REPRESENTATION OF OPERATOR PERSPECTIVES FOR CONTINUOUSLY n-TIME DIFFERENTIABLE FUNCTIONS WITH APPLICATIONS

S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper we obtain some representations of operator perspectives for continuously *n*-time differentiable functions. Applications for weighted operator geometric mean, relative operator entropy and some exponential perspectives, are also provided.

1. Introduction

Let f be a continuous function defined on the interval I of real numbers, B a self-adjoint operator on the Hilbert space H and A a positive invertible operator on H. Assume that the spectrum Sp $\left(A^{-1/2}BA^{-1/2}\right) \subset \mathring{I}$. Then by using the continuous functional calculus, we can define the *perspective* $\mathcal{P}_f(B,A)$ by setting

$$\mathcal{P}_f(B,A) := A^{1/2} f\left(A^{-1/2} B A^{-1/2}\right) A^{1/2}.$$

If A and B are commutative, then

$$\mathcal{P}_f(B,A) = Af(BA^{-1})$$

provided Sp $(BA^{-1}) \subset \mathring{I}$.

It is well known that (see [9] and [8] or [10]), if f is an operator convex function defined in the positive half-line, then the mapping

$$(B,A)\mapsto \mathcal{P}_f(B,A)$$

defined in pairs of positive definite operators, is operator convex.

In the recent paper [2] we established the following reverse inequality for the perspective $\mathcal{P}_f(B, A)$.

Let $f:[m,M] \to \mathbb{R}$ be a *convex function* on the real interval [m,M], A a positive invertible operator and B a selfadjoint operator such that

$$(1.1) mA \le B \le MA,$$

then we have

$$(1.2) 0 \leq \frac{1}{M-m} \left[f(m) (MA - B) + f(M) (B - mA) \right] - \mathcal{P}_{f}(B, A)$$

$$\leq \frac{f'_{-}(M) - f'_{+}(m)}{M-m} \left(MA^{1/2} - BA^{-1/2} \right) \left(A^{-1/2}B - mA^{1/2} \right)$$

$$\leq \frac{1}{4} (M-m) \left[f'_{-}(M) - f'_{+}(m) \right] A.$$

 $^{1991\ \}textit{Mathematics Subject Classification.}\ 47\text{A}63,\,47\text{A}30,\,15\text{A}60,.26\text{D}15,\,26\text{D}10.$

Key words and phrases. Operator noncommutative perspectives, Young's inequality, Relative operator entropy, Arithmetic mean-Geometric mean inequality.

Let $f: J \subset \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on the interval \mathring{J} , the interior of J. Suppose that there exists the constants d, D such that

(1.3)
$$d \le f''(t) \le D \text{ for any } t \in \mathring{J}.$$

If A is a positive invertible operator and B a selfadjoint operator such that the condition (1.1) is valid with $[m, M] \subset \mathring{J}$, then we have the following result as well [3]

$$(1.4) \qquad \frac{1}{2}d\left(MA^{1/2} - BA^{-1/2}\right)\left(A^{-1/2}B - mA^{1/2}\right)$$

$$\leq \frac{1}{M-m}\left[f\left(m\right)\left(MA - B\right) + f\left(M\right)\left(B - mA\right)\right] - \mathcal{P}_{f}\left(B, A\right)$$

$$\leq \frac{1}{2}D\left(MA^{1/2} - BA^{-1/2}\right)\left(A^{-1/2}B - mA^{1/2}\right).$$

If d > 0, then the first inequality in (1.4) is better than the same inequality in (1.2).

If
$$f_{\nu}:[0,\infty)\to[0,\infty), f_{\nu}(t)=t^{\nu}, \nu\in[0,1],$$
 then

$$P_{f_{\nu}}\left(B,A\right):=A^{1/2}\left(A^{-1/2}BA^{-1/2}\right)^{\nu}A^{1/2}=:A\sharp_{\nu}B,$$

is the weighted operator geometric mean of the positive invertible operators A and B with the weight ν .

We define the weighted operator arithmetic mean by

$$A\nabla_{\nu}B := (1 - \nu) A + \nu B, \ \nu \in [0, 1].$$

It is well known that the following Young's type inequality holds:

$$A \forall ... B \leq A \nabla_{...} B$$

for any $\nu \in [0, 1]$.

If we take the function $f = \ln$, then

$$P_{\ln}\left(B,A\right) := A^{1/2} \ln \left(A^{-1/2} B A^{-1/2}\right) A^{1/2} =: S\left(A|B\right),$$

is the relative operator entropy, for positive invertible operators A and B.

Kamei and Fujii [11], [12] defined the relative operator entropy S(A|B), for positive invertible operators A and B, which is a relative version of the operator entropy considered by Nakamura-Umegaki [25].

In the recent paper [6] we established the following representation result:

Theorem 1. Let A be a positive invertible operator, B a selfadjoint operator such that the spectrum $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset \mathring{I}$ and $f:I\to\mathbb{C}$ be a continuously differentiable function on \mathring{I} . Then for any $a\in I$ and $\mu\in\mathbb{C}$ we have

$$(1.5) P_f(B,A) = f(a) A + \mu (B - aA) + (BA^{-1} - aI) \int_0^1 P_{f'-\mu} ((aA) \nabla_t B, A) dt.$$

Using the representation (1.5), we have for positive invertible operators A, B that

(1.6)
$$A\sharp_{\nu}B = a^{\nu}A + \mu (B - aA) + (BA^{-1} - aI) \times \int_{0}^{1} A^{1/2} \left[\nu \left(A^{-1/2} \left[(aA) \nabla_{t}B \right] A^{-1/2} \right)^{\nu - 1} - \mu I \right] A^{1/2} dt,$$

for any a > 0 and $\mu \in \mathbb{R}$.

If we take in this equality a=1 and $\mu=\nu$, then we get the equality

$$(1.7) \quad A\sharp_{\nu} B = A\nabla_{\nu} B$$

$$+\nu \left(BA^{-1}-I\right)\int_{0}^{1}A^{1/2}\left[\left(A^{-1/2}\left(A\nabla_{t}B\right)A^{-1/2}\right)^{\nu-1}-I\right]A^{1/2}dt,$$

that is equivalent to

(1.8)
$$0 \le A \nabla_{\nu} B - A \sharp_{\nu} B$$
$$= \nu \left(I - B A^{-1} \right) \int_{0}^{1} A^{1/2} \left[\left(A^{-1/2} \left(A \nabla_{t} B \right) A^{-1/2} \right)^{\nu - 1} - I \right] A^{1/2} dt.$$

Using the identity (1.5) for $f = \ln$, we have for the positive invertible operators A, B that

(1.9)
$$S(A|B) = (\ln a) A + \mu (B - aA)$$
$$+ (BA^{-1} - aI) \int_0^1 A^{1/2} \left[A^{1/2} \left[(aA) \nabla_t B \right]^{-1} A^{1/2} - \mu I \right] A^{1/2} dt$$
$$= (\ln a) A + \mu (B - aA)$$
$$+ (B - aA) \left(\int_0^1 \left[\left[(aA) \nabla_t B \right]^{-1} - \mu A^{-1} \right] dt \right) A$$

for any a > 0 and $\mu \in \mathbb{R}$.

If we take in (1.9) a = 1 and $\mu = 1$, then we have the simpler equality

(1.10)
$$S(A|B) = B - A + (B - A) \left(\int_0^1 \left[(A\nabla_t B)^{-1} - A^{-1} \right] dt \right) A.$$

Motivated by the above results, in this paper we obtain some representations for operator perspectives of continuously n-time differentiable functions. Applications for weighted operator geometric mean, relative operator entropy and some exponential perspectives, are also provided.

2. Some Representation Results

For the function $f_{c,k}: \mathbb{R} \to [0,\infty)$, $f_{c,k}(u) = (u-c)^k$ where $c \in \mathbb{R}$ and natural number $k \geq 1$ we consider the perspective

(2.1)
$$\mathcal{P}_{f_{c,k}}(B,A) := A^{1/2} f_{c,k} \left(A^{-1/2} B A^{-1/2} \right) A^{1/2}$$

where A is a positive invertible operator and B a selfadjoint operator on the Hilbert space H.

We observe that for any $k \geq 1$ we have

$$\begin{split} \mathcal{P}_{f_{c,k}}\left(B,A\right) &= A^{1/2} \left(A^{-1/2}BA^{-1/2} - c1_{H}\right)^{k} A^{1/2} \\ &= A^{1/2} \left(A^{-1/2} \left(B - cA\right) A^{-1/2}\right)^{k} A^{1/2} \\ &= A^{1/2}A^{-1/2} \left(B - cA\right) A^{-1/2} ... A^{-1/2} \left(B - cA\right) A^{-1/2} A^{1/2} \\ &= \left(B - cA\right) A^{-1} ... \left(B - cA\right) A^{-1} A = \left[\left(B - cA\right) A^{-1}\right]^{k} A \\ &= \left(BA^{-1} - c1_{H}\right)^{k} A. \end{split}$$

For k = 0, we put $\mathcal{P}_{f_{c,0}}(B, A) = A$.

The following theorem is well known in the literature as Taylor's theorem with the integral remainder.

Theorem 2. Let $I \subset \mathbb{R}$ be a closed interval, $a \in I$ and let n be a positive integer. If $f: I \longrightarrow \mathbb{R}$ is such that $f^{(n)}$ is absolutely continuous on I, then for each $u \in I$

$$(2.2) f(u) = T_n(f; a, u) + R_n(f; a, u),$$

where $T_n(f; a, u)$ is Taylor's polynomial, i.e.,

$$T_n(f; a, u) := \sum_{k=0}^{n} \frac{(u-a)^k}{k!} f^{(k)}(a).$$

Note that $f^{(0)} := f$ and 0! := 1, and the remainder is given by

$$R_n(f; a, u) := \frac{1}{n!} \int_a^u (u - t)^n f^{(n+1)}(t) dt.$$

We have the following generalization of Theorem 1:

Theorem 3. Let A be a positive invertible operator, B a selfadjoint operator such that the spectrum $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset\mathring{I}$ and $f:I\to\mathbb{C}$ be a n-time differentiable function on \mathring{I} with the derivative $f^{(n+1)}$ continuous on \mathring{I} . Then for any $a\in I$ and $\mu\in\mathbb{C}$ we have

$$(2.3) \quad P_{f}(B,A) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) \mathcal{P}_{f_{a,k}}(B,A) + \frac{1}{(n+1)!} \mu \mathcal{P}_{f_{a,n+1}}(B,A) + \frac{1}{n!} \mathcal{P}_{f_{a,n+1}}(B,A) A^{-1} \int_{0}^{1} (1-s)^{n} \mathcal{P}_{f^{(n+1)}-\mu}((aA) \nabla_{s}B,A) ds.$$

In particular, we have for $\mu = 0$ that

$$(2.4) P_{f}(B,A) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) \mathcal{P}_{f_{a,k}}(B,A) + \frac{1}{n!} \mathcal{P}_{f_{a,n+1}}(B,A) A^{-1} \int_{0}^{1} (1-s)^{n} \mathcal{P}_{f^{(n+1)}}((aA) \nabla_{s}B,A) ds.$$

Proof. By taking $u \in I$ and by using the change of variable $[0,1] \ni t \longmapsto s = (1-t)a + tu$ in Taylor's representation (2.2) we have

$$(2.5) f(u) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) (u-a)^{k}$$

$$+ \frac{1}{n!} (u-a)^{n+1} \int_{0}^{1} f^{(n+1)} ((1-s) a + su) (1-s)^{n} ds$$

$$= \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) (u-a)^{k}$$

$$+ \frac{1}{n!} (u-a)^{n+1} \int_{0}^{1} \left[f^{(n+1)} ((1-s) a + su) - \mu \right] (1-s)^{n} ds$$

$$+ \frac{1}{n!} (u-a)^{n+1} \mu \int_{0}^{1} (1-s)^{n} ds$$

$$= \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) (u-a)^{k} + \frac{1}{(n+1)!} (u-a)^{n+1} \mu$$

$$+ \frac{1}{n!} (u-a)^{n+1} \int_{0}^{1} \left[f^{(n+1)} ((1-s) a + su) - \mu \right] (1-s)^{n} ds$$

for any $\mu \in \mathbb{C}$.

Let T be a selfadjoint operator with $\operatorname{Sp}(T) \subset \mathring{I}$. Take the real numbers m, M such that $\operatorname{Sp}(T) \subseteq [m, M] \subset \mathring{I}$. If $\{E_{\lambda}\}_{{\lambda} \in \mathbb{R}}$ is the spectral family of the operator T, then by the spectral representation theorem (SRT) we have

$$f(T) = \int_{m-0}^{M} f(\lambda) dE_{\lambda} := \lim_{\varepsilon \to 0+} \int_{m-\varepsilon}^{M} f(\lambda) dE_{\lambda},$$

where the integral is taken in the Riemann-Stieltjes sense.

Let $\varepsilon > 0$ small enough such that $[m - \varepsilon, M] \subset \mathring{I}$, then by integrating the equality (2.5) on the interval $[m - \varepsilon, M]$ and using the Fubini theorem, we have

$$(2.6) \int_{m-\varepsilon}^{M} f(\lambda) dE_{\lambda}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) \int_{m-\varepsilon}^{M} (\lambda - a)^{k} dE_{\lambda} + \frac{1}{(n+1)!} \mu \int_{m-\varepsilon}^{M} (\lambda - a)^{n+1} dE_{\lambda}$$

$$+ \frac{1}{n!} \int_{m-\varepsilon}^{M} \left[(\lambda - a)^{n+1} \int_{0}^{1} \left[f^{(n+1)} \left((1-s) a + s\lambda \right) - \mu \right] (1-s)^{n} ds \right] dE_{\lambda}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) \int_{m-\varepsilon}^{M} (\lambda - a)^{k} dE_{\lambda} + \frac{1}{(n+1)!} \mu \int_{m-\varepsilon}^{M} (\lambda - a)^{n+1} dE_{\lambda}$$

$$+ \frac{1}{n!} \int_{0}^{1} \left[(1-s)^{n} \int_{m-\varepsilon}^{M} \left[(\lambda - a)^{n+1} \left[f^{(n+1)} \left((1-s) a + s\lambda \right) - \mu \right] \right] dE_{\lambda} \right] ds$$

for any $a \in \mathring{I}$.

Taking the limit over $\varepsilon \to 0+$ in (2.6) we get by SRT that

$$f(T) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) (T - a1_H)^k + \frac{1}{(n+1)!} \mu (T - a1_H)^{n+1}$$

$$+ \frac{1}{n!} \int_0^1 (1-s)^n (T - a1_H)^{n+1} \left[f^{(n+1)} ((1-s) a1_H + sT) - \mu 1_H \right] ds$$

which can be written in an equivalent form as

$$(2.7) f(T) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) (T - a1_H)^k + \frac{1}{(n+1)!} \mu (T - a1_H)^{n+1}$$

$$+ \frac{1}{n!} (T - a1_H)^{n+1} \int_0^1 (1-s)^n \left[f^{(n+1)} ((1-s) a1_H + sT) - \mu 1_H \right] ds.$$

This result is of interest in itself.

For $\mu = 0$ we also have the simpler representation

(2.8)
$$f(T) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) (T - a1_H)^k + \frac{1}{n!} (T - a1_H)^{n+1} \int_0^1 (1 - s)^n \left[f^{(n+1)} ((1 - s) a1_H + sT) \right] ds.$$

If we take $T = A^{-1/2}BA^{-1/2}$ in (2.7), then we have

$$f\left(A^{-1/2}BA^{-1/2}\right) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}\left(a\right) \left(A^{-1/2}BA^{-1/2} - a1_{H}\right)^{k}$$

$$+ \frac{1}{(n+1)!} \mu \left(A^{-1/2}BA^{-1/2} - a1_{H}\right)^{n+1}$$

$$+ \frac{1}{n!} \left(A^{-1/2}BA^{-1/2} - a1_{H}\right)^{n+1}$$

$$\times \int_{0}^{1} (1-s)^{n} \left[f^{(n+1)}\left((1-s)a1_{H} + sA^{-1/2}BA^{-1/2}\right) - \mu 1_{H}\right] ds.$$

If we multiply both sides by $A^{1/2}$ then we get

$$(2.9) A^{1/2} f\left(A^{-1/2}BA^{-1/2}\right) A^{1/2}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) A^{1/2} \left(A^{-1/2}BA^{-1/2} - a1_{H}\right)^{k} A^{1/2}$$

$$+ \frac{1}{(n+1)!} \mu A^{1/2} \left(A^{-1/2}BA^{-1/2} - a1_{H}\right)^{n+1} A^{1/2}$$

$$+ \frac{1}{n!} A^{1/2} \left(A^{-1/2}BA^{-1/2} - a1_{H}\right)^{n+1}$$

$$\times \int_{0}^{1} (1-s)^{n} \left[f^{(n+1)} \left((1-s) a1_{H} + sA^{-1/2}BA^{-1/2} \right) - \mu 1_{H} \right] A^{1/2} ds.$$

Observe that

$$A^{1/2} \left(A^{-1/2} B A^{-1/2} - a 1_H \right)^k A^{1/2} = \mathcal{P}_{f_{a,k}} \left(B, A \right),$$

$$A^{1/2} \left(A^{-1/2} B A^{-1/2} - a 1_H \right)^{n+1} A^{1/2} = \mathcal{P}_{f_{a,n+1}} \left(B, A \right)$$

and

$$A^{1/2} \left(A^{-1/2} B A^{-1/2} - a 1_H \right)^{n+1}$$

$$\times \int_0^1 (1-s)^n \left[f^{(n+1)} \left((1-s) a 1_H + s A^{-1/2} B A^{-1/2} \right) - \mu 1_H \right] A^{1/2} ds$$

$$= A^{1/2} \left(A^{-1/2} B A^{-1/2} - a 1_H \right)^{n+1} A^{1/2} A^{-1}$$

$$\times \int_0^1 (1-s)^n A^{1/2} \left[f^{(n+1)} \left(A^{-1/2} \left((1-s) a A + s B \right) A^{-1/2} \right) - \mu 1_H \right] A^{1/2} ds$$

$$= \mathcal{P}_{f_{a,n+1}} \left(B, A \right) A^{-1} \int_0^1 (1-s)^n \mathcal{P}_{f^{(n+1)} - \mu} \left((1-s) a A + s B, A \right) ds$$

for $n \geq 1$ and $a \in I$.

Using the equality (2.9) we deduce the desired result (2.3).

Corollary 1. Let A be a positive invertible operator, B a selfadjoint operator such that

$$(2.10) mA \le B \le MA$$

for some real numbers m, M with $[m, M] \subset \mathring{I}$ and $f: I \to \mathbb{C}$ be a n-time differentiable function on \mathring{I} with the derivative $f^{(n+1)}$ continuous on \mathring{I} . Then for any $\mu \in \mathbb{C}$ we have

$$(2.11) P_{f}(B,A) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)} \left(\frac{m+M}{2}\right) \mathcal{P}_{f_{\frac{m+M}{2},k}}(B,A)$$

$$+ \frac{1}{(n+1)!} \mu \mathcal{P}_{f_{\frac{m+M}{2},n+1}}(B,A) + \frac{1}{n!} \mathcal{P}_{f_{\frac{m+M}{2},n+1}}(B,A) A^{-1}$$

$$\times \int_{0}^{1} (1-s)^{n} \mathcal{P}_{f^{(n+1)}-\mu} \left(\left(\frac{m+M}{2}A\right) \nabla_{s}B, A\right) ds.$$

In particular, we have for $\mu = 0$ that

(2.12)
$$P_{f}(B,A) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)} \left(\frac{m+M}{2}\right) \mathcal{P}_{f_{a,k}}(B,A) + \frac{1}{n!} \mathcal{P}_{f_{\frac{m+M}{2},n+1}}(B,A) A^{-1} \times \int_{0}^{1} (1-s)^{n} \mathcal{P}_{f^{(n+1)}}\left(\left(\frac{m+M}{2}A\right) \nabla_{s}B,A\right) ds.$$

From the condition (2.10) we have by multiplying both sides with $A^{-1/2}$ that $m1_H \leq A^{-1/2}BA^{-1/2} \leq M1_H$. Therefore Sp $\left(A^{-1/2}BA^{-1/2}\right) \subset \mathring{I}$ and by taking $a = \frac{m+M}{2}$ in Theorem 3 we get (2.11) and (2.12).

Corollary 2. With the assumptions of Theorem 3 we have for any $x \in H$, $x \neq 0$ that

$$(2.13) P_{f}(B,A) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)} \left(\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle} \right) \mathcal{P}_{f_{\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}, k}}(B,A)$$

$$+ \frac{1}{(n+1)!} \mu \mathcal{P}_{f_{\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}, n+1}}(B,A) + \frac{1}{n!} \mathcal{P}_{f_{\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}, n+1}}(B,A) A^{-1}$$

$$\times \int_{0}^{1} (1-s)^{n} \mathcal{P}_{f^{(n+1)} - \mu} \left(\left(\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle} A \right) \nabla_{s} B, A \right) ds$$

and

$$\begin{split} (2.14) & \quad \langle P_f\left(B,A\right)x,x\rangle \\ &= \sum_{k=0}^n \frac{1}{k!} f^{(k)} \left(\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}\right) \left\langle \mathcal{P}_{f_{\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle},k}}\left(B,A\right)x,x\right\rangle \\ & \quad + \frac{1}{(n+1)!} \mu \left\langle \mathcal{P}_{f_{\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle},n+1}}\left(B,A\right)x,x\right\rangle \\ & \quad + \frac{1}{n!} \int_0^1 \left(1-s\right)^n \\ & \quad \times \left\langle \mathcal{P}_{f^{(n+1)}-\mu} \left(\left(\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}A\right)\nabla_s B,A\right)x,\mathcal{P}_{f_{\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle},n+1}}\left(B,A\right)A^{-1}x\right\rangle ds. \end{split}$$

Proof. Since $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset \mathring{I}$ then there exists some real numbers m,M such that $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subseteq [m,M]\subset \mathring{I}$.

Let $x \in H$, $x \neq 0$ and put

$$a = \frac{\langle Bx, x \rangle}{\langle Ax, x \rangle} = \frac{\langle A^{1/2} \left(A^{-1/2} B A^{-1/2} \right) A^{1/2} x, x \rangle}{\langle A^{1/2} x, A^{1/2} x \rangle}$$

$$= \frac{\langle \left(A^{-1/2} B A^{-1/2} \right) A^{1/2} x, A^{1/2} x \rangle}{\left\| A^{1/2} x \right\|^2} = \left\langle \left(A^{-1/2} B A^{-1/2} \right) u, u \right\rangle \in [m, M],$$

where $u = \frac{A^{1/2}x}{\|A^{1/2}x\|^2} \neq 0$ and $\|u\| = 1$.

Now, by taking $a = \frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}$ in (2.3) we get (2.13).

The equality (2.14) follows by (2.13) on taking the inner product $\langle P_f(B, A) x, x \rangle$ and doing the appropriate calculation in the right side. The details are omitted. \square

Remark 1. If we take $\mu = 0$ in (2.13) and (2.14), then we get the simpler relations

$$(2.15) P_{f}(B,A) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)} \left(\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle} \right) \mathcal{P}_{f_{\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}, k}}(B,A)$$

$$+ \frac{1}{n!} \mathcal{P}_{f_{\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}, n+1}}(B,A) A^{-1}$$

$$\times \int_{0}^{1} (1-s)^{n} \mathcal{P}_{f^{(n+1)}} \left(\left(\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle} A \right) \nabla_{s} B, A \right) ds$$

and

$$(2.16) \qquad \langle P_{f}(B,A)x,x\rangle$$

$$= \sum_{k=0}^{n} \frac{1}{k!} f^{(k)} \left(\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}\right) \left\langle \mathcal{P}_{f_{\langle Bx,x\rangle},k}\left(B,A\right)x,x\right\rangle$$

$$+ \frac{1}{n!} \int_{0}^{1} (1-s)^{n} \times \left\langle \mathcal{P}_{f^{(n+1)}}\left(\left(\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}A\right)\nabla_{s}B,A\right)x, \mathcal{P}_{f_{\langle Bx,x\rangle},n+1}\left(B,A\right)A^{-1}x\right\rangle ds,$$

for any $x \in H$, $x \neq 0$.

3. Inequalities for Bounded Derivatives

Now, for ϕ , $\Phi \in \mathbb{C}$ and I an interval of real numbers, define the sets of complex-valued functions (see for instance [7])

$$\begin{split} \bar{U}_{I}\left(\phi,\Phi\right) \\ := \left\{g: I \to \mathbb{C} | \operatorname{Re}\left[\left(\Phi - g\left(t\right)\right) \left(\overline{g\left(t\right)} - \overline{\phi}\right)\right] \geq 0 \text{ for almost every } t \in I\right\} \end{split}$$

and

$$\bar{\Delta}_{I}\left(\phi,\Phi\right):=\left\{g:I\to\mathbb{C}|\;\left|g\left(t\right)-\frac{\phi+\Phi}{2}\right|\leq\frac{1}{2}\left|\Phi-\phi\right|\;\text{for a.e. }t\in I\right\}.$$

The following representation result may be stated.

Proposition 1. For any ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$, we have that $\bar{U}_I(\phi, \Phi)$ and $\bar{\Delta}_I(\phi, \Phi)$ are nonempty, convex and closed sets and

(3.1)
$$\bar{U}_{I}(\phi, \Phi) = \bar{\Delta}_{I}(\phi, \Phi).$$

Proof. We observe that for any $z \in \mathbb{C}$ we have the equivalence

$$\left|z - \frac{\phi + \Phi}{2}\right| \le \frac{1}{2} \left|\Phi - \phi\right|$$

if and only if

$$\operatorname{Re}\left[\left(\Phi - z\right)\left(\bar{z} - \phi\right)\right] \ge 0.$$

This follows by the equality

$$\frac{1}{4} \left| \Phi - \phi \right|^2 - \left| z - \frac{\phi + \Phi}{2} \right|^2 = \operatorname{Re} \left[(\Phi - z) \left(\bar{z} - \phi \right) \right]$$

that holds for any $z \in \mathbb{C}$.

The equality (3.1) is thus a simple consequence of this fact.

On making use of the complex numbers field properties we can also state that:

Corollary 3. For any ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$, we have that

(3.2)
$$\bar{U}_{I}(\phi, \Phi) = \{g : I \to \mathbb{C} \mid (\operatorname{Re} \Phi - \operatorname{Re} g(t)) (\operatorname{Re} g(t) - \operatorname{Re} \phi) + (\operatorname{Im} \Phi - \operatorname{Im} g(t)) (\operatorname{Im} g(t) - \operatorname{Im} \phi) > 0 \text{ for a.e. } t \in I\}.$$

Now, if we assume that $\operatorname{Re}(\Phi) \ge \operatorname{Re}(\phi)$ and $\operatorname{Im}(\Phi) \ge \operatorname{Im}(\phi)$, then we can define the following set of functions as well:

(3.3)
$$\bar{S}_{I}(\phi, \Phi) := \{g : I \to \mathbb{C} \mid \operatorname{Re}(\Phi) \ge \operatorname{Re}g(t) \ge \operatorname{Re}(\phi)$$
 and $\operatorname{Im}(\Phi) \ge \operatorname{Im}g(t) \ge \operatorname{Im}(\phi)$ for a.e. $t \in I\}$.

One can easily observe that $\bar{S}_I(\phi, \Phi)$ is closed, convex and

$$\emptyset \neq \bar{S}_{I}(\phi, \Phi) \subseteq \bar{U}_{I}(\phi, \Phi).$$

We need the following lemma:

Lemma 1. Let T be a selfadjoint operator and $A \geq 0$. Then we have

$$(3.5) -A^{1/2} |T| A^{1/2} \le A^{1/2} T A^{1/2} \le A^{1/2} |T| A^{1/2}$$

in the operator order, where |T| is the absolute value of T.

We also have

$$\left\| A^{1/2} T A^{1/2} \right\| \le \left\| A^{1/2} \left| T \right| A^{1/2} \right\|.$$

Proof. If we use Jensen's operator inequality for the convex function f(t) = |t|, then we have

$$|\langle Ty, y \rangle| \le \langle |T| y, y \rangle$$

for any $y \in H$.

If we take in this inequality $y = A^{1/2}x$, $x \in H$, then we get

$$\left|\left\langle TA^{1/2}x,A^{1/2}x\right\rangle\right|\leq\left\langle \left|T\right|A^{1/2}x,A^{1/2}x\right\rangle$$

that is equivalent to

$$\left| \left\langle A^{1/2} T A^{1/2} x, x \right\rangle \right| \le \left\langle A^{1/2} \left| T \right| A^{1/2} x, x \right\rangle$$

or to

$$-\left\langle A^{1/2}\left|T\right|A^{1/2}x,x\right\rangle \leq\left\langle A^{1/2}TA^{1/2}x,x\right\rangle \leq\left\langle A^{1/2}\left|T\right|A^{1/2}x,x\right\rangle$$

for any $x \in H$, which proves the inequality (3.5).

By taking the supremum over $x \in H$, ||x|| = 1 in (3.7) we obtain the desired inequality (3.6).

Theorem 4. Let A be a positive invertible operator, B a selfadjoint operator such that the spectrum $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset \mathring{I}$ and $f:I\to\mathbb{C}$ be a n-time differentiable function on \mathring{I} with the derivative $f^{(n+1)}$ continuous on \mathring{I} and such that $f^{(n+1)}\in\bar{\Delta}_{\mathring{I}}\left(\phi_{n+1},\Phi_{n+1}\right)$ for some $\phi_{n+1},\Phi_{n+1}\in\mathbb{C}$, $\phi_{n+1}\neq\Phi_{n+1}$. Then for any $a\in I$ we have

$$(3.8) \qquad \left\| P_{f}(B,A) - \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) \mathcal{P}_{f_{a,k}}(B,A) - \frac{1}{(n+1)!} \frac{\phi_{n+1} + \Phi_{n+1}}{2} \mathcal{P}_{f_{a,n+1}}(B,A) \right\|$$

$$\leq \frac{1}{2(n+1)!} \left| \Phi_{n+1} - \phi_{n+1} \right| \left\| A^{-1/2} B A^{-1/2} - a \mathbb{1}_{H} \right\|^{n+1} \left\| A \right\|^{2} \left\| A^{-1} \right\|.$$

Proof. We use the identity (2.3) for $\mu = \frac{\phi_{n+1} + \Phi_{n+1}}{2}$ in the form

$$(3.9) \quad P_{f}(B,A) - \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) \mathcal{P}_{f_{a,k}}(B,A)$$

$$- \frac{1}{(n+1)!} \frac{\phi_{n+1} + \Phi_{n+1}}{2} \mathcal{P}_{f_{a,n+1}}(B,A)$$

$$= \frac{1}{n!} A^{1/2} \left(A^{-1/2} B A^{-1/2} - a 1_{H} \right)^{n+1} A^{1/2} A^{-1}$$

$$\times \int_{0}^{1} (1-s)^{n} A^{1/2}$$

$$\times \left[f^{(n+1)} \left(A^{-1/2} \left((1-s) a A + s B \right) A^{-1/2} \right) - \frac{\phi_{n+1} + \Phi_{n+1}}{2} 1_{H} \right] A^{1/2} ds,$$

for any $a \in I$.

Taking the operator norm and using its properties we get

for any $a \in I$.

We observe that

$$\operatorname{Sp}\left(A^{-1/2}\left[\left(1-s\right)aA+sB\right]A^{-1/2}\right)=\operatorname{Sp}\left(\left(1-s\right)a1_{H}+sA^{-1/2}BA^{-1/2}\right)\subset\mathring{I}$$

for any $a \in \mathring{I}$ and $s \in [0,1]$, and by the continuous functional calculus for $f^{(n+1)} \in \bar{\Delta}_{\mathring{I}}(\phi_{n+1}, \Phi_{n+1})$ we have

(3.11)
$$\left| f^{(n+1)} \left(A^{-1/2} \left[(1-s) aA + sB \right] A^{-1/2} \right) - \frac{\phi_{n+1} + \Phi_{n+1}}{2} 1_H \right|$$

$$\leq \frac{1}{2} \left| \Phi_{n+1} - \phi_{n+1} \right| 1_H$$

for any $a \in \mathring{I}$ and $s \in [0, 1]$.

Now, on multiplying both sides of (3.11) by $A^{1/2}$, we get

$$A^{1/2} \left| f^{(n+1)} \left(A^{-1/2} \left[(1-s) aA + sB \right] A^{-1/2} \right) - \frac{\phi_{n+1} + \Phi_{n+1}}{2} 1_H \right| A^{1/2}$$

$$\leq \frac{1}{2} \left| \Phi_{n+1} - \phi_{n+1} \right| A$$

for any $a \in \mathring{I}$ and $s \in [0, 1]$.

By taking the norm in this inequality, we get

$$\left\| A^{1/2} \left| f^{(n+1)} \left(A^{-1/2} \left[(1-s) aA + sB \right] A^{-1/2} \right) - \frac{\phi_{n+1} + \Phi_{n+1}}{2} 1_H \left| A^{1/2} \right| \right. \\ \leq \frac{1}{2} \left| \Phi_{n+1} - \phi_{n+1} \right| \|A\|$$

for any $a \in \mathring{I}$ and $s \in [0, 1]$.

Using Lemma 1 we get

$$\begin{aligned} & \left\| A^{1/2} \left[f^{(n+1)} \left(A^{-1/2} \left((1-s) aA + sB \right) A^{-1/2} \right) - \frac{\phi_{n+1} + \Phi_{n+1}}{2} 1_H \right] A^{1/2} \right\| \\ & \left\| A^{1/2} \left| f^{(n+1)} \left(A^{-1/2} \left[(1-s) aA + sB \right] A^{-1/2} \right) - \frac{\phi_{n+1} + \Phi_{n+1}}{2} 1_H \right| A^{1/2} \right\| \\ & \leq \frac{1}{2} \left| \Phi_{n+1} - \phi_{n+1} \right| \|A\| \end{aligned}$$

for any $a \in \mathring{I}$ and $s \in [0, 1]$.

By multiplying this inequality by $(1-s)^n$ and integrating over $s \in [0,1]$, we get by (3.10) the desired result (3.8).

Corollary 4. Let A be a positive invertible operator, B a selfadjoint operator such that the condition (2.10) for some real numbers m, M with $[m,M] \subset \mathring{I}$ and $f:I \to \mathbb{C}$ be a n-time differentiable function on \mathring{I} and such that $f^{(n+1)} \in \bar{\Delta}_{\mathring{I}} (\phi_{n+1}, \Phi_{n+1})$ for some ϕ_{n+1} , $\Phi_{n+1} \in \mathbb{C}$, $\phi_{n+1} \neq \Phi_{n+1}$. Then we have

$$(3.12) \left\| P_{f}(B,A) - \sum_{k=0}^{n} \frac{1}{k!} f^{(k)} \left(\frac{m+M}{2} \right) \mathcal{P}_{f_{\frac{m+M}{2},k}}(B,A) - \frac{1}{(n+1)!} \frac{\phi_{n+1} + \Phi_{n+1}}{2} \mathcal{P}_{f_{\frac{m+M}{2},n+1}}(B,A) \right\|$$

$$\leq \frac{1}{2(n+1)!} \left| \Phi_{n+1} - \phi_{n+1} \right| \left\| A^{-1/2} B A^{-1/2} - \frac{m+M}{2} \mathbf{1}_{H} \right\|^{n+1} \left\| A \right\|^{2} \left\| A^{-1} \right\|$$

$$\leq \frac{1}{2^{n+2}(n+1)!} \left| \Phi_{n+1} - \phi_{n+1} \right| \left(M - m \right)^{n+1} \left\| A \right\|^{2} \left\| A^{-1} \right\| .$$

Remark 2. Let A be a positive invertible operator, B a selfadjoint operator such that the condition (2.10) holds for some real numbers m, M with $[m, M] \subset \mathring{I}$. If $f: I \to \mathbb{R}$ is a n-time differentiable function on \mathring{I} and such that $f^{(n+1)}$ is continuous and monotonic nondecreasing on [m, M], then we can take $\phi_{n+1} = f^{(n+1)}(m)$ and $\Phi_{n+1} = f^{(n+1)}(M)$ and by (3.12) we get the following result that can provide many examples, as shown below

4. Applications for Relative Operator Entropy

Consider the logarithmic function ln. Then the relative operator entropy can be interpreted as the perspective of ln, namely

$$\mathcal{P}_{\ln}(B, A) = S(A|B),$$

for positive invertible operators A, B.

For some recent results on relative operator entropy see [4]-[5], [19]-[20] and [22]-[23].

Consider the function $f:(0,\infty)\longrightarrow \mathbb{R}, f(x)=\ln x$, then,

$$f^{(n)}(x) = (-1)^{n-1} (n-1)! x^{-n}, \ n \ge 1, \ x > 0,$$

and

$$\mathcal{P}_{f^{(n+1)}}\left((aA)\,\nabla_s B,A\right) = (-1)^n\,n!A^{1/2}\left(A^{1/2}\left((aA)\,\nabla_s B\right)A^{1/2}\right)^{-n-1}A^{1/2}$$

for a > 0 and $s \in [0, 1]$. Using the representation (2.4) we have

(4.1)
$$S(A|B) = (\ln a) A + \sum_{k=1}^{n} \frac{1}{k} (-1)^{k-1} a^{-k} \mathcal{P}_{f_{a,k}} (B, A) + (-1)^{n} \mathcal{P}_{f_{a,n+1}} (B, A) A^{-1/2} \times \int_{0}^{1} (1-s)^{n} \left(A^{1/2} ((aA) \nabla_{s} B) A^{1/2} \right)^{-n-1} A^{1/2} ds$$

for positive invertible operators A, B, a > 0 and $n \ge 1$.

For a=1 we have for $k\geq 1$ and positive invertible operators A, B that

$$\mathcal{P}_{f_{1,k}}(B,A) = (BA^{-1} - 1_H)^k A$$

and the representation (4.1) can be written as

$$(4.2) S(A|B) = \sum_{k=1}^{n} \frac{1}{k} (-1)^{k-1} (BA^{-1} - 1_H)^k A$$

$$+ (-1)^n (BA^{-1} - 1_H)^{n+1}$$

$$\times \int_0^1 (1-s)^n A^{1/2} (A^{1/2} (A\nabla_s B) A^{1/2})^{-n-1} A^{1/2} ds$$

for positive invertible operators A, B and for any $n \geq 1$.

Let $n = 2\ell + 1$ with $\ell \geq 0$. Then

$$f^{(2\ell+2)}(x) = -(2\ell+1)!x^{-2\ell-2}, \ x>0$$

which is an increasing function and if $x \in [m, M] \subset (0, \infty)$, then

$$-(2\ell+1)!m^{-2\ell-2} \le f^{(2\ell+2)}(x) \le -(2\ell+1)!M^{-2\ell-2}.$$

Making use of the inequality (3.13) and assuming that positive invertible operators A, B satisfy the condition (2.10), then we get

$$(4.3) \quad \left\| S\left(A|B\right) - \ln\left(\frac{m+M}{2}\right) A - \sum_{k=1}^{2\ell+1} \frac{(-1)^{k-1}}{k} \left(\frac{m+M}{2}\right)^{-k} \mathcal{P}_{f_{\frac{m+M}{2},k}}\left(B,A\right) \right.$$

$$\left. + \frac{1}{2\ell+2} \frac{M^{-2\ell-2} + m^{-2\ell-2}}{2} \mathcal{P}_{f_{\frac{m+M}{2},2\ell+2}}\left(B,A\right) \right\|$$

$$\leq \frac{1}{2^{n+2} \left(2\ell+2\right)} \left(m^{-2\ell-2} - M^{-2\ell-2}\right) \left(M-m\right)^{2\ell+2} \left\|A\right\|^{2} \left\|A^{-1}\right\|,$$

for any $\ell \geq 0$.

5. Applications for Operator Geometric Mean

If we consider the continuous function $f_{\nu}:[0,\infty)\to[0,\infty), f_{\nu}(t)=t^{\nu}, \nu\in[0,1]$, then the operator ν -weighted arithmetic-geometric mean can be interpreted as the perspective $\mathcal{P}_{f_{\nu}}(B,A)$, namely

$$\mathcal{P}_{f_{\nu}}(B,A) = A\sharp_{\nu}B.$$

For recent results on operator Young inequality see [13]-[17], [18] and [26]-[27]. We have

$$f_{\nu}^{\prime}\left(t\right)=\nu t^{\nu-1},\ f_{\nu}^{\prime\prime}\left(t\right)=\nu\left(\nu-1\right)t^{\nu-2},...,\ f_{\nu}^{\left(k\right)}\left(t\right)=\nu\left(\nu-1\right)...\left(\nu-k+1\right)t^{\nu-k}$$

for k > 1.

If, for convenience, we denote

$$(\nu)_k := \nu (\nu - 1) \dots (\nu - k + 1)$$
 for $\nu \in \mathbb{R}$ and $k \ge 1$

then we can write

$$f_{\nu}^{(k)}(t) = (\nu)_k t^{\nu-k} \text{ for } \nu \in [0,1] \text{ and } k \ge 1.$$

Observe that

$$(\nu)_{k+1}:=\nu\left(\nu-1\right)...\left(\nu-k+1\right)\left(\nu-k\right)=\nu\left(\nu-1\right)_{k} \text{ for } \nu\in\mathbb{R} \text{ and } k\geq 1.$$

We have for $n \geq 1$ and $s, \nu \in [0, 1]$ that

$$\begin{split} & \mathcal{P}_{f^{(n+1)}-\nu} \left(A \nabla_s B, A \right) \\ & = A^{1/2} \left[\left(\nu \right)_{n+1} \left(\left(A^{-1/2} \left(A \nabla_s B \right) A^{-1/2} \right) \right)^{\nu-n-1} - \nu \mathbf{1}_H \right] A^{1/2} \\ & = \nu A^{1/2} \left[\left(\nu - 1 \right)_n \left(\left(A^{-1/2} \left(A \nabla_s B \right) A^{-1/2} \right) \right)^{\nu-n-1} - \mathbf{1}_H \right] A^{1/2}. \end{split}$$

By using (2.3) we get for a = 1 and $\mu = \nu \in [0, 1]$ that

(5.1)
$$A\sharp_{\nu}B = A\nabla_{\nu}B + \sum_{k=2}^{n} \frac{1}{k!} (\nu)_{k} (BA^{-1} - 1_{H})^{k} A$$
$$+ \frac{1}{(n+1)!} \nu (BA^{-1} - 1_{H})^{n+1} A$$
$$+ \frac{1}{n!} \nu (BA^{-1} - 1_{H})^{n+1} \int_{0}^{1} (1-s)^{n}$$
$$\times A^{1/2} \left[(\nu - 1)_{n} \left(A^{-1/2} (A\nabla_{s}B) A^{-1/2} \right)^{\nu - n - 1} - 1_{H} \right] A^{1/2} ds,$$

for positive invertible operators A, B and for any $n \geq 2$.

If the positive invertible operators A, B satisfy the condition (2.10), then one can get various inequalities similar to the one from (4.3).

6. Applications for Some Exponential Perspectives

For $\alpha \neq 0$ and $a \in \mathbb{R}$ we consider the family of functions $E_{\alpha,a} : \mathbb{R} \to \mathbb{R}$ defined by

$$E_{\alpha,a}(t) = \exp(\alpha(t-a)).$$

We have that

$$E_{\alpha,a}^{(k)}(t) = \alpha^k \exp(\alpha(t-a))$$
 for any $k \ge 0$

and

$$E_{\alpha,a}^{(k)}(a) = \alpha^k$$
 for any $k \ge 0$.

For two positive invertible operators A, B and $\alpha \neq 0$ and $a \in \mathbb{R}$ we define the (α, a) -exponential perspective by

(6.1)
$$E_{\alpha,a}(B,A) := A^{1/2} \left[\exp\left(\alpha \left(A^{-1/2}BA^{-1/2} - a1_H\right)\right) \right] A^{1/2}$$
$$= A^{1/2} \left[\exp\left(\alpha A^{-1/2}(B - aA)A^{-1/2}\right) \right] A^{1/2}.$$

Observe that

$$\begin{split} & \mathcal{P}_{E_{\alpha,a}^{(n+1)}} \left((aA) \, \nabla_s B, A \right) \\ & = \alpha^{n+1} E_{\alpha,a} \left((aA) \, \nabla_s B, A \right) \\ & = \alpha^{n+1} A^{1/2} \left[\exp \left(\alpha A^{-1/2} \left((aA) \, \nabla_s B - aA \right) A^{-1/2} \right) \right] A^{1/2} \\ & = \alpha^{n+1} A^{1/2} \left[\exp \left(\alpha A^{-1/2} \left((1-s) \left(aA \right) + sB - aA \right) A^{-1/2} \right) \right] A^{1/2} \\ & = \alpha^{n+1} A^{1/2} \left[\exp \left(\alpha s A^{-1/2} \left((B - aA) A^{-1/2} \right) \right) \right] A^{1/2} \end{split}$$

for positive invertible operators $A, B, \alpha \neq 0$ and $a \in \mathbb{R}$.

If we write the identity (2.4) for $f = E_{\alpha,a}$, then we get the identity

(6.2)
$$E_{\alpha,a}(B,A) = A + \sum_{k=1}^{n} \frac{1}{k!} \alpha^{k} \mathcal{P}_{f_{a,k}}(B,A) + \frac{1}{n!} \alpha^{n+1} \mathcal{P}_{f_{a,n+1}}(B,A) \times \int_{0}^{1} (1-s)^{n} A^{-1/2} \left[\exp\left(\alpha s A^{-1/2} (B-aA) A^{-1/2}\right) \right] A^{1/2} ds.$$

For $\alpha = 1$ and a = 0, we consider the exponential perspective defined by

(6.3)
$$E(B,A) := E_{1,a}(B,A) = A^{1/2} \left[\exp\left(A^{-1/2}BA^{-1/2}\right) \right] A^{1/2}$$

Since for a = 0 we have

$$\mathcal{P}_{f_{0,k}}(B,A) = (BA^{-1})^k A,$$

then by (6.2) we get the following simple representation

(6.4)
$$E(B,A) = A + \sum_{k=1}^{n} \frac{1}{k!} (BA^{-1})^{k} A$$

 $+ \frac{1}{n!} (BA^{-1})^{n+1} \int_{0}^{1} (1-s)^{n} A^{1/2} \left[\exp\left(sA^{-1/2}BA^{-1/2}\right) \right] A^{1/2} ds$

for positive invertible operators A, B and n > 1.

If the positive invertible operators A, B satisfy the condition (2.10), then one can get various inequalities similar to the one from (4.3). The details are omitted.

REFERENCES

- S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
- [2] S. S. Dragomir, Some new reverses of Young's operator inequality, RGMIA Res. Rep. Coll. 18 (2015), Art. 130. [Online http://rgmia.org/papers/v18/v18a130.pdf].
- [3] S. S. Dragomir, On new refinements and reverses of Young's operator inequality, RGMIA Res. Rep. Coll. 18 (2015), Art. 135. [Online http://rgmia.org/papers/v18/v18a135.pdf].
- [4] S. S. Dragomir, Some inequalities for relative operator entropy, RGMIA Res. Rep. Coll. 18 (2015), Art. 145. [Online http://rgmia.org/papers/v18/v18a145.pdf].
- [5] S. S. Dragomir, Further inequalities for relative operator entropy, RGMIA Res. Rep. Coll. 18 (2015), Art. 160.[Online http://rgmia.org/papers/v18/v18a160.pdf].
- [6] S. S. Dragomir, Inequalities for operator noncommutative perspectives of continuously differentiable functions with applications, RGMIA Res. Rep. Coll. 19 (2016), Art. 22. [Online http://rgmia.org/papers/v19/v19a22.pdf.]
- [7] S. S. Dragomir, M. S. Moslehian and Y. J. Cho, Some reverses of the Cauchy-Schwarz inequality for complex functions of self-adjoint operators in Hilbert spaces. *Math. Inequal. Appl.* 17 (2014), no. 4, 1365-1373. Preprint *RGMIA Res. Rep. Coll.*14 (2011), Art. 84. [Online http://rgmia.org/papers/v14/v14a84.pdf].
- [8] A. Ebadian, I. Nikoufar and M. E. Gordji, Perspectives of matrix convex functions, Proc. Natl. Acad. Sci. USA, 108 (2011), no. 18, 7313-7314.
- [9] E. G. Effros, A matrix convexity approach to some celebrated quantum inequalities, Proc. Natl. Acad. Sci. USA 106 (2009), 1006-1008.
- [10] E. G. Effros and F. Hansen, Noncomutative perspectives, Ann. Funct. Anal. 5 (2014), no. 2, 74–79.
- [11] J. I. Fujii and E. Kamei, Uhlmann's interpolational method for operator means. Math. Japon. 34 (1989), no. 4, 541–547.
- [12] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory. Math. Japon. 34 (1989), no. 3, 341–348.

- [13] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46–49
- [14] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
- [15] S. Furuichi, K. Yanagi and K. Kuriyama, Fundamental properties for Tsallis relative entropy, J. Math. Phys. 45 (2004) 4868–4877.
- [16] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [17] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, *Linear Multilinear Algebra*, 59 (2011), 1031-1037.
- [18] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [19] I. H. Kim, Operator extension of strong subadditivity of entropy, J. Math. Phys. 53(2012), 122204
- [20] P. Kluza and M. Niezgoda, Inequalities for relative operator entropies, Elec. J. Lin. Alg. 27 (2014), Art. 1066.
- [21] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 264 (1980), 205–224.
- [22] M. S. Moslehian, F. Mirzapour, and A. Morassaei, Operator entropy inequalities. Collog. Math., 130 (2013), 159–168.
- [23] I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376-383.
- [24] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.
- [25] M. Nakamura and H. Umegaki, A note on the entropy for operator algebras. Proc. Japan Acad. 37 (1961) 149–154.
- [26] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.H.
- [27] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa