selfadjoint operator such that

(1.1) mA<B<MA,

then we have

(12)  0< ot [f (m) (MA= B)+ [ (M) (B~ mA)| - Py (B, A)
<L AJQ - ﬁ (m) (maV2 - pa='/2) (4712B - mAl2)
< 3 (M —m) [72 (M) ~ 1 (m)] A.
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Let f:J C R — R be a twice differentiable function on the interval j, the
interior of J. Suppose that there exists the constants d, D such that

(1.3) d< f"(t)<DforanyteJ.
If A is a positive invertible operator apd B a selfadjoint operator such that the
condition (1.1) is valid with [m, M] C J, then we have the following result as well
3]
1
(1.4) 5d (MAl/2 - BA‘l/Q) (A—WB - mA1/2>
1
M—m
1
<t 1/2 _ pa—1/2 —1/2 _ aA1/2)
< 3D (MAV? = BATY2) (47128 —mAl?)

< [f (m) (MA = B) + f (M) (B — mA)| = Py (B, A)

If d > 0, then the first inequality in (1.4) is better than the same inequality in
(1.2).
If £, :[0,00) — [0,00), f (t) =", v €[0,1], then

Py, (B, A) := AY/? (A‘l/QBA‘l/Q) T AV . a4, B,

is the weighted operator geometric mean of the positive invertible operators A and
B with the weight v.
We define the weighted operator arithmetic mean by

AV, B:=(1-v)A+vB, ve[0,1].
It is well known that the following Young’s type inequality holds:
Af,B < AV,B
for any v € [0,1].
If we take the function f = In, then
P (B, A) = AY21n (A—l/QBA—W) AY? = §(A|B),

is the relative operator entropy, for positive invertible operators A and B.

Kamei and Fujii [11], [12] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, which is a relative version of the operator
entropy considered by Nakamura-Umegaki [25].

In the recent paper [6] we established the following representation result:

Theorem 1. Let A be a positive invertible operator, B a selfadjoint operator such
that the spectrum Sp (A’l/QBA’l/Q) CIland f: 1 — C be a continuously differ-
entiable function on I. Then for any a € I and p € C we have

(1.5) P (B, A) = f(a) A+p (B —aA)+(BA™ —al) /01 Py_, ((aA) VB, A) dt.

Using the representation (1.5), we have for positive invertible operators A, B
that
(1.6) A, B =a"A+ (B —aA)
+ (BA*1 —al )

1 v—1
X / AL/2 [V (A—1/2 [(aA) V,B] A—1/2) _,u} A2,
0
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for any @ > 0 and p € R.
If we take in this equality a = 1 and p = v, then we get the equality

(1.7) Af,B = AV, B

1 v—1
+v (BAA - I)/ A1/2 [(Al/z (AVtB) A—1/2> _ I] A1/2dt,
0

that is equivalent to
(1.8) 0<AV,B - A4, B

1 o
—v(=pa) [ e (e avim ae) T o) v
0

Using the identity (1.5) for f = In, we have for the positive invertible operators
A, B that

(1.9) S(A|B) = (Ina) A+ (B — ad)

1

+ (BA™Y = al) / AL/? [AW [(ad) V,B] " A2 — ,u] AV24t
0

= (Ina) A+ pu (B — ad)

+(B - ad) ( /0 1 [1(04) 9,3 — pa~?] dt) A

for any @ > 0 and p € R.
If we take in (1.9) a = 1 and p = 1, then we have the simpler equality

(1.10) S(A|B)=B— A+ (B - A) (/1 [(AWB)*1 - A—l] dt> A
0

Motivated by the above results, in this paper we obtain some representations
for operator perspectives of continuously n-time differentiable functions. Applica-
tions for weighted operator geometric mean, relative operator entropy and some
exponential perspectives, are also provided.

2. SOME REPRESENTATION RESULTS

For the function f.; : R — [0,00), fex (u) = (u— ¢)" where ¢ € R and natural
number k£ > 1 we consider the perspective

(2.1) Pr. . (B, A) = AV2f, (A*l/QBA*/?) AL/

where A is a positive invertible operator and B a selfadjoint operator on the Hilbert
space H.
We observe that for any k£ > 1 we have

k
Ppoy (B, A) = AV (A712BAT12 ey ) AL

— Al/2 (A—1/2 (B — cA) A—1/2)kA1/2
= AV2ATV2(B—cA) ATV2 ATY2 (B — cA) AT1/2AY/?
—(B—cA)A ™ .. (B=cA)A"A=[(B—cA)A']" A

= (BA™ —cly)" A.
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For k =0, we put Py, (B,A) = A.
The following theorem is well known in the literature as Taylor’s theorem with
the integral remainder.

Theorem 2. Let I C R be a closed interval, a € I and let n be a positive integer.
If f: T — R s such that f™ is absolutely continuous on I, then for each u € I

(2.2) f(u) =T, (f;a,u) + Ry (f;0,u),

where T, (f;a,w) is Taylor’s polynomial, i.e.,

w (fra,u) : Z f(“)

k=0

Note that f© := f and 0! := 1, and the remainder is given by

1 u
Ra(fia)i= o [ fa= 0 /040 @0t
n! J,
We have the following generalization of Theorem 1:

Theorem 3. Let A be a positive invertible operator, B a selfadjoint operator such
that the spectrum Sp (A*1/2BA*1/2) CI and f: I — C be a n-time differentiable

function on I with the derivative FOtY continuous on I. Then for any a € I and
w € C we have

f a) Prow (B A) + —— 1Py, i (B A)

1
(n+1)!

g

(2.3) P;(B,A) :zn:

k=0

1 1 n
b Prane BAAT [ (=5 P ((aA) VB A) ds
: 0

In particular, we have for p =0 that

(2'4) Pf (B7 A) = Z 7f(k) (a) Pfa,k (BvA)
k=0
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Proof. By taking u € I and by using the change of variable [0,1] 2 ¢t — s =
(1 —t)a + tu in Taylor’s representation (2.2) we have

(2.5) =3 %f (u—a)’
k=0
n l'( B n+1/ fltD) (1—s)a+su)(1—s)"ds
= %f“) (a) (u—a)"
k=0
1
N % (4 — o)™ /0 [f(n+1) (1 =s)a+su)—p|(1—s)"ds
+%(u—a)n+1ﬂ/0 (1—s)"ds
) n lf(k) (a) (u—a)* + 1 (w—a)" ' p
k=0 k! (n + 1)'
1
N % (u— a)n+1/0 [f(n+1) (L=s)a+su)—pul (1-s)"ds

for any u € C. )
Let T be a selfadjoint operator with Sp (T') C I. Take the real numbers m, M
such that Sp (T) C [m, M] C I. If {E)},p is the spectral family of the operator

T, then by the spectral representation theorem (SRT) we have

M ] M
- /m PO By = i /m T,

where the integral is taken in the Riemann-Stieltjes sense.
Let ¢ > 0 small enough such that [m —e, M] C I, then by integrating the
equality (2.5) on the interval [m — e, M| and using the Fubini theorem, we have

M
(2.6) f (N dEy
o Low oy [T 1 Mo
=2 k!fk (a)/mfs (A—a)" dE\ + (n+1)lu/m,s (A—a)"" dE,
M 1
Jr% - {()\a)n+1/0 [f(nJrl) ((1fs)a+s)\)7u] (1S)nds] SN
:kzzoﬂf(k) (a)/m_s()\—a)kdEA-ymu/m_e()\_a) 4B,
1/t oM - 1
o ja-an [ =)™ [54 (1 = 5)a+ 53) — ]| dBx | ds

for anyaef.
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Taking the limit over ¢ — 0+ in (2.6) we get by SRT that
=3 L5 () (T — ) (T — al )
— k! (n+1)!
1 1
+o (1—8)" (T —alg)"™! [f(”“) (1—=s)aly +sT) — ply| ds
- Jo
which can be written in an equivalent form as
k=0

1 n+1 ! n 1
+H(T_G1H) /0(1—5) [f("+)((1—s)a1H—|—sT)—,u1H}ds_

f _ a].H)k + )Tl+1

=~

1
(n+ 1)!'U(T —aln

This result is of interest in itself.
For 1 = 0 we also have the simpler representation

(2.8) =>

k=0

f — alH)k

E\H

+ % (T — alH)”+1 /01 (1 — s)n [f(n-H) ((1 — s) alg + ST)} ds.

If we take T = A~'/2BA~1/2 in (2.7), then we have

f (A_1/QBA—1/2) _ i %f(k') (a) (A—l/QBA_1/2 - alH)k

k=0

1 n+1
o (A7BAT 2 —aln)

1 n+1
+ 5 (A*WBA*I/2 _ alH)

1
x / 1-s)" [f<"+1> ((1 —s)aly + sAfl/QBAfl/Z) - H1H] ds.
0
If we multiply both sides by A'/2 then we get
(2.9) AY2f (A’1/2BA’1/2) AL/2
k
() (a) A2 (A-1/2BA-1/2 _ 1/2
- Z =" (a) A ( BA alH) A

1 n+1
+mu141/2 (A71/23A71/27Q1H> A1/2

n+1
+ %Al/z (A—l/?BA—l/2 - alH)
n!
1
X / (1—s)" [f("“) ((1 —s)alyg + SA’1/2BA’1/2) — ulH] A?ds.
0
Observe that

k
AL/? (,4—1/23,4—1/2 - alH) AV =P, (B, A),
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n+1
AL/ (A*WBA*I/Q - a1H> AV2 =P, (B, A)
and
A1/2 (A—l/QBA—l/Q _ alH)n+1
1
X / (1—s)" [f(”“) ((1 —s)aly + sA’l/QBA’lm) - ulH} A2ds
0
= A2 (A—1/2BA—1/2 - alH)nH A2 AT
1
X / (1—s)" A2 [f<n+1> (A*W (1 - s)aA + sB) A*1/2> - ﬂlH} AV24s
0
1
= Pt (B, A) A7t /0 (1—s)" Prom+n_y, ((1—-s)aA+sB,A)ds

forn>1andacl.
Using the equality (2.9) we deduce the desired result (2.3). O

Corollary 1. Let A be a positive invertible operator, B a selfadjoint operator such
that

(2.10) mA<B<MA

for some real numbers m, M with [m, M] C I and f: I — C be an-time differen-
tiable function on I with the derivative f"+t1) continuous on I. Then for any p € C
we have

“ 1 m+ M
(211)  Pr(BA) = f® (2) Prasar , (B, 4)
k=0
1

1
+ mlﬂ’fmwmﬂ (B, A) + Pl

! M
x / (1= 5)" Pronn_, ((m; A> VSB,A> ds
0

In particular, we have for =0 that

(B,A) A™?

+1

"1 m+ M
(2.12) =X k*f(k) ( 5 ) Pt (B, A)
k=0
1 1
+ me+1\4 ( A

,n+1

! M
x / (1= )" Ppowsn ((m + > VSB,A) ds.
0

From the condition (2.10) we have by multiplying both sides with A~/ that
mly < AY2BA-1/2 < M1y. Therefore Sp (A’l/ZBA’l/Q) C I and by taking
a ="M in Theorem 3 we get (2.11) and (2.12).
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Corollary 2. With the assumptions of Theorem 8 we have for any x € H, © # 0
that

(2.13) P (B,A) = Z %f(’“) (M) Piiposy (B A)
k=0 ’

(Az,x) >

1 1
YRR B,A) + — B,A)A™!
g ( )‘Ln!Pf%,m( 4)

x /01 (1= 8)" Pronsn_, <(E§i i; A> VSB,A> ds

(2.14)  (P; (B, A)z,z)

and

k=0
1 1

o d=s)"
n! Jo

(Bz, x) _
X <Pf(n+1)u (((Aa:,x)A VsB, A |z, Pfﬁﬁ“ 2 i (B, A) A" 'z ) ds.

Proof. Since Sp (A~'/2BA~"/2) C I then there exists some real numbers m, M
such that Sp (A~Y/2BA~1/2) C [m,M] C I.
Let x € H, x # 0 and put

<B$,CU> <A1/2 (A—I/QBA—l/Q) A1/2LL', $>

T (Az,z) (AY 2, AV2)

AY2BATY2) AV 25 AV 2y _ _
AL () )

where y = Az # 0 and |ul| = 1.

[[ar/2]|
Now, by taking a = gﬁi z; in (2.3) we get (2.13).

The equality (2.14) follows by (2.13) on taking the inner product (P (B, A) z, x)
and doing the appropriate calculation in the right side. The details are omitted. [

Remark 1. If we take pp = 0 in (2.13) and (2.14), then we get the simpler relations

(215)  Pr(B.A)= Z,j,f’f)(@”)?nwkw A)

-0 (Az, z) (Aw,z)

+ =Pt ibaay (B,A)A™!

n! (Ax,x)’ 1

[ 0 (Z220) 0.0.4)
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and

(2.16) <Pf (B, A)z,z)
n 1 B
= Z Ef(k) (m> <77f251’131k (B, A) x,x>
k=0 J Avz
1 1

+E o (178)

Bx,x _
X <Pf(n+1) (<§A$,IE§ A) VSB,A) x’Pf<Bm,m> - (B,A)A 1aj> ds,

(Ax,xz)’

for any x € H, x # 0.

3. INEQUALITIES FOR BOUNDED DERIVATIVES

Now, for ¢, ® € C and I an interval of real numbers, define the sets of complex-
valued functions (see for instance [7])

Ur (¢, )
= {g : I — C|Re {(QD —g(t) (M_$>] > 0 for almost every ¢t € I}

and

o+ P
2

AI(¢,<I>)::{g:I—>(C| ’g(t)— ‘§;|<I>—¢| fora.e.te[}.

The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that Uy (¢, ®) and A (¢, ®)
are nonempty, convexr and closed sets and

(3.1) Ur (¢,®) = Ar (6,9).
Proof. We observe that for any z € C we have the equivalence
o+ @ 1
_ TP < 2P —
=22 < e

if and only if

Re[(® —2) (2 —¢)] > 0.
This follows by the equality
2

1 o+ @ _
plo-of - o= 230 —re@ -9z~ 0)
that holds for any z € C.
The equality (3.1) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 3. For any ¢, ® € C, ¢ # ®, we have that
(32)  Ur(¢,®)={9:1—C| (Re® —Reg(t)) (Reg(t) — Re o)
+(Im® —Img(t)) (Img (t) —Im¢) > 0 for a.e. t € I}.
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Now, if we assume that Re () > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

(3.3) Sr(¢,®):={g:1—C| Re(®

) = Reg (t) = Re (9)
and Im (®) > Img (t) > Im (¢)

for a.e. t € I}.

One can easily observe that S; (¢, ®) is closed, convex and
(3.4) 0# S1(¢,2) CUr (¢, ).

We need the following lemma:
Lemma 1. Let T be a selfadjoint operator and A > 0. Then we have
(3.5) AV |T| AY? < AV2T AY? < AV?|T| AL/

in the operator order, where |T| is the absolute value of T.
We also have

(3.6) HA1/2TA1/2H < HA1/2 |T\A1/2H.

Proof. If we use Jensen’s operator inequality for the convex function f (t) = [¢],
then we have

Ty, )| <{|T|y.y)

for any y € H.
If we take in this inequality y = A2z, z € H, then we get

‘<TA1/2.’L‘,A1/2CL'>‘ < <|T| A1/2x,A1/2x>
that is equivalent to
(3.7 ’<A1/2TA1/2ZE,$>’ < <A1/2 [T A1/2x,x>
or to

- <A1/2 7| A1/2m,x> <A1/2TA1/235 g;> <A1/2 IT| A2, x>

for any = € H, which proves the inequality (3.5).
By taking the supremum over x € H, ||z|| = 1 in (3.7) we obtain the desired
inequality (3.6). O

Theorem 4. Let A be a positive invertible operator, B a selfadjoint operator such
that the spectrum Sp (A*I/zBA*I/g) CI and f: I — C be a n-time differentiable
function on I with the derivative FtY continuous on I and such that fort) ¢

Ai (¢n+1,q)n+1) for some ¢, 1, ®ry1 €C, ¢, 1 # Ppyy1. Then for any a € I we
have

(3.8) P; (B, A) Z f(’“ a) Py, , (B, A)

1 ¢n+1 +‘I>n+1
(1) 2
1
~ 2(n+1)!

Pfa.,'n.+1 (Bv A) H

(s — b A 2BAT 2 a7 g 4.
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Proof. We use the identity (2.3) for p = w in the form

(3.9) Py (B,A) - Z f<’f> ) Ps. . (B, A)

. 1 ¢n+l + (I>n+1
(n+1)! 2

_ i'A1/2 (A—I/QBA—1/2 B alH)nH AL/2 41
n!

1
></ (1—5)”141/2
0

X [f<n+1> (A*1/2 ((1—s)aA + sB) A*W) -

Pfanir (B, A)

Pnr - P —12— Bnt1 g | AY2ds,

for any a € I.
Taking the operator norm and using its properties we get

(3.10) || Ps (B, A) Zk'ﬂ’“ ) Py . (B, A)

. 1 ¢n+1 + (I)n-i—l
(n+ 1! 2

Pfa,n+1 (BvA)H
1
< mH,arl/zfurl/2—a1HH 1A] || A- 1||/ (1—s)"

ds,

@,
A1/2 |:f(n+1) (A—1/2 ((1—s)aA + sB) A—1/2> _ ¢”+1—|2—+11H} A1/2

for any a € I.
We observe that

Sp (A*1/2 [(1—s)aA + sB] A*1/2) = Sp ((1 —8)aly + sA*1/2BA*1/2) ci

for any a € I and s € [0,1], and by the continuous functional calculus for f(1) ¢
Aj (¢11,Pny1) we have

Pn1 + Pt

(3.11) 'f(n+1) (A—1/2 [(1—5)aA + sB] Aq/z) _ ;

1H\
1
S 5 |(I>n+1 - ¢n+1| 1H

for any a € I and s € [0,1].
Now, on multiplying both sides of (3.11) by A2 we get

A1/2
2

Pn
f(n+1) (A—1/2 [(1—5)aA+ sB] A—1/2> _ Pnt1 T Pt 1H’ AL/2
1
< 5 ’q)’ﬂ-i-l - (bn-l-l‘ A

for any a € I and s € [0,1].
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By taking the norm in this inequality, we get

1
< 5 |1 — b | A

A1/2

Foty (A*l/2 [(1—s)aA+ sB] A*W) _ O ¥ Pt ; Brtn 1H‘ AL/?

for any a € I and s € [0,1].
Using Lemma 1 we get

¢n
‘Al/Q |:f(n+1) (Afl/Z ((1 _ S) aA+SB) A71/2> _ ¢"+1—;+11H:| A1/2

¢n+1 + (I)nJrl

A1/2
2

FOtD (A—W [(1—s)aA + sB] A—1/2) - 1H’ AL/

1
< 3 1%ns1 = 6141

for any a € I and s € [0,1].
By multiplying this inequality by (1 — s)" and integrating over s € [0, 1], we get
by (3.10) the desired result (3.8). O

Corollary 4. Let A be a positive invertible operator, B a selfadjoint operator such
that the condition (2.10) for some real numbers m, M with [m, M) C I and f : I —
C be a n-time differentiable function on I and such that fort) ¢ Ai (¢n+1, <I>n+1)
for some ¢,, 1, ®ry1 €C, ¢,,1 # Ppy1. Then we have

(3.12)

"1 m+ M
Py (B,A) =) yf(’“) (2) Plusn , (B, A)
k=0 2

]- djn-t,-l + (I>n+1

’Pf%MYnJrl (BaA)H

(n+1)! 2
1 _ _ m+ M ot _
< m |(I)n+1 - ¢n+1| A 1/2BA 1/2 - TlH H14'||2 HA 1||
1

272 (n 1 1) | Pt = G| (M —m)" A A7)

Remark 2. Let A be a positive invertible operator, B a selfadjoint operator such
that the condition (2.10) holds for some real numbers m, M with [m,M] C 1. If
f: I — R is an-time differentiable function on I and such that F D) s continuous
and monotonic nondecreasing on [m, M|, then we can take ¢, | = FO+ (m) and
1 = fOTD (M) and by (3.12) we get the following result that can provide many
examples, as shown below

1 m+ M
(3.13)  |[Pr(B,A) =] ( : ) Pl , (B, A)
k=0 2
1 f(nJrl) (m) + f(n+1) (M)
T (n+1)! 2 Prusu ., (B A)
1

< gy [0 O = £ ()| (M =)™ A A7
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4. APPLICATIONS FOR RELATIVE OPERATOR ENTROPY

Consider the logarithmic function In. Then the relative operator entropy can be
interpreted as the perspective of In, namely

P (B, A) =S (A|B),

for positive invertible operators A, B.

For some recent results on relative operator entropy see [4]-[5], [19]-[20] and
[22]-]23].

Consider the function f: (0,00) — R, f (z) = Inz, then,

@) =(=D"n-1Dz", n>1, z>0,
and
—n—1
P ((04) VoB, A) = (<1)" nlAY2 (A2 ((aA) V,B) AY2) 412

for a > 0 and s € [0, 1]. Using the representation (2.4) we have

- 1
(4.1) S(AIB) = (Ina) A+ ( == “LaFPy (B, A)
k=1
+ (_ ) Pfa‘ni»l (B’A)A 1/2

1 —n—1
X / (1—s)" (A1/2 ((ad) V,B) A1/2) AY24s
0

for positive invertible operators A, B, a > 0 and n > 1.
For a = 1 we have for k£ > 1 and positive invertible operators A, B that

Pr. (B,A)= (BA™ —15)" 4
and the representation (4.1) can be written as
k=1
(-1 (BAT — 1)

1 —n—1
></ (1—s)" AL/2 (A1/2 (AV,B) A1/2) AY24s
0

(4.2) S (A|B) e (BAT —1)" 4

N\H

for positive invertible operators A, B and for any n > 1.
Let n = 2¢ + 1 with £ > 0. Then

FEHD (1) = — 20+ 1)127272 2> 0
which is an increasing function and if z € [m, M| C (0,00), then

=20+ 1)Im 722 < FOED (@) < - (204 DI
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Making use of the inequality (3.13) and assuming that positive invertible operators
A, B satisty the condition (2.10), then we get

20+1 k—1 —k
m+ M (-1) m+ M
N O o e T
1 M—2Z—2+m—2£—2
+2€ +2 2 ,PfLEM,MH (B’A)‘
1 _op_ Y 2042 201 4—

< rrrargy (7 M) (O - LA A7

for any ¢ > 0.

5. APPLICATIONS FOR OPERATOR GEOMETRIC MEAN
If we consider the continuous function f, : [0,00) — [0,00), f, (t) =t*, v € [0,1],
then the operator v-weighted arithmetic-geometric mean can be interpreted as the
perspective Py, (B, A), namely
Py, (B, A) = Af, B.

For recent results on operator Young inequality see [13]-[17], [18] and [26]-[27].
We have
@)y =vt W =v-Dt""2 ., fP W =v—1).. (v—k+1)t "

? v

for k > 1.
If, for convenience, we denote

(V) =vw-1)..(v—k+1) forveRand k>1
then we can write
FF(t) = (), t* for v € [0,1] and k > 1.
Observe that
Wppr=v(v=1) . (v=k+1)(v—k)=v(v-1), forveRand k> 1.
We have for n > 1 and s, v € [0, 1] that
Prw+n_, (AV B, A)

=172 ) (472 (403 1 2)) T

— l/lH:| A1/2

— A2 [(u —1), ((A—1/2 (AV,B) A—1/2))"*”71 _ 14 ne
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By using (2.3) we get for a =1 and = v € [0, 1] that

(5.1)  Af,B= AV B+Z )e (BA™M —14)" A
k=2
L BA 1)
(n+1)! a
1
+ i'u (BA™! - 1H)"“/ (1—s)"
n. 0

v—m—1
x AL/? {(y ~1), (A*W (AV,B) A*W) - 14 AV2gs,

for positive invertible operators A, B and for any n > 2.
If the positive invertible operators A, B satisfy the condition (2.10), then one
can get various inequalities similar to the one from (4.3).

6. APPLICATIONS FOR SOME EXPONENTIAL PERSPECTIVES

For a # 0 and a € R we consider the family of functions F, 4 : R — R defined
by

Eoo(t)=exp(a(t—a)).
We have that
E®) (t) = a* exp (a (t — a)) for any k >0
and

E®)

a,a

(a) = o for any k > 0.

For two positive invertible operators A, B and o # 0 and a € R we define the
(a, a)-exponential perspective by

(6.1) Eya(B,A) = AY/? [exp (a (14_1/2314_1/2 — alH))} Al/?
— AV [exp (aA72 (B~ ad) A712) | AV,

Observe that

’PE&T:,;-U ((aA) VB, A)

=a" M E, . ((aA) VB, A)

Q1AL [exp (aA 1/2 ((aA) VB — aA) A*1/2>] AL/
— ntAl/? [exp (aA U2 ((1 - s) (ad) + sB — aA) A‘Wﬂ AL/
|

"t AY? exp (asA 1/2(B — aA) A_I/Q)} A2

for positive invertible operators A, B, a # 0 and a € R.
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If we write the identity (2.4) for f = E4 4, then we get the identity

(6.2) Eqq(B,A)= A+Z o* Py, (B, A)

1 n
+—a Hp, (B A)

X /01 (1—s)"A71/2 [exp (asA*1/2 (B — aA) A*1/2>} A?ds.
For a =1 and a = 0, we consider the exponential perspective defined by
(6.3) E(B,A) = Ey (B, A) = A"/ [exp (A*I/QBA*I/Q)] A2,
Since for a = 0 we have
Pros (B, A) = (BA™)" 4,
then by (6.2) we get the following simple representation

(6.4) E(B,A)= A+ Z% (BA™)* 4
k=1""

1
+ l' (BA71)7L+1/ (1—s)" Al/? [exp (sAil/zBAfl/Q)} A2 s
n! 0

for positive invertible operators A, B and n > 1.
If the positive invertible operators A, B satisfy the condition (2.10), then one
can get various inequalities similar to the one from (4.3). The details are omitted.
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