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REPRESENTATION OF OPERATOR PERSPECTIVES FOR
CONTINUOUSLY DIFFERENTIABLE FUNCTIONS IN TERMS
OF WEIGHTED MEANS WITH APPLICATIONS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain some representations of operator perspec-
tives for continuously differentiable functions in terms of weighted means. Ap-
plications for weighted operator geometric mean and relative operator entropy
are also provided.

1. INTRODUCTION

Let f be a continuous function defined on the interval I of real numbers, B a
selfadjoint operator on the Hilbert space H and A a positive invertible operator on
H. Assume that the spectrum Sp (A~1/2BA~Y/2) ¢ I, the interior of I. Then by
using the continuous functional calculus, we can define the perspective Py (B, A) by
setting

Py (B, A) = A2 (A*1/2BA*1/2) A2,
If A and B are commutative, then
P;(B,A)=Af (BA™)

provided Sp (BA_I) cl.
It is well known that (see [9] and [8] or [10]), if f is an operator convex function
defined in the positive half-line, then the mapping

(B,A) — Pr(B,A)

defined in pairs of positive definite operators, is operator convex.

In the recent paper [2] we established the following reverse inequality for the
perspective Py (B, A).

Let f : [m, M] — R be a convez function on the real interval [m, M|, A a positive
invertible operator and B a selfadjoint operator such that

(1.1) mA < B< MA,
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then we have

(12)  0< 2 [f (m) (MA—B) + [ (M) (B~ mA)] - Py (B, A)
< fL (1\2 : 7]3 (m) (MA”Q _ BA”/Q) (A*1/2B _ mA1/2)
< $ (L =m) [ () = £ (m)] A

Let f : J C R — R be a twice differentiable function on the interval J , the
interior of J. Suppose that there exists the constants d, D such that

(1.3) d< f"(t)<DforanyteJ.
If A is a positive invertible operator agld B a selfadjoint operator such that the
condition (1.1) is valid with [m, M] C J, then we have the following result as well
3]
1 1/2 —1/2 —-1/2 1/2
(1.4) S <MA BA ) (A B—mA )
1
M —m
<ip (M2 = A7) (A72B —mA2).
-2

< [f (m) (MA = B) + f (M) (B —mA)| = P (B, A)

If d > 0, then the first inequality in (1.6) is better than the same inequality in
(1.5).

In order to provide some new inequalities for the Py (B, A) in terms of integral
and discrete means, we recall some representation results for absolutely continuous
functions as follow.

Let L be a linear class of real-valued functions, g : £ — R having the properties

(L1) f, g€ L imply (af + Bg) € L for all o, B € R;

(L2) 1€ L,ie.,if f(t)=1,t € E, then f € L.

An isotonic linear functional ® : L — R is a functional satisfying the properties:

(A1) @ (af +8g)=a® (f)+ PP (g) forall f, g€ L and o, B € R;

(A2) If fe L and f >0, then ®(f) > 0.

The mapping P is said to be normalised if

(A3) @(1) =1.

Usual examples of isotonic linear functional that are normalised are the following
ones

1 .
—m/xf(w)du(w), if 1 (X) < o

or
1
() = T v @ @),
where w (z) > 0, [y w(z)dp(z) > 0, X is a measurable space and p is a positive
measure on X.
In particular, for Z := (z1,...,2,), W = (wy,...,w,) € R™ with w; > 0,

W, =1, w; > 0 we have

le and &5 : W szﬂ%,
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are normalised isotonic linear functionals on R".
In 2002, we obtained the following representation result for absolutely continuous
functions.

Theorem 1 (Dragomir, 2002, [1]). Let f : [a,b] — R be an absolutely continuous
function on [a,b] and define e(t) =t, t € [a,b], g fo FI(L =Xz + M) dA,
t€la,b and x € [a,b]. If®: L —-Risa normalzsed lmear functzonal on a linear
class L of absolutely continuous functions defined on [a,b] and (x —e) g (-,x) € L,
then we have the representation

(1.5) f@)=2(f)+e[(z—e)g(,2)],
for x € [a,b].
The following particular cases are of interest:

Corollary 1. Let f : [a,b] — R be an absolutely continuous function on [a,b].
Then we have the representation:

1 b
I O TT / w(t) f (t)dt

+W/abw(t)(xt) </Olf’[(1)\)x+)\t]d>\)dt

for any x € la,b], where w : [a,b] — R is a Lebesgue integrable function with

[Pw () dt # 0.

In particular, we have

(1.7) x:—/f dt+— b(fz:t)(/olf/[(lA)m+)\t]d>\>dt
for each x € [a,b].

The proof is obvious by Theorem 1 applied for the normalised linear functionals
1 b
0o ()=t [wws@a o= [ roa
[Pw (t)dt Ja —a
defined on
L:={f:]a,b] = R, f is absolutely continuous on [a,b]}.

The following discrete case also holds.

Corollary 2. Let f : [a,b] — R be an absolutely continuous function on [a,b].
Then we have the representation:

1 @ - o
(18) f(x)—mgwmmm;wm—m/o £1(1= N+ A dA
for any x € [a,b], where z; € [a,b], w; ER , i ={1,...,n} with W, :=> 1 w; #

0.
In particular, we have

1« 1 — v,
R D IFICORES ST AP CEPERSAE

for any x € [a,b].
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It is obvious that, with the same argument, the above identities also hold for
complex valued functions f, w : [a,b] — C.

Motivated by the above results, we obtain in this paper some representations of
operator perspectives for continuously differentiable functions in terms of weighted
means. Applications for weighted operator geometric mean and relative operator
entropy are also provided.

2. REPRESENTATION RESULTS
We have the following perturbed identity:

Lemma 1. Let f : [a,b] — C be an absolutely continuous function on [a,b] and

w : [a,b] — C a Lebesgue integrable function with f:w (t)dt # 0. Then for any
continuous function p : [a,b] — C and x € [a,b] we have

1 b 1 b

(2.1) f(x):f;w(t)dt/a w(t)f(t)dt—i—(x—f:w(t)dt/a w(t)tdt)u(a:)
1 b v . G

W/ w(t)(x—t)(/o (11— A+ M u())d/\>dt

and, in particular

(2.2) f(x)—bia/(;bf(t)dt-l-u(x—a;rb)

+

+bla/ab(w—t) (/()1(fl[(1—>\)x+)\t}—u(:c))d)\)dt.

The proof follows by the equality (1.6) by calculating the integral

/:wor)(w—t) (/ (f’[(l—A)erAt]—u(w))dA) d

for « € [a,b].
The discrete case is as follows:

Lemma 2. Let f : [a,b] — R be an absolutely continuous function on [a,b] and x; €
la,b], w; € R, i = {1,...,n} with W,, :== >_1"  w; # 0. Then for any continuous
function p : [a,b] — C and x € [a,b] we have

1 <« 1 «
W ;wif (z:) + (35 A ;%%) ()

1 & v
+W;wi(m—mi)/0 (' [(1 =X o+ Aa;] — p () dA

n

(2.3) f(z) =

and, in particular

e F@ =Y S+ (mizxi>u<x>

‘We have:
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Theorem 2. Let f: I — C be a continuously differentiable function on I. If T is
a selfadjoint operator such that the spectrum Sp(T) C [m, M] C I, for some real
numbers m, M with m < M and for any continuous function p : [m, M] — C we
have

M
(25) ()= ffw / w(t) f (t) dily

M
+ ( dt /m w tdt1H> (T)

M N 4.
fmw

’ﬂ

—tly) (/01 (f' (1 =8) T + stlu] — p(T)) d8> dt,

where w : [m, M| — C is a Lebesgue integrable function with fri\:[ w (t) dt # 0.
In particular, we have

M
20 £ =5 [ fOa (-5 )
M 1
+M1*m/m (T =) (/0 (f’[(1—8>T+st1H}—u(T))ds>dt.

Proof. If {Ex\},cp is the spectral family of the operator T', then by the spectral
representation theorem (SRT) [15, p. 263-p.266] we have

M M

fr)= [ fovaes=Jim [ foyaB,

m—0 m—e

where the integral is taken in the Riemann-Stieltjes sense.
Let ¢ > 0 small enough such that [m —e, M] C I, then by integrating the
equality (2.1) written for a = m and b = M on the interval [m — ¢, M| we have

M
(2.7) / £ (N dE,

- 1 M M
_— / dt
fm w(t) dt Jm m—e
M 1 M M M
+ / ME)y — / w tdt/ dE) / w(A)dEy
m—e me’LU(t) dt Jm () m—e m—e ( )

X
e
Pz

1
w(t)(A—1t) (/0 (f' (1 —s) X+ st] ,u()\))ds) dt) dE).
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Using Fubini’s theorem, we can interchange the integration and then we have

/mM (/jwam—t) (/ <f’[<1—s>A+st]—u<A))ds) dt) dE,
=/me<t> (/ (ﬁa(A—t)(f’[(l—s)Hst]—u(A))dEA> ds> dt,

which gives, by (2.7) that

fm w (t) dt Jm m—e
M 1 M M M
+<m_8)\dEA— nyw(t)dt - w()tdt/m_EdE,\>/m_E/¢(>\)dE,\
1
" M (t) dt
M 1 M
X w(t) (/0 ( ) (/\—t)(f’[(l—s))\+st]—,u()\))dEA>ds)dt

for small & > 0 such that [m — e, M] C 1.
Since, by SRT we have
M

M
lim / f()\) dE,\ = f(T), lim dE)\ = lH,

e—0+ m—e e—0+

M
lim AE\ =T
e—0+ m—e

and
(2.9) / F I —=8) X+ st] — u(N)dE)

= (T —tlg) (f'[(1 —8)T + stly] — pu(T))
then by taking the limit over ¢ — 0+ in (2.8) and using the properties of integrals,
we obtain the desired result (2.5). O

We also have:

Theorem 3. Let f : I — C be a continuously differentiable function on I the
interior of I. If T is a selfadjoint operator such that the spectrum Sp (T') C [m, M] C
I, for some real numbers m, M with m < M and z; € [m,M], w; € R, i =
{1,...,n} with W, := Y"1, w; # 0 and for any continuous function p : [m, M] —
C we have

(2.10) f(T) = WLnZwa(acl) 1y + (T— V;ﬂzwixilH> /J(T)

Zwl —xily) /0 (f' (A =XN)T + Xzlg] — p(T))dA

7L .
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and, in particular

1 1 —
2.11 T) = — i) 1 T—— g
( ) f( ) ni x H+< nz:lx )
1 1
+E T — z;ly) / NT +Azily] — p(T)) dX.
i 0
‘We have:

Theorem 4. Let f: I — C be a continuously differentiable function on I. Assume
that A is a positive invertible operator and B a selfadjoint operator such that the
condition (1.1) holds for some real numbers m < M with the property that [m, M| C
I. Then for any continuous function p : [m, M] — C and any w : [m,M] — C a
Lebesgue integrable function with f:f w(t)dt # 0, we have

2.12 B. A 1 Y dtA
(212)  Ps(B, >—W/ w(t) £ (1) dt
-1 _ M
+<BA dt/m w ( tdt1H>PN(B,A)
1 _
+ffw(t)dt/m w(t) (BA™" —tly)

« ( /0 1Py (BY. (1), A) — P, (B, A)] ds) dt.

If z; € [m, M| and w; € R, i = {1,...,n} with W,, := Y. jw; # 0, then we
also have

1 n
(2.13) Py (B,A) = Wn ;wif (zi) A
B 1 n
+ (BA 1 m;wim},) P, (B, A)
1 n B
+ an_:wl (BA L xilH)

x / 1 [Py (BV, (2;A), A) — P, (B, A)] ds.
0
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Proof. If we take T = A~1/2BA~1/2 then Sp(T) C [m, M] C I and by (2.1) we
have

(2.14) f (A*1/2BA*1/2>

M
_ wal(t) dt/ w(t) f (t) il
+ (A—WBA—V2 - fMl(t)dt /Mw (t) tdt1H> m (A—l/QBA—l/Q)
w m

+ M; /Mw (t) (Ail/ZBAil/2 — tlH>
[, w(t)dt Jm

X (/1 (f' [(1 —§)ATV2BATY2 4 sﬂH] o (A*WBA*I/ZD ds) dt.
0

If we multiply both sides of (2.14) by A'/? then we get

M
(2.15) AV2f (A*1/2BA*1/2) AV? = fMl(t)dt/ w(t) f (1) dtA
w m
1 M
+ A2 (A‘1/2BA_1/2 — fM(t)dt/ w (t) tdt1H>
w m

X 1 (A71/2BA71/2> AL/2

1 M
+ Mi/ w(t) AV (AT2BATE — iy )

m

x /1 (f’ [(1 — ) ATV2BAT? ¢ st1H} — (A‘WBA‘W)) dsAV/2dt.
0

Since

M
AL/ <A1/2BA1/2 - fMl(t)dt/ w (t) tdt1H> " (A*l/QBA*/?) AL/
w m
1

M

= Al/? (A—1/2BA—1/2 - w (t) tdt1H> ATL/2

Mty dt /m
% Al/zu (A’l/zBA’1/2> AL/2

M
= BA*l—M;/ w(t)tdtly | AV (A712BAT2) A12
[, w(t)dt Jm

= (BA—l — wal(t)dt /Mw(t) tdt1H> P.(B,A)
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and

M
/ w () AY? (Afl/QBAfl/Q _ ﬂH)

1
( i 1 _§)ATY2BATY2 4 sﬂH} —u (A‘WBA‘W)) ds> AVt

/ A1/2 “EBATY - tlH) A2
x AY (/ (f {A 2 ((1 = s) B+ stA) A*W} —u (A*WBA*V?)) ds) A2
/ A1/2 —-1/2p4-1/2 _ ﬂH) A-1/2

x AY (/ (f [A 1/2(Bv, (tA))A—l/Q} —M(A_1/2BA_1/2))ds) A2
/m (BA™! —tly) </01 [Py (BVs (tA),A) — P, (B, A)] ds> dt

then by (2.15) we obtain the desired result (2.12). O

If we take in (2.12) w (t) = 1, ¢t € [m, M], then we get the simpler representation

(2.16) Py (B, A)

/ t)dtA + <BA1 — m;M1H> Pu (B, A)
mM

T (BA™' —t1y)

x ( /O 1 [P; (BV, (tA), A) — P, (B, A)] ds) dt

for any continuous function y : [m, M] — C.
The unweighted discrete case that follows by (2.13) produces the representation

(2.17) Zf (z:) A+ (BA 1o Z:cle> (B, A)
+ ﬁ Z (BAil - l’ilH)

1
x / Py (BV. (2,4), A) — P, (B, A)] ds,
0

for any continuous function y : [m, M| — C.
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Remark 1. If we assume that p is a constant, then from (2.12) and (2.13) we get

(2.18) P (B, A) = — / Yo (0) F (0 ded

frJ’\LI’LU )dt m

M
+u B— /w t)tdtA
t)dt Jm

+wal(t)dt/m w(t) (BA™ —tly)

« ( /0 1Py (BY.L (14), A) — A ds) dt
and
(2.19) Py sz A—&-u(B—Zwa:z >

+ Wn Zwi (BA_1 — l'le)

1
« / P (BY, (1:A), A) — pA] ds,
0
which in the particular case = 0 reduce to the simpler representations

1

M
(220)  P;(B,A) = —— / w(t) f (£) dtA

X w(t) (BA™' —tly) (/ P (BV, (tA), A)d )dt

3

and
1 n
(2.21) Pr (B, A) = W, ;wif (i) A
n 1
+ WL Zwl (BAi1 — :L'ZlH) / Pf/ (BVS (:JSZA) s A) ds.
™ i=1 0

From (2.20) we have for w (t) =1 that

(2.22)  P;(B,A) t)dtA

Mim/,, (BA™! —t1y) (/ Py (BV, (tA), A)ds) dt

+
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while from (2.21) we get for w; = 1,14 € {1,...,n} that

(2.23) Pr (B, A) = %Zf (z;) A

n

1
LIS A ) / P (BY, (2:A), A) ds.
0

1
n -
1=1

The following particular case is also natural to consider.

Remark 2. Is useful to provide error bounds in the case that p = f' with f’
continuous on [m, M| . In this situation we get the identities of interest

1 M
L 1 M

M
! wal(t) dt /n w(t) (BA™ — ta)

y < /0 1Py (BY. (14), A) — Py (B, A)] ds> dt

and

(2.25) P; (B, A) :w1/ Zw Fz) A
n i

1 n
+ <BA_1 — W ZwlxllH> Pf/ (B,A)

=1
+ i zn:’wi (BA71 — xllH)
W i=1 l
1
X / [Py (BVs (2;A) ,A) — Py (B, A)] ds.
0
Moreover, the unweighted case for integrals can be stated as

1

m+ M

M
(2.26) Py (B,A) = i f(t)dtA + <BA1 - 1H> Py (B, A)

1 M L
+M_m/m (BA™ — t1y)

« ( /O 1Py (BY. (1), A) — Py (B, A) ds) dt,
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while the unweighted discrete case is as follows

(227) Py (B.A) = %if(xi) A+ (BA—1 - iixilf[> Py (B, A)

i=1 i=1
1 n
+ E Zwl (BA71 - :L'ilH)

i=1

y /0 [P (BY, (1;A4), A) — Py (B, A)) ds.

3. INEQUALITIES FOR BOUNDED DERIVATIVES

Now, for ¢, ® € C and I an interval of real numbers, define the sets of complex-
valued functions (see for instance [7])

U (¢, ®)
= {g : I — C|Re {(@ —g(1)) (m—%)] > 0 for almost every t € I}
and

¢+ P
2

The following representation result may be stated [7].

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that Uy (¢, ®) and Ay (¢, @)
are nonempty, convex and closed sets and

(3.1) Ur(¢,®) = A7 (¢, 2).
On making use of the complex numbers field properties we can also state that:
Corollary 3. For any ¢, ® € C, ¢ # ®, we have that
(32)  Ur(¢,2)={g:1—>C| (Re®—Reg(t)) (Reg(t) — Re¢)
+(Im®—Img(t)) (Img(¢t) —Ime) >0 for a.e. t € I}.

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

(3.3) 51(6,®) = {g: 1 — C | Re(®) > Reg (t) > Re ()
and Im (@) > Img (¢) > Im (¢) for a.e. t € I}.

Az(¢,<1>):={g:1—><C| ‘g(t)— ‘§;|¢>—¢| fora.e.tel}.

One can easily observe that Sy (¢, ®) is closed, convex and
(3-4) 0# S1(¢6,2) CUr(¢,9).

We need the following lemma [6]:
Lemma 3. Let T be a selfadjoint operator and A > 0. Then we have
(3.5) AV T AY? < AV2TAV2 < AV2|T| AV?

in the operator order, where |T| is the absolute value of T.
We also have

(3.6) HA1/2TA1/2H < HA1/2 IT| A1/2H .
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Proof. For the sake of completeness we give here a short proof.
If we use Jensen’s operator inequality for the convex function f (t) = [¢|, then
we have

Ty, »)| < (T y,y)

for any y € H.
If we take in this inequality y = A2z, z € H, then we get

‘<TA1/2.’L‘,A1/2CL'>‘ < <|T| A1/2x,A1/2x>
that is equivalent to
(3.7) ’<A1/2TA1/2x,x>’ < <A1/2 |T| Al/Qx,x>
or to

- <A1/2 |T| Al/Qac,x> <A1/2TA1/21' .’E> <A1/2 |T| A2z 33>

for any « € H, which proves the inequality (3.5).
By taking the supremum over z € H, ||z|| = 1 in (3.7) we obtain the desired
inequality (3.6). O

Theorem 5. Assume that A is a positive invertible operator and B a selfadjoint
operator such that the condition (1.1) holds for some real numbers m < M with the
pmperty that [m, M| C I and f 1 — Cis a continuously differentiable function
on I and such that fe Am ) (0, @) for some ¢, & € C, ¢ # ®. Then for any

w: [m, M] — C a Lebesgue integrable function with f w () dt # 0, we have

M
(3.8) Py (B,A) — ———— / w(t) f (£) dtA

wa(t)dt
ot (g /Mw tdt A
2 t)dt

M
/ )] ||BA™! — t14]| dt.
dt‘

[® — ¢l IIAII

l\')\»—l

m
7 n

If z; € [m,M] and w; € C,i = {1,...,n} with W,, := >_"" , w; # 0, then we also
have

(3.9)

n @ n
Ps (B, A) — Wizwif(xi),q_‘ﬁ% (B—ml/,ZwixiA>
™ " i=1

| Z|wl| HBA 1 —mleH

1
—|®—9¢|]|A
< 510 6l 14l 5=
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Proof. Assume that f is such that f’ € A; (¢, ®). If we use the identity (2.18) for

the constant (HT(I), then we have
1 M
Py (B’A)_wa(t)dt/ w(t) f(t)dtA

b+ @ 1 M
ot (B_LMw(t)dt/m w(t)tth)

w(t) (BA™ —tly) /01 (Pf/ (BV; (tA),A) — # ) dsdt.

By taking the operator norm in this inequality and using the properties of integral
and norm, we have

—wal(t)dt/ w(t) f (£) dtA

o+ (p 1 M
- (B mew(t)dt/m (t)tth)H

< e [ 1A 1]
‘fm w(t)dt‘ m

1
0
Obser\/e ‘hat

Sp (A*W (BV, (tA)) A*1/2> —Sp ((1 _§)ATY2BAY? stlH) C [m, M]

(3.10) ‘ Py (B, A)

Py (BY, (tA), A) — # H ds) dt.

for any ¢ € [m, M] and s € [0,1].
Since f" € Apy, ) (¢, @), then for any u € [m, M] we have

_9+2

(3.11) 5

() <3 le—g]

and by the continuous functional calculus we get from (3.11) that

(3.12)

= _ d 1
(4772 B9 ) 472) - 23 | < e - ol

for any t € [m, M] and s € [0,1].
Now, multiplying both sides of (3.12) by A'/2, we get

) 1
AV2 g (A—1/2 (BV, (tA))A—1/2) - d’;m’ AV < [0 —¢lA
and by taking the norm in this inequality, we get
_ _ +¢ 1
(3.13) HM 7 (472 (B, (ta)) A71/2) - (")211{\ A2 < Zj@ - gl Al

for any t € [m, M] and s € [0,1].
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Using Lemma 3 we get

pr, (B, (t4),4) - =

o+ @ H

4172 (f’ (A*W (BV, (tA)) A~V 2) - T“’) A

<[] (a2 B, eay ane) - 221 2] < e - ol
for any t € [m, M] and s € [0,1].
Therefore

L [l Bat -

— [ w|BAT — 1y

‘mew(t)dt‘ m
! d

x (/ P (BY, (tA), A) ‘Z’“;AH ds> dt
0
310 - llal el [ wipa ] a

and by (3.10) we deduce the desired result (3.8).
The discrete inequality (3.9) follows in a similar way and we omit the details. O

We observe that if f : [m, M] — R is a convex function and if f' (m) and f’ (M)
are finite, then from the above inequalities we can state the following inequalities
that provide a large number of examples:

(3.14) ‘ P (B, A) = —— /Mw (t) f (£) dtA

M tydt Jm
fi (m) + [ (M) 1 M
—=t 5 * (B—wa / w(t)tth>|'

<3 1O = £ (m)] M e ] / O1]|BA = t1a] de.

If 2; € [m,M] and w; € C, i = {1,...,n} with W, := >, w; # 0, then we also
have

(3.15) Ps (B, A) — szf ;)

fi(m) + fL (M 1
Iy (m : + <B_VVni_leixiA>

1 , R _
5[f+( ) = [ (m)] IIAHm;IwiIIIBA ' —zilp.
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If we take in (3.14) w (t) = 1, then we get

(3.16) ||P; (B, A) — t) dtA

_f+(m)+f+( )(B‘m;MA)H

2
1 M
<5 [F 00 - 7 )] A |BA™ — i .

From (3.16) we get for w; = 1,4 = {1,...,n} that

1 — fiom)+ flo (M 1 <
(3.17) ‘Pf(B,A)—an(xi)A— 4 )2 + (M) B—sziA
i=1 i=1
1 / 1 < -1
<3 L (M) = 1 (m)] (1A ;ZIIBA —zilyl].
=1
4. INEQUALITIES FOR LIPSCHITZIAN DERIVATIVES
‘We have:

Theorem 6. Assume that A is a positive invertible operator and B a selfadjoint
operator such that the condition (1.1) holds for some real numbers m < M with the

property that [m, M] C I and f I — Cis a continuously differentiable function on
I and such that f' is Lipschitzian on [m, M| with the constant L > 0, i.e.

(4.1) [f (@) = f ()] < Lt — s

for anyt s € [m, M]. Then for any w : [m, M] — C a Lebesgue integrable function

with f w (t) dt # 0, we have

1 M
4.2 Ps (B, A —7/ t) f(t)dtA
(4.2) ‘ (B, A) ffw(t)dtmw()f()
1 M
Lo w(
3/2 1 1/2
%L”A” 14~ H / w ()] | BA™ = t1g | dt.
T
If z; € [m,M] and w; € C, i = {1,...,n} with W, := > w; # 0, then we also
have
RN IR
(4.3) ||Ps (B, A) - le ) <BA - W,n;wimil;{> Py (B, A)
3/2 _111/2 n
< LEIAIE AT 5= A= — 1

2 Wl 2
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Proof. We use the identity (2.24) in the form

1 M
(4.4) Pr(BA) - / (o) f 0

M
_ (BAl _ wal(t)dt/ w (1) tdt1H> Py (B, A)

— 1 Mw -1
= dt/m () (BA™" — t1y)

X ( /0 1 [Py (BV, (tA), A) — Py (B, A)] ds> dt.

By taking the norm in this equality and using the properties of the integral we have

A L " A
Py (B, )_W/m w(t) f(t)dt

— BAll/Mw(t)tdtl P (B, A)
Moty dt Jim )

<! /Mw(t)|||BA1 t
>~ 7T T —tlg
‘ffw(t)dt’ m

« (/01 1Py (BV, (tA), A) — Py (B, A)| ds) dt.

(4.5)

By the fact that f’ is Lipschitzian we have
[f' (1= s)a+stly] — ' (2)| < Ls |z — |
for any z, t € [m, M] and s € [0,1].
Using the continuous functional calculus for the selfadjoint operator X with
Sp (T') C [m, M] we have
I 1(1—s) X +stly] — f(X)| < Ls|X — tlg]

for any ¢t € [m, M] and s € [0,1].
By taking in this inequality X = A~Y/2BA~Y/2 we get

P [(- 9 A28 1 sity] - (A72BA2)| < 142 BA2 11,

for any t € [m, M] and s € [0,1].
If we multiply both sides of this inequality by A'/2 we get

A1/2

i {(1 ) ATV2ZBATYZ 4 StlH} _ (A—l/zBA—l/z) ‘ A1/2
< LsAl/? ‘A*WBA*I/Q _ tlH‘ A2,

for any t € [m, M] and s € [0,1].
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If we take the norm in this inequality, we get

(4.6) HA1/2 f [(1—5)A—1/2BA—1/2+st1H] 7 (A‘1/2BA‘1/2)‘A1/2H
< Ls||Av2 |a-1/2pa-172 —tlH‘Al/QH
— Ls|lAv2|a-1/2Ba-1/2 —tlH‘Al/zH
= Ls[av2 4712 (BAT —t1y) 412 4172

< ool a7 (part - o) e v

= Ls a2 ||a=272 (Ba - 1) a¥2 | || 42
< Ls A2 |47 BAT = eva | 4] A2

1/2

= L AP A~ Bt — i1y

for any t € [m, M] and s € [0,1].
By Lemma 3 and by (4.6) we get

pr’ (Bvs (tA) ) A) - Pf’ (B7 A)H
- HAW [f’ [(1 8§ ATV2BATY? 4 stlH] _ (A*I/QBA*W)} A1/2H

< HAl/Q

7l =9 A 2BaT 2 sty - (a72BATYR)| 4122|

< Ls A2 (|47 (| BA™" — t14

for any t € [m, M] and s € [0,1].
Therefore,

W [ i~

x (/01 [Py (B, (tA), A) — Py (B, A)| ds) dt

- W /mM fw ()] [|BA — t14]|

X

1
(/ S|4 | BAY = 114 ds) dat
0

3/2 | g=1111/2 M
_ LA 1A~ / o (8)] | BA™ — t1 |
2| w ] S

and by (4.5) we get the desired result (4.2).
The discrete inequality (4.3) can be proved in a similar way, however the details
are omitted. (]
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If we take in (4.2) w (t) = 1, then we get
M+m

(4.7) HP,» (B,A) — ﬁf (t)dtA — (BA‘I - 1H) Py (B, A)H

1L A a7
< —

-2 M—m

M 2
/ |BA™" —tlg | dt,

while from (4.3) we get

(4.8)

'Pf (B,A) — %zn:f(xt)A — (BAl — izn:xilH> Pf/ (B,A)
=1

i=1

LIAP AT Sy z
HBA —.’L'Z'lHH .

1
< —
-2 n

5. APPLICATIONS FOR RELATIVE OPERATOR ENTROPY
Kamei and Fujii [11], [12] defined the relative operator entropy S (A|B), for
positive invertible operators A and B, by
(5.1) S(A|B) := A% (m (A*%BA*%» A3,

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[26].
In general, we can define for positive operators A, B

S(A|B) :=s- lir[1)1+S(A +ely|B)

if it exists, here 1 is the identity operator.
Consider the logarithmic function In. Then the relative operator entropy can be
interpreted as the perspective of In, namely

P (B, A) = S (A|B),

for positive invertible operators A, B.

For some recent results on relative operator entropy see [4]-[5], [19]-[20] and
[22]-[23].

If we use the inequality (3.14) for the convex function f = —Int and the positive
invertible operators A, B that satisfy condition (1.1) with M > m > 0 we have

(5.2) S(AB) - ——— L / e () IntdtA

Mty dt Jim

m+ M 1 M
_ Y (B_ffw(t)dt/m w(t)tth)H

M—m 1 M
< Al / lw ()| ||BA™ — t1g]| dt,
omM ‘fﬂj,\:[w(t) dt’ m || HH

for any w : [m, M] — C a Lebesgue integrable function with frﬁ/f w (t) dt # 0.
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Define the identric mean of a, b > 0 by
a if a =0,

I(a,b) := L\ T a, b>0.
- if b
e(M) ifaz

1 b
I(a,b) = m/ Intdt for a # b.

If we take in (5.2) w (¢t) =1 for ¢t € [m, M], then we get the norm inequality

(5.3) HS(A|B)—I(m,M)A—W;+]\Jy (B‘m;MA>H

We observe that

M
<o M ||A||/ |BA™" — t1p||dt,
for any positive invertible operators A, B that satisfy condition (1.1) with M >
m > 0.
We define the logarithmic mean as

a ifa=5
L(a,b) := a, b>0
b—a ifa#b

Inb—Ina

and the geometric mean as G (a,b) := /ab.
If we take in (5.2) w (t) = 1, t > 0, and since

1 Mn¢ In> M —In’m
T1a ) T AT G A,
i 0T 20— Tum)
then we get the norm inequality
m+ M
4 A|B) -1 M)A - B-L M)A
(5. HS( B) =G (m M)A - 30 (B~ L, 1) )|

||A||/ fHBA‘ —tlg||dt,

for any positive invertible operators A, B that satisfy condition (1.1) with M >
m > 0.

If we use the inequality (3.15) for the convex function f = —Int and positive
invertible operators A, B that satisfy condition (1.1) with M > m > 0, we have for
x; € [m, M], w; >0 with ¢ € {1,...,n} that

m+ M
2mM

(5.5) HS (A|B) —InG,, (Z,w) A — (B—A4, (z,0) A)H

le

<5 A ||wal |BA™ — @il

where

1 n
Ay (Z,w) := W ZwimiA
=1
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is the weighted arithmetic mean and

is the weighted geometric mean.

6. APPLICATIONS FOR OPERATOR GEOMETRIC MEAN

Assume that A, B are positive invertible operators on a complex Hilbert space
(H,(-,-)). We use the following notations for operators [21]

AV, B:=(1-v)A+vB,

the weighted operator arithmetic mean and
At B = AV/? (A‘1/2BA_1/2)V A2,

the weighted operator geometric mean, where v € [0,1]. When v = % we write
AV B and A$B for brevity, respectively.

The definition Af, B can be extended accordingly for any real number v.

The following inequality is well known as the operator Young inequality or op-
erator v-weighted arithmetic-geometric mean inequality:

(6.1) At,B < AV, B for all v € [0,1].

For recent results on operator Young inequality see [13]-[17], [18] and [27]-[28].
If we consider the continuous function f, : [0,00) — [0,00), f, (x) = 2 then

the operator v-weighted geometric mean can be interpreted as the perspective
Py, (B, A), namely

Py, (B, A) = At B.

Since, for v € (0,1), f, : [0,00) — [0,00), f, (x) = ¥ is operator concave and
positive on [0, 00), then we have that (see [24, p. 146])

(6.2) tA+(1-t)C)t, tB+(1—t)D) >tAf, B+ (1 —t)C4,D
and we also have that (see [24, p. 146])
(6.3) (A+C)t, (B+D)> A, B+Ct,D

for any positive invertible operators A, B, C, D and v € [0, 1].
For positive invertible operators A, B, C, D such that A > C and B > D, then
we have (see also [24, p. 139])

(6.4) A#,B > C4,D.

Moreover, if KC > A > kC and KD > B > kD for some positive constants k, K
then we also have that

(6.5) KC4%,D > A#,B > kC4,D.
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If we use the inequality (3.14) for the convex function f () = —z¥, 2 > 0, v € [0,1],
then we have

1 M .
1 1—v 1—v 1 M
w m

1 Ml—y _ ml—l/

S 51/ ml*l/lez/

1
Al
J @

m

M
/ o (8)] | BA™ — 1] dt
(1) dt) m

for positive invertible operators A, B that satisfy condition (1.1) with M > m > 0
and any w : [m, M] — C a Lebesgue integrable function with fn]:[ w (t) dt # 0.
If we take in (6.6) w (t) = 1, then we get
MV—H _ mz/—i—l 1 ml—u + Ml—u m+ M
—_— A —v——————— -—FA
(v+1)(M —m) 2 ml-vMi-v 2
leu _ mlfz/
< —
=2 i M= (M — m)

(6.7) HAtin -

M
HA||/ |BA™! — t1]| de

m

for positive invertible operators A, B that satisfy condition (1.1) with M > m > 0.

If we use the inequality (3.15) for the convex function f = —z, > 0, v € [0,1]
and positive invertible operators A, B that satisfy condition (1.1) with M > m > 0,
then we have for z; € [m, M], w; > 0 with 4 € {1,...,n} that

1 ml—u+M1—V

1 « . 1 <

1 Ml—u_ 1—-v 1 n
< 5V 4l g | BAT! —aital)
i=1
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