Received 06/09/16

The Damascus Inequality

Fozi M. Dannan, Sergey M. Sitnik

1 The problem formulation

In 2016 Prof. Fozi M. Dannan from Damascus, Syria proposed the next
inequality

r—1 y—1 z—1
<0, 1
22—z+1 y2—-y+1 22—2z+4+1" (1)

providing that xyz = 1 for x,y,z > 0. It became widely known but was not
proved yet in spite of elementary formulation.
An obvious generalization is the next inequality

= T 1
e —
- <0 (2)
2 - )
; T — T+ 1
providing that x1 - zo... - x, =1 for zp > 0,1 < k < n.

It is obvious that (2) is true for n = 1, it is easy to prove it also for n = 2
directly. But it is not true for n = 4 as follows from an example with z; = 25 =
T3 =2,x4 = %, then (2) is reducing to 1 — % < 0 which is untrue.

As a consequence (2) is also untrue for any n > 4 due to an example with

T1 = Xo = T3 = 2,T4 = %,x5 =...=ux, = 1. So the only non—trivial case in
(2) isn=3.

In this paper we prove inequality (1) together with similiar ones
962—130—|-1+ y2—1y+1+z2—1z+1 =3 3)
952—xﬂc—i-1+ y2—32+1+22—zz—|—1 s3 )
x2i;1—i-l+ y2i;i-1 321;:—1 =0 (5)
gc2+13c+1+ y2+1y+1+z2+1z+1 =1 ©)
x2+l;c+1+ y2+i/+1+z2+zz+1 =1 Q

r+1 y+1 2+ 1 ®

22+zx+1 y2+y+1l 22+2z2+1

Also some generalizations will be considered.
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2 Proof of the main inequality (1)

Theorem 1. An inequality (1) holds true providing that zyz = 1 for
z,y,2 > 0.

For the proof we need an auxiliary inequality that seems to be very inter-
esting by itself.

Lemma 1. Let x,y,2z be positive numbers such that zyz = 1. Then

P22 -3@+y+2)+6>0 (9)

holds true.

Note that inequality (9) is not a consequence of well-known family of Klamkin—
type inequalities for symmetric functions [1]. So (9) is a new quadratic Klamkin—
type inequality in three variables under restriction xyz = 1. Due to its impor-
tance we give three proofs to it based on different ideas.

First proof of Lemma 1.

To prove (9) let introduce the Lagrange function

L(z,y,2,\) =2 +y* + 22 = 3(x +y +2) +6 — A(zyz — 1).
On differentiating it follows
A=z -2z =y? -2y =22 — 2z

It follows that at the minimum (it obviously exists) z = y, so three variables
at the minimum are z,y = 2,z = 1/22. From 2% — 22 = 22 — 22 we derive the
equation in x:

222 — 3z = 2/2* — 3/2?, f(x) = 225 — 325 + 32 —2=0.

One root is obvious x = 1. Let us prove that there are no other roots for z > 0.
Check that derivative is positive

f'(x) = 122° — 152* 4 62 = 3x(4a* — 52% +2) > 0,2 > 0.

Define a function g(x) = 4a* — 523 + 2, its derivative ¢’(z) has one zero for
x > 0at z = 15/16 and the function g(x) is positive at this zero at its minimum
g(15/16) = 15893/16384 > 0. So g(x) is positive, f(z) is strictly increasing on
x> 0,s0 f(1) =0 is its only zero.

Second proof of Lemma 1.

Consider the function

f@y)=2>+y*+

1 1
55 —3<m+y+>+6 ;
7y Yy

where x,y, z are positive numbers. We show that f(z,y) attains its minimum
0 at x = 1,y = 1 using partial derivative test.

Calculate of 5 5
— =2z — -3+ ——=0, 10
ox * x3y? + 3y (10)
af 2 3
Loy~ 34+ = —0. 11



Now multiplying (10) and (11) respectively by = and —y and adding to obtain
(x—y)(2zx+2y—3)=0 .

Here we have two cases.
Case I. x = y , which implies from equation (10) that

205 —2-325+322=0

. (z® — 1) (22° — 32* +2) = 0. (12)

Equation (12) has only one positive root = 1 and consequently y = 1. Notice
that the equation
20° — 322 +2=0

does not have positive roots because for > 0 the function u (z) = 223 — 32242
satisfies the following properties : (¢)u (0) = 2, (é¢) minu(z) = 1 at z = 1,
(#91) u (00) = oo. Therefore f (z,y) attains its maximum or minimum at z =
1, y=1.

Case II. 22 + 2y =3 . Adding (10) and (11) we get

1 1 1 1
2 —6—2(—— —— 4+ — | =
(r+y)—6 ($3y2+m2y3)+ 3(x2y+$y2) 0

or 3 3
233 + 2722
and
—623y + 32y —6=0 .

Putting ¢t = xy we obtain
2t —t+2=0.

In fact this equation does not have positive root (notice that ¢ = xy should be
positive). This is because the function u = 2t3 —t + 2 satisfies the following
properties :

(1) for t > 0,minu(t) =u <> >0, (4i1) u(o0) > 0.
The last step is to show that

f(zy) > f(1,1)=0.

It is enough to show that f (s,¢) > f(1,1) for at least one point (s,t) # (1,1) .
Take for example f(2,3) = % + %.

Third proof of lemma 1 (Geometrical Method).

Geometrically it is enough to prove that the surface xyz = 1 lies outside the
sphere (x — 3/2)2 + (y — 3/2)% + (2 — 3/2)? = 3/4 except the only intersection
point (1,1,1) as it is shown on the next graph:



Let M and S be surfaces defined by

M: zyz=1and S: (x—%)z—i-(y—g)Q—i-(z—g)Q—% =0
2

LIf(z=2)"—2>0 then
3.2 2 3.2 3
— — — — ) - = >
(z 2)+(y 2)+(z 2) 4_0

and equivalently
2+ 422 -3 +y+2)+6>0.

2. If(z—%)z—%go then3_2*/§§z§%.

3. We take horizontal sections for both M and so get for any plane

3—2_\/59216#

two curves: equilateral hyperbola H (k) with vertex (%, ﬁ) and a circle C (k)

E

which radius is given by

3 3.2 3
2 _ 2 2y 2 _ 2
r(k)—4 (k 2) k= + 3k 5
with center at (%, %, k).
4. For z =1, we have the hyperbola zy = 1 and the circle
3.2 3.2

(-5 +-3) =

5. We show that the distance d(v,¢) between the vertex of the hyperbola
and the center c¢ of the circle is always greater than or equal to the radius of
the circle. The distance d(v, c) is given by

s (-3 o= Y

4



The radius is given by

3 3.2 3
2 2 I W, ] _ =
r (k)—4 (k 2) = —k?+ 3k 5

We need to show that the vertex is always outside the circle i.e. d? (v,c) > r? (k)

for all
3 —2ﬁ§k§3+2¢§ .

Clearly that d (v,c) = r for k = 1 and the hyperbola tangents the circle at the
point (1,1,1) .
For 3 =3 <k<1,ask decreases from 1 to 3 -3 , the radius of the

2 2
circle becomes smaller . From the other side the vertex (ﬁ7 ﬁ7 k) moves away

from (1,1,1) towards a point (0,0, k). This follows from the distance function
of the vertex

V2 V2 V2
Ov= —,| 0<k <k <l> ——< — .
VEk ! ? vk ki
6.For1<k:§%,weshowthat
1 3\? 3 3.2
d2 —gk)=2 ([ — —° 2% (k-2 =h(k
=g =2 (- 3) Sk =nm

In fact, h (k) is a concave down parabola and has its maximum at k =1, i.e.

max h (k) = 3 and h (k) is decreasing for k > 1. Also, g(1) = 3 and g(k) is

increasing for k > 1 because ¢'(k) = 4 (—L) (i - %) > 0 for k > 1 (notice

kVEk ) \Vk
that ﬁ < 1). Therefore g (k) > h (k) for k > 1 . Eventually we conclude that
3.2 3.2 3% 3
-2 -2 _ 2y — 2>
=3 =) + -2 ~ 220

and consequently
2,2, .2
4y +22—-3@+y+2)+6>0

for all values of (z,y, z) that satisfy zyz = 1.

Proof of the theorem 1.

Now consider the inequality to prove (1). After simplifying with the use of
Wolfram Mathematica it reduces to

—3+4 3z — 22 + 3y — 3zy + 222y — 2y + 22y? — 2%y? + 32 — 3xz + 202 —
—3yz + 3xyz — 22%yz + 42922 — 2wz + 2%yP 2 — 227 + 2w2% — 2?27 +
+2y22 — 2xy2? + 2%y — o227 4+ 2y <0.

Using SymmetricReduction function of Wolfram Mathematica we derive

3—ay—axz—yz+3zyz —3(x+y+2)+2x+y+2)? —ayz(zy + 2+ y2)
— =2z +y+2)(wy + 2z +y2) + (vy +xz +yz)2 > 0.



Using xyz = 1 let further simplify

6—3(x+y+2)+2x+y+2)? -2y +azt+yz)—
2z 4y + 2)(vy + 2z +y2) + (xy + 22 +y2)? > 0.
In terms of elementary symmetric functions
Si=z+y+z 5 =zy+yz+axz
it is
SZ — 2518y — 285 +25% —35, +6 > 0. (13)
As 82 — 28155 + S? > 0 it is enough to prove
S% — 28y — 35, +6>0. (14)

Expanding it again in z,y,z we derive an inequality to prove for positive
variables
2 P22 =3 +y+2)+6>0. (15)

But this is exactly an inequality from Lemma 1. So Theorem 1 is proved.

3 Proof of inequalities (3)—(8)

Let us start with two propositions.
Proposition 1.
For any real numbers u, v, w such that

14+uw)(1+v)1+w)>0,

the inequality
1 1 1

1—|—u+1—|—v+1—|—w

<k (2k)
is equivalent to
kuvw + (k—1) (wv +vw+wu) + (k—2) (u+v+w)+k—-3>0 (L0).

Proposition 2.
For any real numbers u , v ,w such that

(u—1)(v—1)(w—-1)>0

the inequality
1 1 1
- + <k (k)

is equivalent to
kuvw — (k+ 1) (uww +vw +wu) + (k+2)(u+v+w)—(k+3) >0 (<L0).

The validity of propositions 1 and 2 can be obtained by direct expansions.
Proof that (1) < (3).
In fact
r—1 y—1 z—1
xz—x—i—l—’_ y2—y—|—1+z2—z+1 N




2 (@ x4 l) oyt (P oyl o (P oet )
2 —z+1 y?—y+1 22 —z24+1

2
x
= —3 — .
+ 2 —x+1
c
Now if the right side is < 0 then
x
- <3
Z 2 —x+1 7"
cyc

and consequently

1
2w e S

cyc

Proof of 5.
We need to prove

1
S
pv 2 +x+1

Letu=2x2?>+2 ,v=9y2+y, w=22+ 2. Using Proposition 1 the required
inequality can be written as follows :

wow — (u+v+w)—2<0.
Going back to z,y, z we get
(z+1) W+ (z+1)— (®+y°+2°) —(x+y+2)—2<0.

Or
xy+yz+zx§x2—|—y2—|—z2

which is obvious.
Proof of 6.
It follows from elementary calculus that for any real number x we have

T

—_ <
24+ +1—

1
3
and the inequality follows directly.

Proof that (6) + (7) = (5).

Really adding together (7) with (6) multiplied by —1 we derive (5).

Proof that (6) = (8).

The required inequality is equivalent to

Z.’IJ2+$+1—$2_3_Z .%'2
2+z+1 Cyco:2+x+1 -

cyc

or
2

X
2 ey 2

cyc

which is true from inequality (6).



4 Modifications of original inequality

In this section we consider modifications of the original inequality (1) pro-
viding that zyz =1 for x,y,z > 0.
1. An inequality (1) is equivalent to

2 —1 yzfl 221
<0. 16
x3—1+y3—1 23 —1" (16)

This form leads to generalization with more powers, cf. below.
2. An inequality (1) is equivalent to

2 2 2

T y z
<3. 17
x2—x+1+y2—y+l+z2—z+l_ (17)

3. Let take z — %, y — %, z— % Then we derive another equivalent form
of the inequality (1)

r — x? y — y? z— 22

<
xg—x+1+y2—y+l+z2—z+1_

0, (18)

due to the functional equation

1
1) = —of(@) (19)
for the function
r—1
A (20)

So it seems possible to generalize the original inequality in terms of functional
equations too.

To one more similar variant leads a change of variables x — xy,y — yz,z —
Tz

zy —1 yz —1 zz—1
<0 21
x2y? —zy +1 y2z2—yz+1+x2z2—x2+1_ ’ 1)
or like (18)
zy — 2%y? yz — y*2? rz — 2222 <0 (22)

22 —azy+ 1 Y222 —yz+1 2222 —x2z+1 "

It is also possible to consider generalizations of (1) under the most general

. 1 . o .
transformations * — g(z,y, 2),y = h(z,y,2),z — TGIORGETD with positive
functions g(z,y, ), h(z,y, z) still preserving a condition zyz = 1.

4. A number of cyclic inequalities follow from previous ones by a substitution



On this way we derive from (1), (3)—(8) the next cyclic inequalities:

ab — b?

2

2

bc —c ca—a
<0 23
a2—ab—|—b2 b2—bc—|—c2 02_0a+a2— ’ ( )
b2 c2 a’
< 4
02*ab+b2+b27bc+c2+c2fca+a2 <3 (24)
ab be ca
< 2
b+ P-betd  P-cata <3 (25)
ab — b2 be — c? ca — a? <0 (26)
a?+ab+0b>  >+bc+c? A4cat+a® T
b2 2 a’
>1 27
a2+ab+b2+b2+bc+02 A24+ca+a2 ~ ( )
ab be ca
<1 28
a? +ab+ b2 b2+bC+C2+c2+ca+a2 = (28)
2 2 2
ab+b bc+ ¢ ca+a ~s (29)
aZ+ab+0b2 b2+ bc+c? 2+ ca+ a?

On cyclic inequalities among which Schur, Nessbit and Shapiro ones are the
most well-known cf. [1]-[3].

5. Some geometrical quantities connected with trigonometric functions and
triangle geometry satisfy a condition zyz = 1, cf. [4]-[6]. For example, we may
use in standard notations for triangular geometry values:

a b c

»T:@a y:E’ Z:;;

a+b b+e
5 y=
p

a+c
= p2+r2+27’R;
hy he
y= 27)2, z = ﬁ;
sin(3) sin(y)

x:2R25in(a), Yy = , 2= ;
r p

= (p* —4R* — 4rR — r?)tan(a), y = tag}(}ﬁ), 7=
_ tan(5) L tan(y) )
tan(a) + tan(8) + tan(y)’ tan(a) + tan(B) + tan(y)’

_ tan(vy/2)

z =tan(a/2), y=ptan(8/2), z s

S
ip—a) YT Rp—b) p—c’
_ sin(y/2)

r

x =4Rcos(a/2), y=cos(8/2), zzms(;/Q).

6. The above geometrical identities of the type zyz = 1 which we use
for applications of considered inequalities are mostly consequences of Vieta’s
formulas [5]. Tt is interesting to use these formulas for cubic equation directly.

xTr =

x = Rhyg,

e tan(«)
tan(a) + tan(8) + tan(y)’

Y

xr =

x =4Rsin(a/2), y =sin(8/2),

)



Theorem 2. Let z,y,z be positive roots of the cubic equation with any
real a,b
t*+at® +bt—1=0.

The for these roots x, y, z all inequalities of this paper are valid.

7. We can generalize inequalities (3), (6)—(8) for more general powers. For
this aim we use Bernoulli’s inequalities [1]-[2] : for u > 0 the following inequal-
ities hold true

u*—au+a—-1>0, (a>1 ora<0),

u*—au+a—-1<0, (0<a<l).

Lemma 2. Assume that z,y, z are positive numbers such that xyz = 1.
Then the following inequality holds true :

1 “ 1 “ 1 “
S S — ) <3
(aﬂ—x—&-l) +<y2—y+1) +<22—z+1> -

for0<a<1.
Proof. Let

X=2?—24+1, Y=y —y+1,2Z2=2>—2+1 .

Then we have

1 o 1 o 1 o
_ R — <
(wz—mﬂ) +<92—y+1) +<22—Z+1> -

1 1 1
< — =+ =)+ —a) <
a(X v Z> 3(1—a)<3

Similarly we have from (7) that

A S A— 7 ) <3-2
<x2+x+1> +<y2+y+1> +<z2+z+1> =Uo
and from (8) we have
z+1 a+ y+1 a+ z+1 a<3
24+ x+1 y2+y+1 2242+1) — “-

For a > 1 or aw < 0 we have from (6)

1 “ 1 “ 1 “
_— _— -] >3-2a.
(x2+x+1> +<y2+y+1> +<z2+z+1> - “

5 Generalizations of original inequality to ones
with a set of restrictions on symmetric func-
tions

It is easy to show that the maximum of the function (20) is attained for
x>0 at z =2 and equals to 1/3.

10



0.3
0.2
0.1¢

-0.1;

So the next unconditional inequality holds

Consider symmetric functions

k=n n
S = E T, Sy = E T+ Tony v vy S = T1T2 +* Ty
k=1

k,m=1,
k#m

The generalized Damascus inequality
Prove an inequality

h=n xr — 1 n
<2 an); g > 1
kz:: _xk:+1 3 C(a’lva'Qv 70‘) Tk 0 (3)

and find the best positive constant in it under conditions on symmetric functions
51:a1752:a27"'75’n:an (32)

with may be some restrictions in (32) omitted.

The unconditional constant for positive numbers in (31) is C' = 0 and the
original inequality gives C'= % in case n = 3 and a single restriction S3 = 1 in
the list (32).

It seems that a problem to find the sharp constant in the inequality (31)
under general conditions (32) is a difficult problem.

For three numbers so more inequalities of the type (31) may be considered,
e.g.

1. Prove inequality (31) for positive numbers under condition S; = 1 and
find the best constant for this case.

2. Prove inequality (31) for positive numbers under condition S; = 1 and
find the best constant for this case.

Also combined conditions may be considered.

3. Prove inequality (31) for positive numbers under conditions S; = a, Sz = b
and find the best constant C'(a,b) in (31) for this case.

11



6 Symmetricity of symmetric inequalities

There are many inequalities that are written in terms of symmetric functions
as F(p,q) <0 (>0 ), where

p=Si=z+y+z gq=S=zy+yz+zr, r=95S3=zyz=1L1

The following Lemma enlarge the amount of inequalities that one can obtain as
a series of very complicated inequalities.
Lemma 3. If the inequality

F(p,g) <0 (>0)
holds true , then the following inequalities are satisfied :
(i)  F(gp) <0 (>0 ),

and
(i) F(q¢*—=2p, pP—2¢) <0 (>0 ).

Proof. (i). Assume that
F(p,q) = F(x+y+ z,zy +yz+ zzx) > 0.

Using transformations
T = TY, Y = Y2, 2 —> 2T

we obtain
F(p,q) = F (zy +yz + 23, zyyz + yzzx + zaxy) =
=F(zy+yz+zx, z+y+2z)=F(qp) >0.

Notice that we can also use transformations

1 1 1
T — Yy = =,z —.
x Y z

(ii). Now assume that
F(pg) = Fz+y+z0y+yz +z2) 2 0.

Using transformations

T z Zx
x%—y,y%y—,z%—
Y
we derive 2y vz .
LY QYR LR 2222 2
z T y

= (xy+yz+zx)2—2(x+y+z) =@ -2.
Also it follows

X z zZ ZT Zx I
oy YRR Ty
z Tz Yy Yy oz
z x
R TS
2T Ty Yz

12



:(x+y+z)2—2(xy+yz—|—zx):p2—2q .

The proof is complete.

At the end we propose an unsolved problem.

Problem. Find all possible non—negative values of four variables x1, 2, T3, T4
with restriction z1 - x5 - 3 - 4 = 1 for which the next inequality holds

xr — 1
- <0 33
zi—xp+1 77 (33)

M=

b
Il

1

As we know from the example at the beginning of the paper the inequality (33)
is not true for all such values, e.g. it fails for 1 = 29 = 23 = 2,24 = 1/8.
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