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SOME PROPERTIES OF QUADRATIC WEIGHTED GEOMETRIC
MEAN OF BOUNDED LINEAR OPERATORS IN HILBERT
SPACES VIA KATO’S INEQUALITY

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we consider the quadratic weighted geometric mean
T,V = ||[vT =" T|?
for bounded linear operators T, V in the Hilbert space H with T invertible
and v € [0,1]. Using the celebrated Kato’s inequality we give some operator
inequalities such as
(TOVz,y)* < (T®Vz,z) (TO1-+ VY, y)

for any z, y € H and v € [0,1], where TV := T®;1/2V. Applications for
n-tuples of invertible operators and norm inequalities are provided as well.

1. INTRODUCTION

Assume that A, B are positive operators on a complex Hilbert space (H, (-,-)) .
The weighted operator arithmetic mean for the pair (A, B) is defined by

AV,B:=(1—-v)A+vB.

In 1980, Kubo & Ando, [21] introduced the weighted operator geometric mean for
the pair (A4, B) with A positive and invertible and B positive by

Aty B = AV (A*WBA*I/?)V A2,

If A, B are positive invertible operators then we can also consider the weighted
operator harmonic mean defined by (see for instance [21])
ALB = ((1—v) A +vB )7L
We have the following fundamental operator means inequalities

(1.1) Al,B < A$,B < AV, B, v € [0,1]

for any A, B positive invertible operators. For v = 1, we denote the above means

by AVB, A#B and A!B. ?

The "square root" of a positive bounded selfadjoint operator on H can be defined
as follows, see for instance [17, p. 240]: If the operator A € B (H) is selfadjoint and
positive, then there exists a unique positive selfadjoint operator B := /A € B (H)
such that B2 = A. If A is invertible, then so is B.

If A € B(H), then the operator A*A is selfadjoint and positive. Define the
"absolute value" operator by |A| := vV A*A.
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In the recent paper [6] we generalized the concept of weighted operator geometric
mean as follows.

We denote by B! (H) the class of all bounded linear invertible operators on
H. For T € B '(H) and V € B(H) we define the quadratic weighted operator
geometric mean of (T, V') by

(1.2) T®,V := MVT—1|”T)2

for v > 0. For V € B~ (H) we can also extend the definition (1.2) for v < 0.
By the definition of modulus, we also have

(1.3) 1O,V =T VT M T =1 () vevT ) T

for any T € B~ (H) and V € B(H).

For v = % we denote

—1(1/2 2 * —1 * s\ —1 1% —1 1/2
TQV = |vr [P 1| =1 yrt T =1 () vevr ) T
It has been shown in [6] that the following representation holds
(1.4) e,V = ‘T|2 i |V|2

for T,V € B! (H) and any real v.
We have the following fundamental inequalities extending (1.1):

(1.5) TPV, [V > TO,V > [T, V]
for T,V € B™1 (H) and for v € [0,1]. In particular, we have
(1.6) TPV VI 2 TeV = TPtV

for T,V e B~Y(H).
We can define the related weighted operator means for v € [0, 1] and the opera-
tors T, V' as above by

TEYV - :(T®,,V)1/2:‘|VT‘1{1/2T’7

192y = (P eave) = (a-niep o)

and
1/2 B N —1/2
T2V = (JTPLIVE) T = (=T e v )
then by taking the square root in (1.5) we get [6]
(1.7) VY2V > 1YV > 1T/2v

for any T, V € B~' (H) and v € [0,1].

Using the representation (1.4) and the fact that Bf,_, A = Af, B for any positive
invertible operators A and B we can state that
(1.8) IT®1-,V =VEe.T

for any T, V € B! (H) and v € [0,1].
By using the celebrated Kato’s inequality we give in what follows another proof
for the equality (1.8). Some operator inequalities such as

TV z,y)|* <(TO®,Vz,z) (T®:1-,Vy,y)
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for any z, y € H and v € [0,1], where T®V := T(®,/2V are also established.
Applications for n-tuples of invertible operators and norm inequalities are given as
well.

2. SOME RESULTS VIA KATO’S INEQUALITY

In 1952, Kato [18] proved the following celebrated generalization of Schwarz
inequality for any bounded linear operator U on H:

(2.1) (Uz,y) < (U0 2,2) (UU' " y.y),

for any z, y € H, a € [0,1] . Utilizing the modulus notation introduced before, we
can write (2.1) as follows

(2:2) (Way) < (UPa,2) (U P yy)
for any z, y € H, a € [0,1].

For various interesting generalizations, extension and Kato related results, see
the papers [1]-[5], [7]-[16], [22]-[25] and [26].

We observe that for any T', V € B~ (H) and v € [0, 1] we have

v —1 v
(TO®,V) ™" = (T* ((T*)‘1 V*VT*l) T) — 7! (TV*1 (V! T*) (1%~

and

(T*)71 @u V*)fl

= (@) (@) () @ (@) ) @
_ -1 (TV‘l (Ve T*>” (T*)fl
showing that

(2.3) TeV)" =) e, (V)™
for any T, V € B! (H) and v € [0,1] .

In order to prove the result (1.8) we need the following lemma that holds via
Kato’s inequality.

Lemma 1. For any T, V € B~ (H) and v € [0, 1] we have the inequality

(2.4) (@,y)* < (TOVa,2) (VO-T) " 3,y)
for any x, y € H.
Proof. Let T, V € B~! (H) and take U = VT ! in (2.2) to get

(2.5) |<VT71u,v>’2 < <|VT71|2V u,u>< VTfl)* 20 v,v>
— <|VT_1’2V u’u>< T*)—l V*)Q(lfl/) v7v>

_ <|VT,1|2V u,u>< (T*)_l ((V*)_l)fl 2(1—v) U’U>

—~

—~

for any u, v € H.
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Let x, y € H. If we take in (2.5) u =Tz and v = (V*) "'y then we get
(2.6) [{z,y)| <}VT 1| Tx Tac>

ey
= (T |vr 1|2VTJ: z)
{

2(1-v)

(V) ty, (vt y>

() o )

= (I®, Ve, ) << V)T ®m (1) )

for any v € [0,1].
Since, by (2.3) we have

(V) @1 (T7) 7 = (VO1T) ™
for any T, V. € B~'(H) and v € [0,1], then by (2.6) we get the desired result

(2.4). O
Theorem 1. For any T, V € B™' (H) and ¢ € [0,1] we have
(2.7) T®, .V = VE:T.

Proof. If in (2.4) we take y = V®;_,Tu, u € H and z = w, then we get
[(w, V@1, Tu)|* < (T®,Vw,w) (u, V®:1_,Tu)
and by putting t = 1 — v we get
(VO Tu,w)|* < (VETu,u) (T®1—¢Vw, w)

for any T, V € B~ (H), t € [0,1] and u, w € H.
In particular, we have

(2.8) V@ Tu, u)|* < (VO Tu,u) (TG1_Vu,u)

for any T, V € B~ (H) and u € H.
Since V@ T > 0 then the inequality (2.8) is equivalent to

(2.9) (V& Tu,u) < (TO®1-:Vu,u)

for any T, V € B~' (H) and u € H.
If we replace in (2.9) V by T and ¢t by 1 — ¢ we also get

(2.10) (TO1-:Vu,uy < (VO:Tu,u)

for any T, V € B~ (H) and u € H.
Therefore, by (2.9) and (2.10) we can conclude that, for ¢ € [0,1],

(2.11) (T®1-:Vu,uy = (VO Tu,u)

for any T, V € B~ (H) and u € H.
Using the polarization identity for a positive operator P, namely

(Pz,y) = Z (P ((x+i*y),x+ity), 2ye H
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and by the identity (2.11) we conclude that for ¢ € [0, 1] we have
(T®1-tVa,y) = (V& Tz,y)
for any T, V € B~! (H) and z, y € H, which proves the desired result (2.7). O
We have the following inequalities:

Theorem 2. For any T, V € B~ (H) and v € [0,1] we have the inequality

2
(2.12) (VP 20)] <T@V, 2) (T® Vi)
and the inequality

(2.13) (TOVz,y)I* < (T, Va,z) (T®1-,Vy,y)

for any x, y € H.

Proof. If we write Kato’s inequality (2.2) for U = |VT -1 |2 , which is an invertible
positive operator for any T, V € B~ (H), then we get

(2.14) ‘<|VT*1|2u,v>’2 < <|VT*1|4a u,u> <|VT*1|4(1_OL) v,v>

for any u, v € H.
If we take in (2.14) v = Tz and v = Ty, then we get

’<|VT’1|2Tm,Ty>’2 < (T 7w, Ta) (v """ Ty, )

for any z, y € H, namely

1 |4(1—a)

(2.15) ‘<T |VT’1|2Tx,y>’2 < <T* vt T:r,x> <T* VT~ Ty,y>

for any z, y € H and v € [0,1].
Since

T VTP T =T (1) VVTIT = V]

and
T VT T = 1@V, T VT ' T = 1@y, V
then by (2.15) we get (2.12).
Now, if we take in Kato’s inequality U = ‘VT_l‘ , which is an invertible positive
operator for any T, V € B~ (H), then we also get

@16 VT el < (VT ) ([Tt P )

1‘4(1

for any =, y € H and v € [0, 1].
Further, if we take in (2.16) v = Tz and v = Ty, then we get

(7"

VT Ta,y)|* < (T°

VTP T, :r> <T*

v Ty )
for any x, y € H and v € [0,1], which proves (2.13). O
Remark 1. Since T®:1-,V =V, T, then inequality (2.13) also can be written as

(2.17) (TOVz,y)|* < (T, Va,z) (VO,Ty,y)
for any x, y € H.
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If we use the mean T@}/QV = (T@uV)1/2, then we have the equivalent inequal-

ities

215) (Ve [resva [roi. v
and
(2.19) (TO®Vz,y)| < HT@)i/QVwH HT@JV_QVV?JH

for any T,V € B~ (H), v €[0,1] and x, y € H.
Taking the supremum over ||z| = |y|| =1 in (2.12) and (2.13) we get the norm
inequalities

(2.20) IVII* < IT®2 V| | T®201-0) V||
and
(2.21) IT®V|? < |T® V| ITG1-, V||

for any T,V € B~1 (H) and v € [0,1].

If A, B are invertible positive operators, then by taking T'= A'/2 and V = B'/2
in Theorem 2 we get

(222) |<Bl‘, y>|2 < <Aﬁ2VB:Ua .T> <Aﬁ2(lfu)Bya y>
and the inequality
(2:23) (A2 B, y)[* < (Af, Be,z) (A1, By.y)

for any z, y € H.
We also have the norm inequalities

(2.24) IB|? < || At2, B | At2—) B
and
(2.25) |A8BI? < | A%, B | At B

for any A, B invertible positive operators and v € [0,1].

3. INEQUALITIES FOR n-TUPLES OF OPERATORS

Consider the Cartesian product B~ (H) := B~ (H) x --- x B~ (H) , where
B~ (H) denotes the class of all bounded linear invertible operators on H.

Theorem 3. Let (Ty,...,T,), (Vi,...,V,), € B~2W (H) and (p1,...,p,) € RE"
be an n-tuple of nonnegative weights not all of them equal to zero. Then we have

n
(3.1) > i |(IViP 2.y)|
j=1
n 172 4 45 1/2
S<ZP;‘T;‘©2UV}$,$> <ZPjTj®2(1—V)ij,y>

Jj=1 Jj=1

and

n n /2 4 4, 1/2
(32) Y p (T;0Viz,y)| < <ijTj@ule‘7$> <ijTj®luij>y>
=1

=1 j=1
for any z, y € H and o € [0,1].
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In particular, we have

n n 1/2 n
(3.3) <ij |Vj|21‘a$> < <ijTj©2Vijvx> <ijTj®2(1u>Vj%$>
j=1 j=1 j=1

and

(3.4) <ijTj©Vj$7-T> < <ijTj®uija-T> <ijTj©1uVj$7x>
=1 =1 =1

for any x € H and o € [0,1].

1/2

1/2

Proof. From inequality (2.12) we have
1/2
(3.5) (il 2.9)| < (L@ Viw,2) (1@ Viwsw)

for any j € {1,...,n}, for any z,y € H and « € [0,1].
If we multiply (3.5) by p; >0, j € {1,...,n} and sum from 1 to n, then we get

36 Sop [(Vil e y)| < 3w (TOaVie, ) (1@ Vins )
j=1 j=1

for any z, y € H and o € [0,1].
Now, on making use of the weighted Cauchy-Bunyakovsky-Schwarz discrete in-
equality
1/2 1/2

n n n
> pjaib; < | Y pjal > it}
j=1 j=1 j=1

where (ala"'aan)a (bla'--ybn) S Rn, and choose a; = <Tj@2,,ij,a:>1/2 and bJ =
1/2
(Ti®201-1)Vy, ) / , then we get

" 1/2
(3.7) ij (Ty®s, Vjm, x)'/* (T®s(1-1) V¥, y) /
j=1
1/2 1/2
< ij (T®2,Vjz, x) ij (T®s(1-) V¥, y)
Jj=1 j=1

n 1/2 n 1/2
= <ijTj©2uij,$> <ijTj©2(lu)ijvy>
j=1

j=1
for any z, y € H.

On making use of (3.6) and (3.7) we get (3.1).
From (2.13) we also have

(3.8) (T;0Viz, y)| < (1,0, Viz, ) * (T;G1-, Vi, y)/?

for any j € {1,...,n}, for any x, y € H and « € [0, 1].
By making use of a similar argument as above we deduce the desired result (3.2).
The details are omitted. (]

We have the norm inequalities:
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Corollary 1. With the assumptions of Theorem 3 we have

1/2 1/2
(3.9) Sopi Vil < D0 T Vil| D piTi®a-nV;
j=1 j=1 j=1
and
1/2 1/2
n n n
(3.10) Y TV < | D p TV (Do e Ti®-Y;
Jj=1 Jj=1 j=1

for any a € [0,1].

Proof. By the generalized triangle inequality for modulus, we have

<ijle2x,y> <> pi|(ViF 2.y)|
Jj=1 j=1

for any z, y € H.
By (3.1) we then have

<ij V5[ z, y> < <ijTj®zyV}-w, sc> <ijTj®2(l—u)ij7 y>
j=1 j=1 j=1

for any z, y € H and o € [0,1].
By taking the supremum over ||z|| = ||y|| = 1 in this inequality and since the
n n

1/2

operators Zpﬂ}@gyvj and Z P Tj®2(1-1)V; are selfadjoint, we get the desired
j=1 j=1
result (3.9).
The inequality (3.10) follows in a similar way by utilising (3.2). O

We have the inequalities in the operator order:

Corollary 2. With the assumptions of Theorem 3 we have

- - T:®9, Vi + T:®o(1_1 Vi
(3.11) S p vl < Zp]( i®20Vj +2]®2(1 )vj>
j=1 j=1
and
n n T VV. T 71/V‘
(3.12) S pTev; <Y p < oY +2 i®1 J)
Jj=1 j=1

for any a € [0,1].

Proof. Using the elementary inequality

1
\/@gi(aer), a, b>0,
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we have

" /2 ;. 1/2
<ijTj®2Vija $> <ijTj®2(1u)ija 96>

j=1 j=1

1 n n
< 5 <ijTj©2uij,x> + <ZP;'TJ'®2(1_V)ij,:c>
Jj=1 j=1
1 ~ n
- <2 ijﬂ@?uvj + ijTj©2(1_y)Vj m,:r>
Jj=1 j=1

for any © € H and a € [0,1].
Making use of this inequality and (3.3) we deduce the desired result (3.11). O

Remark 2. If A;, B; are invertible positive operators for j € {1,...,n}, then by
taking T; = A;/Z and V; = B;/Q in Theorem 2 we get

n n /2 4 4, 1/2
(3.13) ij |(Bjz,y)| < <ijAjﬁ2qu’$7l"> <ijAjli2(1u)Bjyay>
j=1

j=1 j=1

and

n n 1/2 n 1/2
(314) ij |<A]ﬁBjx7y>| < <ijAjﬁDBj$7x> <ijAjﬁl—yBjyay>
j=1 j=1

j=1

for any z, y € H and o € [0,1].
From (3.9) and (3.10) we get the norm inequalities

1/2 1/2
(3.15) > piBi| < D _piAjtaB > piAjtaa-)B;
=1 j=1 j=1
and
1/2 1/2
(3.16) > piAitBy|| < D At By| |D piAitiuB;
=1 j=1 j=1

for any a € [0,1].
From (3.11) and (3.12) we have the operator inequalities

Ajto, B+ Ajlla1-0) By

(3.17) iijj = él’i < 2 )

and

n n A l/B' A —l/B'
(3.18) ijAjttBj < ij ( il By + Ajta J)
Jj=1 j=1

2
for any a € [0,1].

We have the following generalization of Schwarz inequality:
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Corollary 3. Let (Ti,....T,), (Vi,...,V,) . € B~V (H) with 30 |Vi* = 1y
and v € [0,1]. Then we have

n 1/2 n 1/2
(3.19) |<x,y>g<zn@2yv;x,m> <zfj®g(1_u)vjy,y>
j=1

Jj=1

for any z, y € H and o € [0,1].
In particular, if |V|2 = 1p, then for any T € B~ (H) we have

2 1/2 2
320 el < (e ey (Tl )

for any z, y € H and o € [0,1].

1/2

Proof. We have by (3.1) for p; =1, j € {1,...,n}

(B21) el = <vay> <))

IA

n 1/2 n 1/2
<Z Tj®2uVj$,1‘> <Z Tj®2(1u)ij,y>

Jj=1 Jj=1

for any z, y € H and « € [0,1].
For n = 1, namely when Vi = V with |[V|* = 1y then we have

1/2
(3.22) (2,9)] < (T®2V,2)"* (T®21-0) Vi y) "
for any z, y € H and « € [0, 1].
Since

T®V =T (7)™ V*VTfl)QVT =7 () T*1>2V T

_ ((TT*)A)Z” T _ (|T*|fz)2” T (\T*I’Q”)z T

_ ‘|T*|_2VT‘2
and
TV = [T 207,
then by (3.22) we get (3.20). O

Remark 3. The inequality (3.20) can be written in an equivalent form as
(3.23) )l < i 2| [z 720

for any x, y € H and o € [0,1]. If we use Schwarz’s inequality

[{w, 0] < [l o]
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for the choices u = |T*| ™ Tz and v = |T*|"**™) Ty and since
(u,v) = <|T*|_2” Ta, |T*|_2(1_”) Ty> _ <(‘T*|—2(1—u) T)* |T*|—21/ Ta:,y>
_ <T* |T*|—2(17u) |T*|—2u Tx,y> _ <T* |T*|72 Tx7y>
— (T (1T") 7 Tay) = (@),

then we also obtain inequality (3.23).

If we consider the Holder’s numbers p, ¢ > 1 with % + % = 1, then, for instance,
the equality (2.7) can be written as

while the inequality (2.13), as
(3.25) (TOVz,y)* < (T®1 Ve, 2) (T®1/gVy.y), z,y € H

for any T, V € B! (H).

Theorem 4. Let (T1,...,T,), (Vi,...,Vy),€ B~L (H), (p1,....pn) € R an
n-tuple of nonnegative weights not all of them equal to zero and p, ¢ > 1 with
% + é = 1. Then we have

(3.26) Z":pj (<\Vf|2”3’y>’2

n 1/p | n 1/q
< <ij (Tj®2/ij)px,x> <ij (Tj@Q/qu)qy,y>
j=1

j=1
and
(3.27) > pi (TEV;z, )
j=1
n 1/p n 1/‘1
< <ij (T;®1,,V5)" w$> <ij (Tj®1/qVi)qy72U>
j=1 j=1

for any z, y € H with ||z| = |ly|]| = 1.
In particular, we have

(3.28) ij<|Vj|2m,x>2
j=1

n 1/p
< <ij (Tj@g/ij)pa?,m> <

j=1

n 1/q
ij (Tj@Z/qu)q T 9U>
j=1
and

(3.29) ij (T;0V;x, x>2

Jj=1

n 1/p n 1/q
< <ij (Tj®1/ij)p$7~T> <ij (Tj®1/q‘/j)q$am>

J=1 Jj=1
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for any x € H with with ||z| = 1.

Proof. Recall the Holder-McCarthy inequality (P"z,z) < (Pxz,z)" that holds for
any positive operator P and any power r € (0,1).
1

Using the inequality (2.12) for V;, T}, j € {1,...,n} and v = 5> we have

2
(3.30) [(ViP2.9)| < (1@ V52, 2) (T5®214 Vi)

for any z, y € H.
If x, y € H with ||z|| = ||y|]| = 1, then by Hslder-McCarthy inequality we have

(@2 Vsw,0) = ([(L,O2,V)'] " w2 < (1,02V5)" w,0)
and
(1i®21aViw) = ([(T®2/a%3)] " 1.9 < (T©24Vi) w.9) "

for any j € {1,...,n}.
Then by (3.2) and these inequalities, we have

n 2 n
330 3w [(IViP 2w)| < X0 (1Y) 2.2) 7 ((L,O2/aV5) w0)
j=1 j=1

for any z, y € H with ||z| = |ly|| = 1.
Now, on making use of the weighted Holder discrete inequality

1/p 1/q

n n n

1 1
>_piagh < | D_pjaf > pbl pg>1,-+= =1,
j=1 j=1 =1 D q

where (a1, ...,a,),(b1,...,b,) € R, and choose a; = <(Tj®2/ij)px,x>1/p while
1
b; = (T®2,4V;)" v, y) /q, then we get

332) Y9 ((T®V)) @ 2) " (T3®2/a Vi) y.w)

=1
n 1/p n l/q
> 0 (T5®2 V) 2, 2) > 0 (T5®2/4V5) " v:v)

j=1 j=1

n 1/p J pn 1/q
<ij (Ti®2/, V)" , x> <Z P (Tj®2/4V;)" . y>

j=1 j=1

IN

for any z, y € H with ||z| = |ly|| = 1.
By making use of (3.31) and (3.32) we deduce the desired inequality (3.26).
The inequality (3.27) follows in a similar way by (2.13) and we omit the details.
(]

We have the following norm inequalities:

Corollary 4. Let (Ty,...,T,), (Vi,...,V,), € BV (H) and (p1,...,pn) € RY"
a probability distribution, i.e. Z;—;l p; = 1. If p, ¢ > 1 with % + % =1, then we
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have
. N 2/p " 2/q
(3.33) Yoo lVil* | < Dopi (T®epVi)"|| | Do i (T5®2/4Vi)"
j=1 j=1 j=1
and
N N 2/p " 2/q
(3.34) > o TiOVi|| < (D pi (Tj®1,V5)" > i (T®1/4V5)"
j=1 j=1 j=1

Proof. By the generalized triangle inequality and the Cauchy-Bunyakovsky-Schwarz
discrete inequality we have

(3.35) ij (vile) > [ Sn,
j=1

2 2
2 2
<|Vj\ wy>‘ > <ij |Vl w,y>
i=1
for any z, y € H with ||z| = |ly|| = 1.

If we use the inequality (3.26) and (3.35), then we have

2
(3.36) <ij VjIQx,y>
j=1

n 1/17 n l/q
< <zpj <n@g/m>”x,x> <ij <Tj@z/m>qy,y> ,

j=1 j=1
which is equivalent to
n n 2/p n 2/q
<ij |ij5&31> < <ij (Tj®2/p‘/j)p$v$> <ij (Tj@quj)qy,y>
j=1 j=1 j=1

for any =, y € H with ||z]| = ||y|| = 1.

By taking the supremum over ||z|| = ||y|| = 1 in this inequality and since the
n n

operators ij (Tj@)g/ij)p and ij (Tj@)g/qu)q are selfadjoint, then we get
=1 i=1

the desired result (3.33).
The inequality (3.34) follows from (3.27) in a similar way and we omit the details.
O

Corollary 5. With the assumptions of Corollary 4 we have the inequalities
2

n 1
(3.37) Y op Vil < Zp;( (T5®2/p V)" + q(Tj®z/qu)q>
j=1

and

(3.38) > piTeV;

j=1

IN

1 q
Z%( T®1/p ) a(Tj@l/qu) )
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Proof. From (3.36) we have for y = x that
2

(3.39) <ij |V]|2x,x>

1/q

n 1/p n
< <ij (Tj®2/ij)p$»$> <ij (Tj®2/qu)q$a$>
j=1

Jj=1
for any x, y € H with ||z|| = |ly|| = 1.
By the elementary inequality

11 11
a/Pb1 < Za 4+ =b, a,b>0, ~ 4= =1
p

p q q

we have

n 1/p n 1/q
(3.40) <ij (Tj®2/ij)pwvx> <ij (Tj@z/q‘/j)q“f’$>

j=1 Jj=1
1 n 1 n
= <ij (T7®z/p‘/j)px’$> + <ij (Tj®2/qu)q$a$>
j=1 Jj=1

1 — 1<
- < ;ZPJ' (T:®2/p V)" + 6ij (T;®2,4V;)" x,x>
j=1 j=1

for any « € H with ||z]| = 1.
By (3.39) we then have

2
<ij IVjIQm,fE> < < =3 0 (T2 Vi) + = 05 (1i®2/4V5)" WC>
i=1 Pi= 1=
for any « € H with ||z]| = 1.

n
By taking the supremum over ||z|| = 1 and taking into account that ij \Vj|2
j=1
and

1 n 1 n
- ij (Tj@Q/ij)p + - ij (Tj®2/qvj)q
P 155

are selfadjoint operators, we obtain the desired result (3.37).
The inequality (3.38) follows in a similar way and the details are omitted. O

If A;, B; are invertible positive operators for j € {1,...,n}, then by taking
T, = A;/ ? and Vi = B;/ % in Theorem 4 and the subsequent inequalities, we can
derive various results for the weighted geometric mean of positive operators. The
details are not presented here.
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