
SOME PROPERTIES OF QUADRATIC WEIGHTED GEOMETRIC
MEAN OF BOUNDED LINEAR OPERATORS IN HILBERT

SPACES VIA KATO�S INEQUALITY

S. S. DRAGOMIR1;2

Abstract. In this paper we consider the quadratic weighted geometric mean

Ts�V :=
����V T�1��� T ��2

for bounded linear operators T; V in the Hilbert space H with T invertible
and � 2 [0; 1]. Using the celebrated Kato�s inequality we give some operator
inequalities such as

jhTsV x; yij2 � hTs�V x; xi hTs1��V y; yi
for any x; y 2 H and � 2 [0; 1] ; where TsV := Ts1=2V: Applications for
n-tuples of invertible operators and norm inequalities are provided as well.

1. Introduction

Assume that A; B are positive operators on a complex Hilbert space (H; h�; �i) :
The weighted operator arithmetic mean for the pair (A;B) is de�ned by

Ar�B := (1� �)A+ �B:
In 1980, Kubo & Ando, [21] introduced the weighted operator geometric mean for
the pair (A;B) with A positive and invertible and B positive by

A]�B := A
1=2
�
A�1=2BA�1=2

��
A1=2:

If A; B are positive invertible operators then we can also consider the weighted
operator harmonic mean de�ned by (see for instance [21])

A!�B :=
�
(1� �)A�1 + �B�1

��1
:

We have the following fundamental operator means inequalities

(1.1) A!�B � A]�B � Ar�B; � 2 [0; 1]
for any A; B positive invertible operators. For � = 1

2 ; we denote the above means
by ArB; A]B and A!B:
The "square root" of a positive bounded selfadjoint operator on H can be de�ned

as follows, see for instance [17, p. 240]: If the operator A 2 B (H) is selfadjoint and
positive, then there exists a unique positive selfadjoint operator B :=

p
A 2 B (H)

such that B2 = A: If A is invertible, then so is B:
If A 2 B (H) ; then the operator A�A is selfadjoint and positive. De�ne the

"absolute value" operator by jAj :=
p
A�A:
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In the recent paper [6] we generalized the concept of weighted operator geometric
mean as follows.
We denote by B�1 (H) the class of all bounded linear invertible operators on

H: For T 2 B�1 (H) and V 2 B (H) we de�ne the quadratic weighted operator
geometric mean of (T; V ) by

(1.2) Ts�V :=
�����V T�1��� T ���2

for � � 0: For V 2 B�1 (H) we can also extend the de�nition (1.2) for � < 0:
By the de�nition of modulus, we also have

(1.3) Ts�V = T
� ��V T�1��2� T = T � �(T �)�1 V �V T�1�� T

for any T 2 B�1 (H) and V 2 B (H) :
For � = 1

2 we denote

TsV :=
�����V T�1��1=2 T ���2 = T � ��V T�1��T = T � �(T �)�1 V �V T�1�1=2 T:

It has been shown in [6] that the following representation holds

(1.4) Ts�V = jT j2 ]� jV j2

for T; V 2 B�1 (H) and any real �:
We have the following fundamental inequalities extending (1.1):

(1.5) jT j2r� jV j2 � Ts�V � jT j2!� jV j2

for T; V 2 B�1 (H) and for � 2 [0; 1]. In particular, we have

(1.6) jT j2r jV j2 � TsV � jT j2! jV j2

for T; V 2 B�1 (H) :
We can de�ne the related weighted operator means for � 2 [0; 1] and the opera-

tors T; V as above by

Ts1=2
� V : = (Ts�V )

1=2
=
�����V T�1��1=2 T ��� ;

Tr1=2� V : =
�
jT j2r� jV j2

�1=2
=
�
(1� �) jT j2 + � jV j2

�1=2
and

T !1=2� V :=
�
jT j2!� jV j2

�1=2
=
�
(1� �) jT j�2 + � jV j�2

��1=2
;

then by taking the square root in (1.5) we get [6]

(1.7) Tr1=2� V � Ts1=2
� V � T !1=2� V

for any T; V 2 B�1 (H) and � 2 [0; 1] :
Using the representation (1.4) and the fact that B]1��A = A]�B for any positive

invertible operators A and B we can state that

(1.8) Ts1��V = Vs�T

for any T; V 2 B�1 (H) and � 2 [0; 1] :
By using the celebrated Kato�s inequality we give in what follows another proof

for the equality (1.8). Some operator inequalities such as

jhTsV x; yij2 � hTs�V x; xi hTs1��V y; yi
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for any x; y 2 H and � 2 [0; 1] ; where TsV := Ts1=2V are also established.
Applications for n-tuples of invertible operators and norm inequalities are given as
well.

2. Some Results Via Kato�s Inequality

In 1952, Kato [18] proved the following celebrated generalization of Schwarz
inequality for any bounded linear operator U on H:

(2.1) jhUx; yij2 � h(U�U)� x; xi
D
(UU�)

1��
y; y
E
;

for any x; y 2 H; � 2 [0; 1] : Utilizing the modulus notation introduced before, we
can write (2.1) as follows

(2.2) jhUx; yij2 �
D
jU j2� x; x

ED
jU�j2(1��) y; y

E
for any x; y 2 H; � 2 [0; 1] :
For various interesting generalizations, extension and Kato related results, see

the papers [1]-[5], [7]-[16], [22]-[25] and [26].
We observe that for any T; V 2 B�1 (H) and � 2 [0; 1] we have

(Ts�V )
�1
=
�
T �
�
(T �)

�1
V �V T�1

��
T
��1

= T�1
�
TV �1 (V �)

�1
T �
��
(T �)

�1

and

(T �)
�1s� (V

�)
�1

=
�
(T �)

�1
�����

(T �)
�1
����1 �

(V �)
�1
��
(V �)

�1
�
(T �)

�1
��1��

(T �)
�1

= T�1
�
TV �1 (V �)

�1
T �
��
(T �)

�1

showing that

(2.3) (Ts�V )
�1
= (T �)

�1s� (V
�)
�1

for any T; V 2 B�1 (H) and � 2 [0; 1] :
In order to prove the result (1.8) we need the following lemma that holds via

Kato�s inequality.

Lemma 1. For any T; V 2 B�1 (H) and � 2 [0; 1] we have the inequality

(2.4) jhx; yij2 � hTs�V x; xi
D
(Vs1��T )

�1
y; y
E

for any x; y 2 H:

Proof. Let T; V 2 B�1 (H) and take U = V T�1 in (2.2) to get��
V T�1u; v���2 � D��V T�1��2� u; uE�����V T�1�����2(1��) v; v�(2.5)

=
D��V T�1��2� u; uE����(T �)�1 V ����2(1��) v; v�

=
D��V T�1��2� u; uE*����(T �)�1 �(V �)�1��1����2(1��) v; v

+
for any u; v 2 H:
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Let x; y 2 H: If we take in (2.5) u = Tx and v = (V �)�1 y then we get

jhx; yij2 �
D��V T�1��2� Tx; TxE(2.6)

�
*����(T �)�1 �(V �)�1��1����2(1��) (V �)�1 y; (V �)�1 y

+
=
D
T �
��V T�1��2� Tx; xE

�
*�
(V �)

�1
�� ����(T �)�1 �(V �)�1��1����2(1��) (V �)�1 y; y

+
= hTs�V x; xi

D
(V �)

�1s1�� (T
�)
�1
y; y
E

for any � 2 [0; 1] :
Since, by (2.3) we have

(V �)
�1s1�� (T

�)
�1
= (Vs1��T )

�1

for any T; V 2 B�1 (H) and � 2 [0; 1] ; then by (2.6) we get the desired result
(2.4). �

Theorem 1. For any T; V 2 B�1 (H) and t 2 [0; 1] we have
(2.7) Ts1�tV = VstT:

Proof. If in (2.4) we take y = Vs1��Tu; u 2 H and x = w; then we get

jhw; Vs1��Tuij2 � hTs�V w;wi hu; Vs1��Tui
and by putting t = 1� � we get

jhVstTu;wij2 � hVstTu; ui hTs1�tV w;wi
for any T; V 2 B�1 (H), t 2 [0; 1] and u; w 2 H:
In particular, we have

(2.8) jhVstTu; uij2 � hVstTu; ui hTs1�tV u; ui
for any T; V 2 B�1 (H) and u 2 H:
Since VstT > 0 then the inequality (2.8) is equivalent to

(2.9) hVstTu; ui � hTs1�tV u; ui
for any T; V 2 B�1 (H) and u 2 H:
If we replace in (2.9) V by T and t by 1� t we also get

(2.10) hTs1�tV u; ui � hVstTu; ui
for any T; V 2 B�1 (H) and u 2 H:
Therefore, by (2.9) and (2.10) we can conclude that, for t 2 [0; 1] ;

(2.11) hTs1�tV u; ui = hVstTu; ui
for any T; V 2 B�1 (H) and u 2 H:
Using the polarization identity for a positive operator P; namely

hPx; yi = 1

4

4X
k=1

ik


P
�
(x+ iky

�
; x+ iky

�
; x; y 2 H
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and by the identity (2.11) we conclude that for t 2 [0; 1] we have

hTs1�tV x; yi = hVstTx; yi

for any T; V 2 B�1 (H) and x; y 2 H; which proves the desired result (2.7). �

We have the following inequalities:

Theorem 2. For any T; V 2 B�1 (H) and � 2 [0; 1] we have the inequality

(2.12)
���DjV j2 x; yE���2 � hTs2�V x; xi



Ts2(1��)V y; y

�
and the inequality

(2.13) jhTsV x; yij2 � hTs�V x; xi hTs1��V y; yi

for any x; y 2 H:

Proof. If we write Kato�s inequality (2.2) for U =
��V T�1��2 ; which is an invertible

positive operator for any T; V 2 B�1 (H) ; then we get

(2.14)
���D��V T�1��2 u; vE���2 � D��V T�1��4� u; uED��V T�1��4(1��) v; vE

for any u; v 2 H:
If we take in (2.14) u = Tx and v = Ty; then we get���D��V T�1��2 Tx; TyE���2 � D��V T�1��4� Tx; TxED��V T�1��4(1��) Ty; TyE

for any x; y 2 H; namely

(2.15)
���DT � ��V T�1��2 Tx; yE���2 � DT � ��V T�1��4� Tx; xEDT � ��V T�1��4(1��) Ty; yE

for any x; y 2 H and � 2 [0; 1] :
Since

T �
��V T�1��2 T = T � (T �)�1 V �V T�1T = jV j2

and
T �
��V T�1��4� T = Ts2�V; T

� ��V T�1��4(1��) T = Ts2(1��)V

then by (2.15) we get (2.12).
Now, if we take in Kato�s inequality U =

��V T�1�� ; which is an invertible positive
operator for any T; V 2 B�1 (H) ; then we also get

(2.16)
��
��V T�1��x; y���2 � D��V T�1��2� x; xED��V T�1��2(1��) y; yE

for any x; y 2 H and � 2 [0; 1] :
Further, if we take in (2.16) u = Tx and v = Ty; then we get��
T � ��V T�1��Tx; y���2 � DT � ��V T�1��2� Tx; xEDT � ��V T�1��2(1��) Ty; yE

for any x; y 2 H and � 2 [0; 1] ; which proves (2.13). �

Remark 1. Since Ts1��V = Vs�T; then inequality (2.13) also can be written as

(2.17) jhTsV x; yij2 � hTs�V x; xi hVs�Ty; yi

for any x; y 2 H:
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If we use the mean Ts1=2
� V := (Ts�V )

1=2, then we have the equivalent inequal-
ities

(2.18)
���DjV j2 x; yE��� � 


Ts1=2

2� V x






Ts1=2

2(1��)V y





and

(2.19) jhTsV x; yij �



Ts1=2

� V x






Ts1=2

1��V y





for any T; V 2 B�1 (H), � 2 [0; 1] and x; y 2 H:
Taking the supremum over kxk = kyk = 1 in (2.12) and (2.13) we get the norm

inequalities

(2.20) kV k4 � kTs2�V k


Ts2(1��)V




and

(2.21) kTsV k2 � kTs�V k kTs1��V k
for any T; V 2 B�1 (H) and � 2 [0; 1] :

If A; B are invertible positive operators, then by taking T = A1=2 and V = B1=2

in Theorem 2 we get

(2.22) jhBx; yij2 � hA]2�Bx; xi


A]2(1��)By; y

�
and the inequality

(2.23) jhA]Bx; yij2 � hA]�Bx; xi hA]1��By; yi
for any x; y 2 H:
We also have the norm inequalities

(2.24) kBk2 � kA]2�Bk


A]2(1��)B



and

(2.25) kA]Bk2 � kA]�Bk kA]1��Bk
for any A; B invertible positive operators and � 2 [0; 1] :

3. Inequalities for n-Tuples of Operators

Consider the Cartesian product B�1;(n) (H) := B�1 (H)� � � � � B�1 (H) ; where
B�1 (H) denotes the class of all bounded linear invertible operators on H:

Theorem 3. Let (T1; : : : ; Tn) ; (V1; : : : ; Vn) ;2 B�1;(n) (H) and (p1; :::; pn) 2 R�n+
be an n-tuple of nonnegative weights not all of them equal to zero. Then we have

nX
j=1

pj

���DjVj j2 x; yE���(3.1)

�
*

nX
j=1

pjTjs2�Vjx; x

+1=2* nX
j=1

pjTjs2(1��)Vjy; y

+1=2
and

(3.2)
nX
j=1

pj jhTjsVjx; yij �
*

nX
j=1

pjTjs�Vjx; x

+1=2* nX
j=1

pjTjs1��Vjy; y

+1=2
for any x; y 2 H and � 2 [0; 1] :
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In particular, we have

(3.3)

*
nX
j=1

pj jVj j2 x; x
+
�
*

nX
j=1

pjTjs2�Vjx; x

+1=2* nX
j=1

pjTjs2(1��)Vjx; x

+1=2
and

(3.4)

*
nX
j=1

pjTjsVjx; x
+
�
*

nX
j=1

pjTjs�Vjx; x

+1=2* nX
j=1

pjTjs1��Vjx; x

+1=2
for any x 2 H and � 2 [0; 1] :

Proof. From inequality (2.12) we have

(3.5)
���DjVj j2 x; yE��� � hTjs2�Vjx; xi1=2



Tjs2(1��)Vjy; y

�1=2
for any j 2 f1; :::; ng, for any x; y 2 H and � 2 [0; 1] :
If we multiply (3.5) by pj � 0; j 2 f1; :::; ng and sum from 1 to n, then we get

(3.6)
nX
j=1

pj

���DjVj j2 x; yE��� � nX
j=1

pj hTjs2�Vjx; xi1=2


Tjs2(1��)Vjy; y

�1=2
for any x; y 2 H and � 2 [0; 1] :
Now, on making use of the weighted Cauchy-Bunyakovsky-Schwarz discrete in-

equality

nX
j=1

pjajbj �

0@ nX
j=1

pja
2
j

1A1=20@ nX
j=1

pjb
2
j

1A1=2

where (a1; :::; an) ; (b1; :::; bn) 2 Rn+; and choose aj = hTjs2�Vjx; xi1=2 and bj =

Tjs2(1��)Vjy; y

�1=2
; then we get

nX
j=1

pj hTjs2�Vjx; xi1=2


Tjs2(1��)Vjy; y

�1=2
(3.7)

�

0@ nX
j=1

pj hTjs2�Vjx; xi

1A1=20@ nX
j=1

pj


Tjs2(1��)Vjy; y

�1A1=2

=

*
nX
j=1

pjTjs2�Vjx; x

+1=2* nX
j=1

pjTjs2(1��)Vjy; y

+1=2
for any x; y 2 H.
On making use of (3.6) and (3.7) we get (3.1).
From (2.13) we also have

(3.8) jhTjsVjx; yij � hTjs�Vjx; xi1=2 hTjs1��Vjy; yi1=2

for any j 2 f1; :::; ng, for any x; y 2 H and � 2 [0; 1] :
By making use of a similar argument as above we deduce the desired result (3.2).

The details are omitted. �

We have the norm inequalities:
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Corollary 1. With the assumptions of Theorem 3 we have

(3.9)








nX
j=1

pj jVj j2






 �








nX
j=1

pjTjs2�Vj








1=2 







nX
j=1

pjTjs2(1��)Vj








1=2

and

(3.10)








nX
j=1

pjTjsVj







 �







nX
j=1

pjTjs�Vj








1=2 







nX
j=1

pjTjs1��Vj








1=2

for any � 2 [0; 1] :

Proof. By the generalized triangle inequality for modulus, we have������
*

nX
j=1

pj jVj j2 x; y
+������ �

nX
j=1

pj

���DjVj j2 x; yE���
for any x; y 2 H:
By (3.1) we then have������
*

nX
j=1

pj jVj j2 x; y
+������ �

*
nX
j=1

pjTjs2�Vjx; x

+1=2* nX
j=1

pjTjs2(1��)Vjy; y

+1=2

for any x; y 2 H and � 2 [0; 1] :
By taking the supremum over kxk = kyk = 1 in this inequality and since the

operators
nX
j=1

pjTjs2�Vj and
nX
j=1

pjTjs2(1��)Vj are selfadjoint, we get the desired

result (3.9).
The inequality (3.10) follows in a similar way by utilising (3.2). �

We have the inequalities in the operator order:

Corollary 2. With the assumptions of Theorem 3 we have

(3.11)
nX
j=1

pj jVj j2 �
nX
j=1

pj

�
Tjs2�Vj + Tjs2(1��)Vj

2

�
and

(3.12)
nX
j=1

pjTjsVj �
nX
j=1

pj

�
Tjs�Vj + Tjs1��Vj

2

�
for any � 2 [0; 1] :

Proof. Using the elementary inequality

p
ab � 1

2
(a+ b) ; a; b � 0;
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we have *
nX
j=1

pjTjs2�Vjx; x

+1=2* nX
j=1

pjTjs2(1��)Vjx; x

+1=2

� 1

2

0@* nX
j=1

pjTjs2�Vjx; x

+
+

*
nX
j=1

pjTjs2(1��)Vjx; x

+1A
=

*
1

2

0@ nX
j=1

pjTjs2�Vj +
nX
j=1

pjTjs2(1��)Vj

1Ax; x+

for any x 2 H and � 2 [0; 1] :
Making use of this inequality and (3.3) we deduce the desired result (3.11). �

Remark 2. If Aj ; Bj are invertible positive operators for j 2 f1; :::; ng, then by
taking Tj = A

1=2
j and Vj = B

1=2
j in Theorem 2 we get

(3.13)
nX
j=1

pj jhBjx; yij �
*

nX
j=1

pjAj]2�Bjx; x

+1=2* nX
j=1

pjAj]2(1��)Bjy; y

+1=2
and

(3.14)
nX
j=1

pj jhAj]Bjx; yij �
*

nX
j=1

pjAj]�Bjx; x

+1=2* nX
j=1

pjAj]1��Bjy; y

+1=2
for any x; y 2 H and � 2 [0; 1] :
From (3.9) and (3.10) we get the norm inequalities

(3.15)








nX
j=1

pjBj







 �







nX
j=1

pjAj]2�B








1=2 







nX
j=1

pjAj]2(1��)Bj








1=2

and

(3.16)








nX
j=1

pjAj]Bj







 �







nX
j=1

pjAj]�Bj








1=2 







nX
j=1

pjAj]1��Bj








1=2

for any � 2 [0; 1] :
From (3.11) and (3.12) we have the operator inequalities

(3.17)
nX
j=1

pjBj �
nX
j=1

pj

�
Aj]2�B +Aj]2(1��)Bj

2

�
and

(3.18)
nX
j=1

pjAj]Bj �
nX
j=1

pj

�
Aj]�Bj +Aj]1��Bj

2

�
for any � 2 [0; 1] :

We have the following generalization of Schwarz inequality:



10 S. S. DRAGOMIR1;2

Corollary 3. Let (T1; : : : ; Tn) ; (V1; : : : ; Vn) ;2 B�1;(n) (H) with
Pn

j=1 jVj j
2
= 1H

and � 2 [0; 1] : Then we have

(3.19) jhx; yij �
*

nX
j=1

Tjs2�Vjx; x

+1=2* nX
j=1

Tjs2(1��)Vjy; y

+1=2

for any x; y 2 H and � 2 [0; 1] :
In particular, if jV j2 = 1H ; then for any T 2 B�1 (H) we have

(3.20) jhx; yij �
����jT �j�2� T ���2 x; x�1=2����jT �j�2(1��) T ���2 y; y�1=2

for any x; y 2 H and � 2 [0; 1] :

Proof. We have by (3.1) for pj = 1; j 2 f1; :::; ng

jhx; yij =

������
*

nX
j=1

jVj j2 x; y
+������ �

nX
j=1

���DjVj j2 x; yE���(3.21)

�
*

nX
j=1

Tjs2�Vjx; x

+1=2* nX
j=1

Tjs2(1��)Vjy; y

+1=2

for any x; y 2 H and � 2 [0; 1] :
For n = 1; namely when V1 = V with jV j2 = 1H then we have

(3.22) jhx; yij � hTs2�V x; xi1=2


Ts2(1��)V y; y

�1=2
for any x; y 2 H and � 2 [0; 1] :
Since

Ts2�V = T
�
�
(T �)

�1
V �V T�1

�2�
T = T �

�
(T �)

�1
T�1

�2�
T

= T �
�
(TT �)

�1
�2�

T = T �
�
jT �j�2

�2�
T = T �

�
jT �j�2�

�2
T

=
���jT �j�2� T ���2

and

Ts2(1��)V =
���jT �j�2(1��) T ���2 ;

then by (3.22) we get (3.20). �

Remark 3. The inequality (3.20) can be written in an equivalent form as

(3.23) jhx; yij �



jT �j�2� Tx





jT �j�2(1��) Ty




for any x; y 2 H and � 2 [0; 1] : If we use Schwarz�s inequality

jhu; vij � kuk kvk
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for the choices u = jT �j�2� Tx and v = jT �j�2(1��) Ty and since

hu; vi =
D
jT �j�2� Tx; jT �j�2(1��) Ty

E
=
D�
jT �j�2(1��) T

��
jT �j�2� Tx; y

E
=
D
T � jT �j�2(1��) jT �j�2� Tx; y

E
=
D
T � jT �j�2 Tx; y

E
=
D
T � (TT �)

�1
Tx; y

E
= hx; yi ;

then we also obtain inequality (3.23).

If we consider the Hölder�s numbers p; q > 1 with 1
p +

1
q = 1; then, for instance,

the equality (2.7) can be written as

(3.24) Ts1=qV = Vs1=pT

while the inequality (2.13), as

(3.25) jhTsV x; yij2 �


Ts1=pV x; x

� 

Ts1=qV y; y

�
; x; y 2 H

for any T; V 2 B�1 (H) :
Theorem 4. Let (T1; : : : ; Tn) ; (V1; : : : ; Vn) ;2 B�1;(n) (H), (p1; :::; pn) 2 R�n+ an
n-tuple of nonnegative weights not all of them equal to zero and p; q > 1 with
1
p +

1
q = 1: Then we have

nX
j=1

pj

���DjVj j2 x; yE���2(3.26)

�
*

nX
j=1

pj
�
Tjs2=pVj

�p
x; x

+1=p* nX
j=1

pj
�
Tjs2=qVj

�q
y; y

+1=q
and

nX
j=1

pj jhTjsVjx; yij2(3.27)

�
*

nX
j=1

pj
�
Tjs1=pVj

�p
x; x

+1=p* nX
j=1

pj
�
Tjs1=qVj

�q
y; y

+1=q
for any x; y 2 H with kxk = kyk = 1:
In particular, we have

nX
j=1

pj

D
jVj j2 x; x

E2
(3.28)

�
*

nX
j=1

pj
�
Tjs2=pVj

�p
x; x

+1=p* nX
j=1

pj
�
Tjs2=qVj

�q
x; x

+1=q
and

nX
j=1

pj hTjsVjx; xi2(3.29)

�
*

nX
j=1

pj
�
Tjs1=pVj

�p
x; x

+1=p* nX
j=1

pj
�
Tjs1=qVj

�q
x; x

+1=q
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for any x 2 H with with kxk = 1:

Proof. Recall the Hölder-McCarthy inequality hP rx; xi � hPx; xir that holds for
any positive operator P and any power r 2 (0; 1) :
Using the inequality (2.12) for Vj ; Tj ; j 2 f1; :::; ng and � = 1

p ; we have

(3.30)
���DjVj j2 x; yE���2 � 
Tjs2=pVjx; x

� 

Tjs2=qVjy; y

�
for any x; y 2 H.
If x; y 2 H with kxk = kyk = 1; then by Hölder-McCarthy inequality we have


Tjs2=pVjx; x
�
=
D��
Tjs2=pVj

�p�1=p
x; x

E
�

�
Tjs2=pVj

�p
x; x

�1=p
and 


Tjs2=qVjy; y
�
=
D��
Tjs2=qVj

�q�1=q
y; y
E
�

�
Tjs2=qVj

�q
y; y
�1=q

for any j 2 f1; :::; ng :
Then by (3.2) and these inequalities, we have

(3.31)
nX
j=1

pj

���DjVj j2 x; yE���2 � nX
j=1

pj

�
Tjs2=pVj

�p
x; x

�1=p 
�
Tjs2=qVj

�q
y; y
�1=q

for any x; y 2 H with kxk = kyk = 1:
Now, on making use of the weighted Hölder discrete inequality

nX
j=1

pjajbj �

0@ nX
j=1

pja
p
j

1A1=p0@ nX
j=1

pjb
q
j

1A1=q

; p; q > 1;
1

p
+
1

q
= 1;

where (a1; :::; an) ; (b1; :::; bn) 2 Rn+; and choose aj =

�
Tjs2=pVj

�p
x; x

�1=p
while

bj =

�
Tjs2=qVj

�q
y; y
�1=q

; then we get

nX
j=1

pj

�
Tjs2=pVj

�p
x; x

�1=p 
�
Tjs2=qVj

�q
y; y
�1=q

(3.32)

�

24 nX
j=1

pj

�
Tjs2=pVj

�p
x; x

�351=p 24 nX
j=1

pj

�
Tjs2=qVj

�q
y; y
�351=q

=

*
nX
j=1

pj
�
Tjs2=pVj

�p
x; x

+1=p* nX
j=1

pj
�
Tjs2=qVj

�q
y; y

+1=q
for any x; y 2 H with kxk = kyk = 1:
By making use of (3.31) and (3.32) we deduce the desired inequality (3.26).
The inequality (3.27) follows in a similar way by (2.13) and we omit the details.

�

We have the following norm inequalities:

Corollary 4. Let (T1; : : : ; Tn) ; (V1; : : : ; Vn) ;2 B�1;(n) (H) and (p1; :::; pn) 2 R�n+
a probability distribution, i.e.

Pn
j=1 pj = 1: If p; q > 1 with 1

p +
1
q = 1; then we
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have

(3.33)








nX
j=1

pj jVj j2






 �








nX
j=1

pj
�
Tjs2=pVj

�p






2=p 







nX
j=1

pj
�
Tjs2=qVj

�q






2=q

and

(3.34)








nX
j=1

pjTjsVj







 �







nX
j=1

pj
�
Tjs1=pVj

�p






2=p 







nX
j=1

pj
�
Tjs1=qVj

�q






2=q

:

Proof. By the generalized triangle inequality and the Cauchy-Bunyakovsky-Schwarz
discrete inequality we have

(3.35)
nX
j=1

pj

���DjVj j2 x; yE���2 �
0@ nX
j=1

pj

���DjVj j2 x; yE���
1A2

�

������
*

nX
j=1

pj jVj j2 x; y
+������

2

for any x; y 2 H with kxk = kyk = 1:
If we use the inequality (3.26) and (3.35), then we have������

*
nX
j=1

pj jVj j2 x; y
+������

2

(3.36)

�
*

nX
j=1

pj
�
Tjs2=pVj

�p
x; x

+1=p* nX
j=1

pj
�
Tjs2=qVj

�q
y; y

+1=q
;

which is equivalent to������
*

nX
j=1

pj jVj j2 x; y
+������ �

*
nX
j=1

pj
�
Tjs2=pVj

�p
x; x

+2=p* nX
j=1

pj
�
Tjs2=qVj

�q
y; y

+2=q
for any x; y 2 H with kxk = kyk = 1:
By taking the supremum over kxk = kyk = 1 in this inequality and since the

operators
nX
j=1

pj
�
Tjs2=pVj

�p
and

nX
j=1

pj
�
Tjs2=qVj

�q
are selfadjoint, then we get

the desired result (3.33).
The inequality (3.34) follows from (3.27) in a similar way and we omit the details.

�

Corollary 5. With the assumptions of Corollary 4 we have the inequalities

(3.37)








nX
j=1

pj jVj j2







2

�








nX
j=1

pj

�
1

p

�
Tjs2=pVj

�p
+
1

q

�
Tjs2=qVj

�q�






and

(3.38)








nX
j=1

pjTjsVj








2

�








nX
j=1

pj

�
1

p

�
Tjs1=pVj

�p
+
1

q

�
Tjs1=qVj

�q�





 :
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Proof. From (3.36) we have for y = x that������
*

nX
j=1

pj jVj j2 x; x
+������

2

(3.39)

�
*

nX
j=1

pj
�
Tjs2=pVj

�p
x; x

+1=p* nX
j=1

pj
�
Tjs2=qVj

�q
x; x

+1=q
for any x; y 2 H with kxk = kyk = 1:
By the elementary inequality

a1=pb1=q � 1

p
a+

1

q
b; a; b > 0;

1

p
+
1

q
= 1

we have *
nX
j=1

pj
�
Tjs2=pVj

�p
x; x

+1=p* nX
j=1

pj
�
Tjs2=qVj

�q
x; x

+1=q
(3.40)

� 1

p

*
nX
j=1

pj
�
Tjs2=pVj

�p
x; x

+
+
1

q

*
nX
j=1

pj
�
Tjs2=qVj

�q
x; x

+

=

*241
p

nX
j=1

pj
�
Tjs2=pVj

�p
+
1

q

nX
j=1

pj
�
Tjs2=qVj

�q35x; x+
for any x 2 H with kxk = 1:
By (3.39) we then have������
*

nX
j=1

pj jVj j2 x; x
+������

2

�
*241

p

nX
j=1

pj
�
Tjs2=pVj

�p
+
1

q

nX
j=1

pj
�
Tjs2=qVj

�q35x; x+
for any x 2 H with kxk = 1:

By taking the supremum over kxk = 1 and taking into account that
nX
j=1

pj jVj j2

and
1

p

nX
j=1

pj
�
Tjs2=pVj

�p
+
1

q

nX
j=1

pj
�
Tjs2=qVj

�q
are selfadjoint operators, we obtain the desired result (3.37).
The inequality (3.38) follows in a similar way and the details are omitted. �

If Aj ; Bj are invertible positive operators for j 2 f1; :::; ng, then by taking
Tj = A

1=2
j and Vj = B

1=2
j in Theorem 4 and the subsequent inequalities, we can

derive various results for the weighted geometric mean of positive operators. The
details are not presented here.

References

[1] S. S. Dragomir, Some inequalities of Kato type for sequences of operators in Hilbert spaces.
Publ. Res. Inst. Math. Sci. 48 (2012), no. 4, 937�955.

[2] S. S. Dragomir, Y. J. Cho and Y.-H. Kim, Applications of Kato�s inequality for n-tuples of
operators in Hilbert spaces, (I). J. Inequal. Appl. 2013, 2013:21, 16 pp



QUADRATIC WEIGHTED GEOMETRIC MEAN 15

[3] S. S. Dragomir, Applications of Kato�s inequality to operator-valued integrals on Hilbert
spaces. Asian-Eur. J. Math. 6 (2013), no. 4, 1350059, 18 pp.

[4] S. S. Dragomir, Y. J. Cho and Y.-H. Kim, Applications of Kato�s inequality for n-tuples of
operators in Hilbert spaces, (II). J. Inequal. Appl. 2013, 2013:464, 20 pp.

[5] S. S. Dragomir, Some inequalities generalizing Kato�s and Furuta�s results. Filomat 28 (2014),
no. 1, 179�195.

[6] S. S. Dragomir, The quadratic weighted geometric mean for bounded linear opera-
tors in Hilbert spaces, Preprint, RGMIA Res. Rep. Coll. 19 (2016), Art. 145. [Online
http://rgmia.org/papers/v19/v19a145.pdf].

[7] M. Fujii, C.-S. Lin and R. Nakamoto, Alternative extensions of Heinz-Kato-Furuta inequality.
Sci. Math. 2 (1999), no. 2, 215�221.

[8] M. Fujii and T. Furuta, Löwner-Heinz, Cordes and Heinz-Kato inequalities. Math. Japon. 38
(1993), no. 1, 73�78.

[9] M. Fujii, E. Kamei, C. Kotari and H. Yamada, Furuta�s determinant type generalizations of
Heinz-Kato inequality. Math. Japon. 40 (1994), no. 2, 259�267

[10] M. Fujii, Y.O. Kim, and Y. Seo, Further extensions of Wielandt type Heinz-Kato-Furuta
inequalities via Furuta inequality. Arch. Inequal. Appl. 1 (2003), no. 2, 275�283

[11] M. Fujii, Y.O. Kim and M. Tominaga, Extensions of the Heinz-Kato-Furuta inequality by
using operator monotone functions. Far East J. Math. Sci. (FJMS) 6 (2002), no. 3, 225�238

[12] M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality. Proc. Amer. Math.
Soc. 128 (2000), no. 1, 223�228.

[13] M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality. II. J. Inequal. Appl.
3 (1999), no. 3, 293�302,

[14] T. Furuta, Equivalence relations among Reid, Löwner-Heinz and Heinz-Kato inequalities, and
extensions of these inequalities. Integral Equations Operator Theory 29 (1997), no. 1, 1�9.

[15] T. Furuta, Determinant type generalizations of Heinz-Kato theorem via Furuta inequality.
Proc. Amer. Math. Soc. 120 (1994), no. 1, 223�231.

[16] T. Furuta, An extension of the Heinz-Kato theorem. Proc. Amer. Math. Soc. 120 (1994), no.
3, 785�787.

[17] G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc. -New
York, 1969.

[18] T. Kato, Notes on some inequalities for linear operators, Math. Ann. 125(1952), 208-212.
[19] F. Kittaneh, Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math.

Sci. 24 (1988), no. 2, 283�293.
[20] F. Kittaneh, Norm inequalities for fractional powers of positive operators. Lett. Math. Phys.

27 (1993), no. 4, 279�285.
[21] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 246 (1979/80), no. 3, 205�

224.
[22] C.-S. Lin, On Heinz-Kato-Furuta inequality with best bounds. J. Korea Soc. Math. Educ.

Ser. B Pure Appl. Math. 15 (2008), no. 1, 93�101.
[23] C.-S. Lin, On chaotic order and generalized Heinz-Kato-Furuta-type inequality. Int. Math.

Forum 2 (2007), no. 37-40, 1849�1858,
[24] C.-S. Lin, On inequalities of Heinz and Kato, and Furuta for linear operators. Math. Japon.

50 (1999), no. 3, 463�468.
[25] C.-S. Lin, On Heinz-Kato type characterizations of the Furuta inequality. II. Math. Inequal.

Appl. 2 (1999), no. 2, 283�287.
[26] M. Uchiyama, Further extension of Heinz-Kato-Furuta inequality. Proc. Amer. Math. Soc.

127 (1999), no. 10, 2899�2904.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.
E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Johannesburg 2050, South Africa




