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THE QUADRATIC WEIGHTED GEOMETRIC MEAN FOR
BOUNDED LINEAR OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we introduce the quadratic weighted geometric mean
_ 2
T®,V = ||[VT " T

for bounded linear operators 7', V in the Hilbert space H with T invertible and
v € [0,1]. Some fundamental inequalities concerning this mean under various
assumptions for the operators involved are also provided.

1. INTRODUCTION

Assume that A, B are positive operators on a complex Hilbert space (H, (-,-)).
The weighted operator arithmetic mean for the pair (A, B) is defined by
AV,B:=(1—-v)A+vB.

In 1980, Kubo & Ando, [9] introduced the weighted operator geometric mean for
the pair (A4, B) with A positive and invertible and B positive by

A, B = ALV (A*WBA*W)V A2y eo,1].

If A, B are positive invertible operators then Af#, B can be extended for any real
v. We can also consider the weighted operator harmonic mean defined by (see for
instance [9])
ALB:=(1-v)A™ '+ 1/3_1)71 , velo1].

We have the following fundamental operator means inequalities
(1.1) Al,B < Af,B < AV,B, v € 0,1]
for any A, B positive invertible operators. For v = %,
by AVB, A{B and A!B.

The weighted operator geometric mean enjoys the following important properties
(see for instance [12, p. 146])

we denote the above means

(1.2) tA+(1-t)C)t, tB+(1—t)D) > tAf, B+ (1 —-t)Ct,D
and
(1.3) (A+C)t, (B+ D) > At, B+ C4,D

for any positive invertible operators A, B, C, D and v, t € [0,1]. These mean that
the mapping
£, : (A, B) — Af, B

is operator concave and superadditive in the pair (4, B).
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2 S.S. DRAGOMIRY2

For positive invertible operators A, B, C, D such that A > C and B > D, we
also have

(1.4) AfyB = Ct,D.

This means that the mapping f, is operator monotone in the pair (A, B).
If KC>A>EkC and KD > B > kD for some positive constants k, K then we
have

(1.5) KCt,D > A4, B > kCH,D.
If A, B are positive invertible operators we have
Bﬁl—I/A = AﬁuB

for any real v.

For a bounded linear operator 7" we define the modulus of it by |T'| := (T*T)
where T is the adjoint operator.

Since B is positive, then

A1/2 (A—1/2BA—1/2)”A1/2 — A1/2 (A—l/zBl/zBl/zA—l/z)”A1/2

1/2

— A1/2 )Bl/zA—1/2‘2V A2 — HBl/2A—1/2'VAl/2‘2

and we can express the weighted geometric mean in terms of modulus as

At B = HBl/QA_l/Q‘UAl/QF

Now, if T, V € B(H), the Banach algebra of bounded linear operators on H, with
T invertible, then we have

v 2
15 V] = ||V 22 2|
and
2 2 1 P 1| 12 -1\”
TP 8 VP = |1 1l = v = i (i e )

and by the operator means inequalities (1.5) we then have the modulus inequalities

v 2
(1.6) (=) [T+ v V] = ||V 2] |
-1
> (=)™ +v V™)
and

v 2 -1
(L7 Q=) TP+ o VP ||[VIT | = (@ =) 172+ v v %)

for any v € [0,1]. For the last inequalities in (1.6) and (1.7) we need to assume
that both 7" and V' are invertible.

If (11, ...,T}) is an n-tuple of invertible bounded linear operators and (p1, ..., py)
a probability distribution then by (1.6) we have

1/2 —1/2 1/2 -1 —1
(=) [T+ oDy = |12 ) w2 = (=) T i)
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for any 4, j € {1,...,n} and by multiplying with p;, p; > 0 and summing over i, j
from 1 to n we get

n n v 2
1/2 —1/2 1/2
(18)  SomITl = Y piy |12 | T
i=1 i,j=1
n 1 n -1
> Y pwi (A-0)IT T+ ) > (Zm Tl>
ij=1 i=1

for any v € [0, 1]. We notice that, we used the operator convexity of the function
f(t) =t t> 0 and Jensen’s inequality to get the last inequality in (1.8). This
improves the known inequality between the first and last term.

From (1.7) we also have

n n v 2
2 —1
(L9) YowlTil* = Y s || 1T 1
i=1

ij=1

—1
n 1 n
>3 o (A-0)ITI2 401 7%) > (Zm lT)
=1

i,j=1
for any v € [0,1]. This improves the known inequality between the first and last
term.

We denote by B~! (H) the class of all bounded linear invertible operators on
H.For T € B (H) and V € B(H) we define the quadratic weighted operator
geometric mean of (T, V) by

v 2
(1L10) T,V =T (1) V' VT ) T =1 VT 7 = ||[vT 7|

for v > 0. For V € B~ (H) we can also extend the definition (1.10) for v < 0.

For v = % we denote

—1 1/2 2 * —1 * *\—1 * —1 1/2

(1) 1V = |V e = v T =1 () v )
In the following, we establish some inequalities between the operators |T|* V,, [V|?
T®,V and |T|*!, |V|*. Upper and lower bounds for the difference
7>V, [V]* - T®.V

as well as multiplicative inequalities of the form

6T,V < TPV, |V[* < @T®,V
with appropriate positive constants ¢ and ® and under various assumptions for the
operators involved, are also given.

2. FUNDAMENTAL FACTS

We have the following representation for the quadratic weighted operator geo-
metric mean:

Lemma 1. For any T, V € B~ (H) any real A\ we have that
(2.1) TENV = T 1 [V|*.



4 S.S. DRAGOMIRY2

Proof. We use the following equality obtained by Furuta in [5] for any positive
invertible operator A and any invertible operator B

A—1
(2.2) (BAB*)* = BA'/? (Al/QB*BA1/2) nee

His proof is based on the polar decomposition of the invertible operator BA/2.
If we take B = ()" and A = |V|> := V*V in (2.2), then we get

(@ wpr) =@y v (i@ ) v
— @ Wi (i) v

A—1
wy—1 —2 -

= (@) (Vi v v

If we multiply at left by T and at right by T, we get
w (=1 1112 m1 )\ —2 A=l 12 -1\

T (@) WET) T = v (VITIVE) v = (v TR v v
which means that

TON = [V tioa|T)?.
Since, from the theory of extended operator geometric mean, we have

VI A T = T8V

the desired representation (2.1) is thus obtained. O

We have the following fundamental inequalities:

Theorem 1. For T,V € B~ (H) we have for v € [0,1] that

(2.3) TPV, VI > T®,V > [T, [V
In particular, we have
(2.4) TPV VP > TeV > TP V]

for T,V e B~ (H).
Proof. 1. Follows by Lemma 1 and the inequalities for operator means
2 2 2 2 2 2
TPV VI % [T VD = [T V],

where T, V € B~! (H) and v € [0,1].

2. A direct proof is as follows.

For z > 0 and v € [0,1] we have the scalar arithmetic mean-geometric mean
inequality

1—v4ve>2a”.

Using the continuous functional calculus for the selfadjoint operator X > 0, we
have
(2.5) 1-v)lg+vX>X".

If T,V € B! (H) then the operator X = |VT’1|2 is selfadjoint and positive
and by (2.5) we have

(2.6) (=) 1+ VT > (v )
for v € [0,1].
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It is well know that, if P > 0 then by multiplying at left with 7™ and at right
with T where T' € B (H) we have that T*PT > 0. If A, B are selfadjoint operators
with A > B then for any T' € B (H) we have T*AT > T*BT.

Therefore, by (2.6) we get

(2.7) T [ =w) 1y +o [T ] T T (v ) T

for v € [0,1].
Since

T [0 =) 1y + v VT[] T = (1= 0) T T+ 01 VTP T

(1 =) T*T 4+ vT* (T*) ' V*VT~'T
(1= [T +v V" =TV, [V]*

and
T (vr'[?) T =1 (VT ) T =TE,Y,

then by (2.7) we get the first inequality in (2.3).
For = > 0 we have the geometric mean-harmonic mean inequality

v > (1 —v+ Vafl)_l

for v € [0,1].
Using the continuous functional calculus for the invertible positive operator X,
we have

(2.8) XY > (1 vt (X)*l)_1

for v € [0,1].
T,V € B~ (H) then X = |VT~!|* € B~! (H) and

—1 —1
X t= (|VT*1|2) = ((T*)‘1 |V|2T*1) =T V| ?T"
Therefore

-1
(1—u+uT|V|_2T (1-v)TT~ T*)_lT*+yT|V|_2T*)

*
v
| |

(
( (1—)T|T| 2T + VT|V|_2T*) B
(T [ (1—v) |72+ u|V|*2} T*>_
=@ (- e v)
and by (2.8) for X = [VT!|* we get

(2.9) v > () ((1 — )T 2+ |V|_2>71 7!

for v € [0,1].

By multiplying the inequality (2.9) at left with T* and at right with T we get
the second inequality in (2.3). O
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Remark 1. We observe that, by using the argument from Proof 2 above, we can
state the first inequality in (2.3) also for any V € B(H) and T € B~ (H). If we
take the inner product in |T|°V, |V|> > T®,V, for V € B(H) and T € B~* (H),
then we get the vector inequality of interest

(2.10) (1 —v) | Tz|” +v|[Ve|? > H]VT—1|”TxH2
for any x € H and v € [0,1] and in particular

(2.11) % (ITz)? + [val?) > H|VT*1|1/2TxH2.
The following norm inequality should also be noticed,

(2.12) H(l—y) |T|2+I/|V|2H > HIVT*1|”TH2
forVeB(H), TeB ' (H) andv € [0,1].

We can also define the following weighted operator means for v € [0, 1] and the
operators T, V' as above by

e,V : :(T®UV)1/2:“VT*1|1/2T’,
1/2 1/2
VYAV :(|T|2V,,|V|2) :((1—y)|T\2+u\V\2>
and
1/2 B o\ —1/2
T2y = (|T|2!,,|V|2) :((1—1/)|T| S 2) .

Then by taking the square root in (2.3) we get
(2.13) VYV > TEY?V > T1/?V
for any T, V € B~1 (H) and v € [0,1].

Corollary 1. If (T4, ...,T,,) is an n-tuple of invertible bounded linear operators and
(p1,..-,Pn) @ probability distribution, then for any v € [0,1] we have

(2.14) > pi TP = > pips
i=1

ij=1

|1 T :

—1
n -1 n
> > wawy (=) T2+ (3] %) 2<Zpilﬂl2> ~
i=1

ij=1
In particular, we have

2

(215) > pi T = > paw |11 T
i=1

1,7=1

n 1 n —1
>3 vy (L= ) [T + v |15 7%) 2<ZPiITiI‘2) -
i,j=1 i=1

Proof. Follows from (1.9) and Lemma 1. O
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Remark 2. If we take the inner product in the first inequality in (2.14) we get

n n v 2
(2.16) Y wilTial* = Y piwy |||TT7] Tiw ‘
i=1 4,j=1
for any x € H and v € [0,1]. In particular, we have
n ) n _q,1/2 2
(2.17) S pilTial* = > pips H|TJT¢ | T ‘
i=1 ,j=1

foranyx € H and v € [0,1].
Using the Cauchy-Bunyakovsky-Schwarz inequality and the generalized triangle
inequality we have
2 2

n n n
Z pip; ||| T Tl > Z pip; ||| T Tia ‘ > Z pip; | LT Tix||
4,j=1 5,j=1 t,j=1

‘ 2

which by (2.16) produces the vector inequality
2

n n
(2.18) > i 1Tz |* > > pip T Tz
i=1 Q=1

for any x € H and v € [0,1].
By taking the supremum in this inequality over x € H, ||z|| = 1 we also get the
operator norm inequality

n
Zpi T3
i=1

2

> v |TT T,

i,7=1

(2.19)

for any v € [0,1].

3. IMPROVEMENTS AND REFINEMENTS

Jensen’s inequality for convex function is one of the most known and extensively
used inequality in various filed of Modern Mathematics. It is a source of many
classical inequalities including the generalized triangle inequality, the arithmetic
mean-geometric mean-harmonic mean inequality, the positivity of relative entropy
in Information Theory, Schannon’s inequality, Ky Fan’s inequality, Levinson’s in-
equality and other results. For classical and contemporary developments related to
the Jensen inequality, see [2], [11], [13] and [4] where further references are provided.

To be more specific, we recall that, if X is a linear space and C' C X a convex
subset in X, then for any convex function f : C' — R and any z; € C,r; > 0
for i € {1,...,k},k > 2 with Zle r; = R > 0 one has the weighted Jensen’s
inequality:

1 < 1 <&

If f:C — R is strictly convex and r; > 0 for ¢ € {1,...,k} then the equality case
hods in (J) if and only if z; = ... = z,.
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By P,, we denote the set of all nonnegative n-tuples (p1, ..., p,) with the property
that Z?:l p; = 1. Consider the normalised Jensen functional

TIn f,X p Zpt xz (szxz> >0,

where f : C' — R be a convex function on the convex set C and x = (1, ...,x,) € C"
and p €P,.
The following result holds [3]:

Lemma 2. Ifp, q €P,, ¢; > 0 for each i € {1,...,n} then

1<i<n 1<i<n

a0 09 min {217, 0xa) < 7 Goxp) < max {27 ().

In the case n = 2, if we put py =1 —p, po = p, ¢t = 1 —q and go = ¢ with
p € [0,1] and g € (0,1) then by (3.1) we get

62 w2200 £ @) +a ) - S0 - 0w+ )
<A-p)f@@)+pf(y) —f((1-p)z+py)
<max {21224 0= 0) 1 @) 40 ) - £ (- o+ )

for any z, y € C.
If we take ¢ = 1 in (3.2), then we get

(3.3) 2min {£,1 - t} [f@);f(y) w (;y)}
<=t fle)+tf(y) = F((A—-t)z+1y)

< 2max {t,1 — t}[ (Hf() f<x;y>}

for any z, y € C and ¢t € [0,1].
We consider the scalar weighted arithmetic, geometric and harmonic means de-
fined by

A, (a,b) == (1 —v)a+vb, G, (a,b):=a'""b" and H, (a,b) = A, (a”*,b7")

where a, b > 0 and v € [0,1].
If we take the convex function f : R — (0,00), f(2) = exp (az), with a # 0,
then we have from (3.2) that

B {2 2T e () exp (@) — exp (0, (0,0)]
< A, (exp (az) ,exp (o)) — exp (@4, (a, b))

< max {2,322, (oxp (aa) xp () — exp (0 (0.0)]

for any p € [0,1] and g € (0,1) and any z, y € R.
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For ¢ = 5 we have by (3.4) that
(3.5) 2min {p,1 — p} [A (exp (ax),exp (ay)) — exp (@A (a, b))]
< A, (exp (az) ,exp (ay)) — exp (@A (a,b))
< 2max {p, 1 - p} [A (exp (o), exp (1)) — exp (0 (a,)]

for any p € [0,1] and any z, y € R.
If we take x = Ina and y = Inb in (3.4), then we get

(3.6) mln{ } a®,b%) — G¢ (a,b)]
< Ap (a®,0%) — G} (a,b)

< max{ f a®,b%) — G (a,b)]

for any a, b > 0, for any p € [0,1], ¢ € (0,1) and « # 0.
For ¢ = § we have by (3.6) that
(3.7) min{p, 1 —p} (b% —a?)” < 4, (a®,b") — GS (a,b)
< max{p,1— p} (b% — %)2
for any a, b > 0, for any p € [0,1] and « # 0.
For oo = 1 we get from (3.7) that

38  min{p1-p) (Vb va) <4,(ab)~G,(ab)
<max{p.1 - p} (Vb va)

for any a, b > 0 and for any p € [0,1], which are the inequalities obtained by
Kittaneh and Manasrah in [7] and [8].
For aw =1 in (3.6) we obtain

(39 min {7 122414, 0.0) - G, )
< AP (a" b) - Gp (a’ b)
pl-p
< max {2 12T, (0) - Gy 0.0,

for any a, b > 0, for any p € [0,1], which is the inequality (2.1) from [1] in the
particular case A = 1 in a slightly more general form for the weights p, ¢.
We have the following refinement and reverse for the inequality (2.3):

Theorem 2. IfT € B~ (H) and V € B(H), we have for p € [0,1] and q € (0,1)
that

(3.10) mln{z 1}(|T| VY, v -1,V )

< TPV, |V - TO,V

1
<maX{Z 1q}(|T V, [V - T,V )
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In particular, we have
(3.11) 2min {p,1 — p} (|T|2V\V\2 —T@V)
<ITPV, |V = T®,V
< 2max {p,1 - p} (1T V|V]* - TOV),
for any p € [0,1].

Proof. From the inequality (3.9) for a = 1 and b = = > 0 we have

. fp 1-p
3.12 S ) NG — 2
(312) min {2 12240 g+ go - 0
<l-p+pr—af
1—
<max{,1p}(1—q+qx—a:‘1)7
q

where p € [0,1] and ¢ € (0,1).
Using the continuous functional calculus for nonnegative operator X we have
1 —
(3.13) min{p7lp}((1—q) g + ¢X — X9)
qg 1—q
<(1—p)ly+pX — X7
p1- p}
< max<{ -, —— 1—q)lyg +q¢X — X9),
{L.122} -0 )
where p € [0,1] and ¢ € (0,1).

If T € B~ (H) and V € B(H) then the operator X = [VT~*|? is selfadjoint
and nonnegative and by (3.13) we have

(3.14) min {Z, 1:5} ((1 Q) lu+q|VT | - (|VT*1’2)q)

<-ptg+p[vT i = (vT 1)’

< max{z,i_‘:} ((1 —q)1lu +q’VT71|2 - (|VT71|2)q) ’

where p € [0,1] and g € (0,1).
By multiplying the inequality (3.14) at left with T* and at right with T we get
the desired result (3.10). O

We observe that, by taking the inner product in (3.10) we have the vector in-
equalities

1 — 2
15) i {Z 2L (09 Iral + aVal? - [l )
q —q
2 2 —1|P 2
< (1 =) Il + |Vl ~ |||VT 7o

<o {2222 (0 g rap® g vl - vt o]

for any p € [0,1], g € (0,1) and x € H.
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In particular, we have
(3.16) 2min {p,1 — p} (; (||Tz||2 + ||V3:||2) - H|VT*1|1/2 T:EHQ)
< (1) [Tl + p|Vall* — [T} 7a]

<2max{p,1p}< (Il + Vel >H|VT1|1/2T:1:H2>,

for any p € [0,1] and = € H.

Remark 3. If A is positive and invertible and B is positive, then by taking T =
AY2? and V = BY? in (3.10) and (3.11) we get

p 1-—

Smax{p 1_ }(AVB At,B),

for any p € [0,1] and q € (0,1).
In particular, for g =1/2 we have

(3.18) 2min{p,1 — p} (AVB — AfB) < AV,B — A4,B
< 2max{p,1 —p} (AVB — A{B),

for any p € [0,1]. The inequality (3.18) has been obtained in [6].

Corollary 2. If (Th,...,T},,) is an n-tuple of invertible bounded linear operators and
(p1,..-sDn) @ probability distribution then for any p € [0,1] and g € (0,1) we have

(3.19) min{ } Zpl ITy|% — Zplpj“VT

i,j=1
<sz|T| - szpJMVT Pl
1,7=1
<max{ } sz |T‘ Zpipj“Vij
i,j=1
In particular, we have
(3.20) 2min {p,1 — p} Zpi = Zpipj “VT 1|1/2
i,j=1
<Zpl|T| - me7 VTP T

i,j=1

)

< 2max{p,1 — p} Zpi \Ti|2 — Z pipj ‘|Vsz‘71|1/2T
i=1 ,j=1

for any p € [0,1].



12 S.S. DRAGOMIRY2

By taking the inner product in (3.19) we also have the vector inequality

[ 1-p) (¢ Y -
(3.21) mln{z, 1_2} Zpi | T ]|* — Z DiDj H|TjT¢ 1|‘1 Tix
i=1 ,j=1

n n
< Zpi | Ts||* — Z Pibj
i=1

i,j=1

‘ 2

|TJTZ_1}pEZ‘ ‘2

‘ 2

< max {7 1} sz‘ | Tiz||” - Z Pipj H{Tjﬂ W7zl |,
479 \io ij=1
for any p € [0,1], ¢ € (0,1) and x € H.
In particular,

11 T

‘ 2

(3.22) 2min {p,1 — p} Zpi HTixHQ — Z DiDj
i=1

i,7=1

‘ 2

n n
< pilTl® = pips H|Tijl|pTix
=1

i,j7=1

1,1V Tia

2
RE

n n
< 2max{p,1-p} | D_pillTiz|* = D pivs
i=1

ij=1

for any p € [0,1] and = € H.

4. INEQUALITIES UNDER BOUNDEDNESS CONDITIONS

If we take in (3.2) f(x) = —Inx, then we get
Ay )\ Ay @) (A ()
() [ lew) < <
Gq(2,9) Gp (z,9) Gq (z,9)
for any z, y > 0 and for any p € [0,1], g € (0,1).
This inequality is a particular case for n = 2 of the inequality (4.2) from [3].
For ¢ = 1 we have by (4.1) (for = a, y = b) that

(4 2) A (a7 b) 2min{p,1—p} _ Ap (a7 b) _ A (Cl, b) 2 max{p,1—p}
. G(a,b) B GP (a7b) - G(aab)

for any a, b > 0 and for any p € [0, 1].
Recall that Kantorovich’s constant K is defined by

(h+1)?
4h
It is well known that K is decreasing on (0,1) and increasing on [1,00), K (h) > 1

for any h > 0 and K (h) = K (3) for any h > 0.
The inequality (4.2) can be thus written as

; _ A, (a,b) o1 (G
71, Icmm{p,l p} g < P\ < Icmax{p,l pr (& )
(ZL) (b)_Gp(a,b)_ (b)
The first inequality in (ZL) was obtained by Zou et al. in [14] while the second by
Liao et al. [10].

(K) K (h) == )
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For ¢ € (0,1) we consider the function f, : (0,00) — (0, 00) defined by
A, (1, h) 1—qg+qh
h) =
The function f; is dlfferentlable and

fo(h) =1 =q)gh™" (h = 1),
which shows that the function f, is decreasing on (0,1) and increasing on [1,00) . We
have fq (1) = 1, limp—o4 fy (h) = +00, limp o fq (h) = +00 and f, (1) = fi—q ()
for any h > 0 and ¢ € (0,1).
Therefore, by considering the 3 possible situations for the location of the interval
[¢, L] and the number 1 we get

=(1—q)h 9+ qh' .

fq(0) if L <1,
(4.3) max f, (h) =4 max{f, (0).f, (L)} if¢<1<L,

£, (L) if1<e,

Ag(L0)
NN if L <1,

_ 4,00 A0
= max{G, Gn ) <1< L

ALL) 41 <

Gq(1,L)
and
£, (L) if L <1, 20 L <1,
4.4 —{ 1ifr<1<L ={ 1ifr<1<L
(4.4) hgﬁHL]fq() fe<1< if¢<1<1L,
: Ay
fo () i1 <0, Girgif1<e

Lemma 3. Let T, V € B (H) and 0 < m < M < oo. Then the following
statements are equivalent:
(i) The inequality

(4.5) m||Tzl| < [[Val| < M ||Tz]|

holds for any x € H,;
(ii) We have the operator inequality

(4.6) mly < |VT7' < Mlp.
Proof. The inequality (4.5) is equivalent to
m? ||Tz|* < |[Va|* < M* | Ta|?
for any z € H, namely
m? (T*Tx,z) < (V*Vr,z) < M* (T*Tx, )
for any € H, which can be written in the operator order as

(4.7) m*T*T < V*V < M?T*T.
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Since T' € B~! (H), then the inequality (4.7) is equivalent to
m*ly < (T74) " V*VT™' < M1y,
namely
m? 1y < [VT'* < M1y,
which in its turn is equivalent to (4.6).

We have the following result for operators:

Theorem 3. Let T, V € B~' (H) and 0 < m < M < oco. Assume that the pair of
operators (T, V') satisfies either the condition (4.5) or, equivalently, the condition
(4.6). Then we have for p € [0,1] and g € (0,1) that

(4.8) Ypg (M, M)T®,V < |T|*V, [V|* < T (m, M) T®,V,
where
p 1l=p
A l,m2 max{;,m} .
(ngl7m22> if M <1,
Aq(l,mQ) max{%»i%’; Aq(l,MQ) max{%%
T, (m, M) :={ M) G@mm?) '\ G
ifm<1<M,
p l1—-p
A, 1,M2 max{a,ﬁ '
(qul,Mg) if1<m
and (210
A, 1,M2 min %,175 .
(qul,]\p;) if M <1,
Vpq (M, M) lifm<1<M,
in{2 1=p
Aq(l,mQ) mm{?l—q} '
W Zfl < m.

Proof. From the inequality (4.1) we have

in{2 1=p A (1 t)
¢ mln{q,l_q} < Z2p\Y)
(fq( )) — Gp (1,t)
for any ¢t > 0, for p € [0,1] and g € (0,1).
If t € [¢, L] then from (4.9) we have

(4.9) < (f, @yl =id

min{ﬁ,%} A (1 t) max{ﬁ,iffp
i h <P < h
(i, ) < < (s hm)
that can be written as
) min{%,%} ) ) max{%,i%s}
. i <1-— <
(4.10) (ﬁé% fq (h)) tP<1—p+pt<t (hgl[%] fq (h)>

for any t € [¢, L], for p € [0,1] and ¢q € (0,1).
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Using the functional calculus for the selfadjoint operator X with spectrum in-
cluded in [¢, L] we have

min{z 12}
) XP<(1-p)lg+pX

(4.11) ( min £, (h)

hele,L]

p l=p
)max{q,l_q}

for p € [0,1] and g € (0,1).
Due to the condition (4.6) the operator X = |VT~! |2 has the spectrum included
in [m?, M?| and by (4.11) we have

(412) < min fq(h)> (v

<(L—p)iy+p|vT

(V) ()

for p € 0,1] and ¢ € (0,1).
By multiplying the inequality (4.12) at left with T* and at right with 7" we get
the desired result (4.8). O

For ¢ = 1/2 in the above Theorem 3 we get
(4.13) 7y (m, M) T®,V < [TV, V[ < T, (m, M) T®, V.

where

’CrnaX{p,l_P} <m2) it M < 13

max {Kmax{p,lfp} (mZ) JCIHHX{PJ*P} (MQ)}
iftm<1< M,
Kmastpa=r (M2) i1 < m
and
jemindp1=ph (M12) if M < 1,
'yp(m,M):: 1ifm <1< M,

Kmine 1) (1m2) if 1 < m

for any p € [0, 1], where K is Kantorovich’s constant.
Now, if we take the inner product in (4.13) we also have the vector inequalities

2
(414) 5, M) ||V T < (1= p) |Tall + pVal?

2

)

< Ty (m, M) |[[VT [ T4

for any z € H.



16 S.S. DRAGOMIRY2

By taking the supremum over x € H, ||z|| = 1 in (4.14) we get the operator norm
inequality

(4.15) %omADWVT*FTWgHu—unﬂ2+uwﬁH
grpm%mnHwﬂprTW.

Remark 4. Assume that the positive invertible operators A, B satisfy the condition
kA < B < KA for the constants 0 < k < K. Then by multiplying both sides
by A~Y2 e get klg < A-Y2BA-Y2 < Kl1g that can be written as klg <
|B1/2A’1/2’2 < K1y that is equivalent to Vkly < |Bl/2A’1/2| <+VK1y. Now, if
we apply Theorem 3 for T = AY2, V = BY2 m =k and M = VK then we get

(4.16) Opq (b, K)At,B < AV,B <A, ,(k,K) A, B,
where
p l1=p
Ay (1,k) M8 e ==}
(GZ(I,k)) if K <1,
ma (Aq(l,k}))nlax{%7g} (Aq(LK)>H1aX{%,%}
Apg (b, K) = \@am "\ G(LEK)
ifk<1<K,
1—-p
Ay e B TE
(GZ(LK)) ifl<k
and (2o}
A (LK) \ ™M G T f
(Gq(LK)> if K <1,
Ypq (b, K) =49 1ifk<1<K,
: p l-p
A (1,k) min{%, 7=}
(@um) if1<k,
where p € [0,1] and ¢ € (0,1).
In particular, we have for ¢ =1/2 that
(4.17) 0, (k,K) Af,B < AV,B < A, (k,K) A4,B,
where
jomax{p1-p} (k) if K <1,
o max {’Cmax{p,l—p} (k) 7Icmax{p,l—p} (K)}
Ap(ka)‘_ kaS1SK7
jomax{p1-p} (K) ifl <k
and _
fominted=p} (K) if K < 1,
oy (k,K) == 1ifk<1<K,

KCmindp1=p} (k) if 1 < k,



wh

(1]

Mg

Scr

THE QUADRATIC WEIGHTED GEOMETRIC MEAN 17

ere p € [0,1].
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