SOME PROPERTIES OF QUADRATIC WEIGHTED GEOMETRIC MEAN OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES VIA KATO'S INEQUALITY

S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper we consider the quadratic weighted geometric mean

$$T \otimes_{\nu} V := \left| \left| V T^{-1} \right|^{\nu} T \right|^{2}$$

for bounded linear operators T, V in the Hilbert space H with T invertible and $\nu \in [0,1]$. Using the celebrated Kato's inequality we give some operator inequalities such as

$$\left|\left\langle T \circledS V x, y \right\rangle\right|^2 \leq \left\langle T \circledS_{\nu} V x, x \right\rangle \left\langle T \circledS_{1-\nu} V y, y \right\rangle$$

for any $x, y \in H$ and $\nu \in [0,1]$, where $T \otimes V := T \otimes_{1/2} V$. Applications for n-tuples of invertible operators and norm inequalities are provided as well.

1. Introduction

Assume that A, B are positive operators on a complex Hilbert space $(H, \langle \cdot, \cdot \rangle)$. The weighted operator arithmetic mean for the pair (A, B) is defined by

$$A\nabla_{\nu}B := (1-\nu)A + \nu B.$$

In 1980, Kubo & Ando, [21] introduced the weighted operator geometric mean for the pair (A, B) with A positive and invertible and B positive by

$$A\sharp_{\nu}B := A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{\nu} A^{1/2}.$$

If A, B are positive invertible operators then we can also consider the weighted operator harmonic mean defined by (see for instance [21])

$$A!_{\nu}B := ((1-\nu)A^{-1} + \nu B^{-1})^{-1}$$

We have the following fundamental operator means inequalities

$$(1.1) A!_{\nu}B \le A\sharp_{\nu}B \le A\nabla_{\nu}B, \ \nu \in [0,1]$$

for any A, B positive invertible operators. For $\nu = \frac{1}{2}$, we denote the above means by $A\nabla B$, $A\sharp B$ and A!B.

The "square root" of a positive bounded selfadjoint operator on H can be defined as follows, see for instance [17, p. 240]: If the operator $A \in B(H)$ is selfadjoint and positive, then there exists a unique positive selfadjoint operator $B := \sqrt{A} \in B(H)$ such that $B^2 = A$. If A is invertible, then so is B.

If $A \in \mathcal{B}(H)$, then the operator A^*A is selfadjoint and positive. Define the "absolute value" operator by $|A| := \sqrt{A^*A}$.

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A30, 15A60, 26D15, 26D10.

Key words and phrases. Weighted geometric mean, Weighted harmonic mean, Kato's inequality, Operator modulus, Arithmetic mean-geometric mean-harmonic mean inequality.

In the recent paper [6] we generalized the concept of weighted operator geometric mean as follows.

We denote by $\mathcal{B}^{-1}(H)$ the class of all bounded linear invertible operators on H. For $T \in \mathcal{B}^{-1}(H)$ and $V \in \mathcal{B}(H)$ we define the quadratic weighted operator geometric mean of (T, V) by

$$(1.2) T \circledast_{\nu} V := \left| \left| V T^{-1} \right|^{\nu} T \right|^{2}$$

for $\nu \geq 0$. For $V \in \mathcal{B}^{-1}(H)$ we can also extend the definition (1.2) for $\nu < 0$. By the definition of modulus, we also have

(1.3)
$$T \circledast_{\nu} V = T^* \left| V T^{-1} \right|^{2\nu} T = T^* \left((T^*)^{-1} V^* V T^{-1} \right)^{\nu} T$$

for any $T \in \mathcal{B}^{-1}(H)$ and $V \in \mathcal{B}(H)$.

For $\nu = \frac{1}{2}$ we denote

$$T \otimes V := \left| \left| V T^{-1} \right|^{1/2} T \right|^2 = T^* \left| V T^{-1} \right| T = T^* \left((T^*)^{-1} V^* V T^{-1} \right)^{1/2} T.$$

It has been shown in [6] that the following representation holds

$$(1.4) T \circledast_{\nu} V = |T|^2 \sharp_{\nu} |V|^2$$

for $T, V \in \mathcal{B}^{-1}(H)$ and any real ν .

We have the following fundamental inequalities extending (1.1):

(1.5)
$$|T|^2 \nabla_{\nu} |V|^2 \ge T \otimes_{\nu} V \ge |T|^2!_{\nu} |V|^2$$

for $T, V \in \mathcal{B}^{-1}(H)$ and for $\nu \in [0, 1]$. In particular, we have

$$(1.6) |T|^2 \nabla |V|^2 \ge T \$V \ge |T|^2! |V|^2$$

for $T, V \in \mathcal{B}^{-1}(H)$.

We can define the related weighted operator means for $\nu \in [0,1]$ and the operators T, V as above by

$$T \bigotimes_{\nu}^{1/2} V : = \left(T \bigotimes_{\nu} V \right)^{1/2} = \left| \left| V T^{-1} \right|^{1/2} T \right|,$$

$$T\nabla_{\nu}^{1/2}V$$
 : $=(|T|^2\nabla_{\nu}|V|^2)^{1/2}=((1-\nu)|T|^2+\nu|V|^2)^{1/2}$

and

$$T!_{\nu}^{1/2}V := \left(|T|^2!_{\nu} |V|^2 \right)^{1/2} = \left((1-\nu) |T|^{-2} + \nu |V|^{-2} \right)^{-1/2},$$

then by taking the square root in (1.5) we get [6]

(1.7)
$$T\nabla_{\nu}^{1/2}V \ge T \hat{\mathbb{S}}_{\nu}^{1/2}V \ge T!_{\nu}^{1/2}V$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $\nu \in [0, 1]$.

Using the representation (1.4) and the fact that $B\sharp_{1-\nu}A=A\sharp_{\nu}B$ for any positive invertible operators A and B we can state that

$$T \mathfrak{S}_{1-\nu} V = V \mathfrak{S}_{\nu} T$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $\nu \in [0, 1]$.

By using the celebrated Kato's inequality we give in what follows another proof for the equality (1.8). Some operator inequalities such as

$$|\langle T \otimes V x, y \rangle|^2 \le \langle T \otimes_{\nu} V x, x \rangle \langle T \otimes_{1-\nu} V y, y \rangle$$

for any $x, y \in H$ and $\nu \in [0,1]$, where $T \otimes V := T \otimes_{1/2} V$ are also established. Applications for n-tuples of invertible operators and norm inequalities are given as well.

2. Some Results Via Kato's Inequality

In 1952, Kato [18] proved the following celebrated generalization of Schwarz inequality for any bounded linear operator U on H:

$$\left| \langle Ux, y \rangle \right|^2 \le \left\langle \left(U^* U \right)^{\alpha} x, x \right\rangle \left\langle \left(U U^* \right)^{1-\alpha} y, y \right\rangle,$$

for any $x, y \in H$, $\alpha \in [0, 1]$. Utilizing the modulus notation introduced before, we can write (2.1) as follows

$$(2.2) |\langle Ux, y \rangle|^2 \le \langle |U|^{2\alpha} x, x \rangle \langle |U^*|^{2(1-\alpha)} y, y \rangle$$

for any $x, y \in H$, $\alpha \in [0, 1]$.

For various interesting generalizations, extension and Kato related results, see the papers [1]-[5], [7]-[16], [22]-[25] and [26].

We observe that for any $T, V \in \mathcal{B}^{-1}(H)$ and $\nu \in [0, 1]$ we have

$$(T \circledast_{\nu} V)^{-1} = \left(T^* \left((T^*)^{-1} V^* V T^{-1} \right)^{\nu} T \right)^{-1} = T^{-1} \left(T V^{-1} \left(V^* \right)^{-1} T^* \right)^{\nu} \left(T^* \right)^{-1}$$

and

$$\begin{split} &(T^*)^{-1} \, \circledS_{\nu} \, (V^*)^{-1} \\ &= \left((T^*)^{-1} \right)^* \left(\left(\left((T^*)^{-1} \right)^* \right)^{-1} \left((V^*)^{-1} \right)^* (V^*)^{-1} \left((T^*)^{-1} \right)^{-1} \right)^{\nu} (T^*)^{-1} \\ &= T^{-1} \left(TV^{-1} \, (V^*)^{-1} \, T^* \right)^{\nu} (T^*)^{-1} \end{split}$$

showing that

$$(2.3) (T \otimes_{\nu} V)^{-1} = (T^*)^{-1} \otimes_{\nu} (V^*)^{-1}$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $\nu \in [0, 1]$.

In order to prove the result (1.8) we need the following lemma that holds via Kato's inequality.

Lemma 1. For any $T, V \in \mathcal{B}^{-1}(H)$ and $\nu \in [0,1]$ we have the inequality

for any $x, y \in H$.

Proof. Let $T, V \in \mathcal{B}^{-1}(H)$ and take $U = VT^{-1}$ in (2.2) to get

$$(2.5) \qquad \left| \left\langle VT^{-1}u, v \right\rangle \right|^{2} \leq \left\langle \left| VT^{-1} \right|^{2\nu} u, u \right\rangle \left\langle \left| \left(VT^{-1} \right)^{*} \right|^{2(1-\nu)} v, v \right\rangle$$

$$= \left\langle \left| VT^{-1} \right|^{2\nu} u, u \right\rangle \left\langle \left| \left(T^{*} \right)^{-1} V^{*} \right|^{2(1-\nu)} v, v \right\rangle$$

$$= \left\langle \left| VT^{-1} \right|^{2\nu} u, u \right\rangle \left\langle \left| \left(T^{*} \right)^{-1} \left((V^{*})^{-1} \right)^{-1} \right|^{2(1-\nu)} v, v \right\rangle$$

for any $u, v \in H$.

Let $x, y \in H$. If we take in (2.5) u = Tx and $v = (V^*)^{-1}y$ then we get

$$(2.6) |\langle x, y \rangle|^{2} \leq \left\langle |VT^{-1}|^{2\nu} Tx, Tx \right\rangle$$

$$\times \left\langle \left| (T^{*})^{-1} \left((V^{*})^{-1} \right)^{-1} \right|^{2(1-\nu)} (V^{*})^{-1} y, (V^{*})^{-1} y \right\rangle$$

$$= \left\langle T^{*} |VT^{-1}|^{2\nu} Tx, x \right\rangle$$

$$\times \left\langle \left((V^{*})^{-1} \right)^{*} \left| (T^{*})^{-1} \left((V^{*})^{-1} \right)^{-1} \right|^{2(1-\nu)} (V^{*})^{-1} y, y \right\rangle$$

$$= \left\langle T \otimes_{\nu} Vx, x \right\rangle \left\langle (V^{*})^{-1} \otimes_{1-\nu} (T^{*})^{-1} y, y \right\rangle$$

for any $\nu \in [0,1]$.

Since, by (2.3) we have

$$(V^*)^{-1} \, \mathbb{S}_{1-\nu} \, (T^*)^{-1} = (V \, \mathbb{S}_{1-\nu} T)^{-1}$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $\nu \in [0,1]$, then by (2.6) we get the desired result (2.4).

Theorem 1. For any $T, V \in \mathcal{B}^{-1}(H)$ and $t \in [0,1]$ we have

$$(2.7) T \mathfrak{S}_{1-t}V = V \mathfrak{S}_t T.$$

Proof. If in (2.4) we take $y = V(S)_{1-\nu}Tu$, $u \in H$ and x = w, then we get

$$\left| \langle w, V \otimes_{1-\nu} Tu \rangle \right|^2 \le \langle T \otimes_{\nu} Vw, w \rangle \langle u, V \otimes_{1-\nu} Tu \rangle$$

and by putting $t = 1 - \nu$ we get

$$\left|\left\langle V \bigotimes_{t} T u, w \right\rangle\right|^{2} \le \left\langle V \bigotimes_{t} T u, u \right\rangle \left\langle T \bigotimes_{1-t} V w, w \right\rangle$$

for any $T, V \in \mathcal{B}^{-1}(H), t \in [0, 1]$ and $u, w \in H$.

In particular, we have

$$(2.8) \qquad |\langle V \otimes_t T u, u \rangle|^2 \le \langle V \otimes_t T u, u \rangle \langle T \otimes_{1-t} V u, u \rangle$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $u \in H$.

Since $V(S)_t T > 0$ then the inequality (2.8) is equivalent to

$$\langle V \otimes_t T u, u \rangle \le \langle T \otimes_{1-t} V u, u \rangle$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $u \in H$.

If we replace in (2.9) V by T and t by 1-t we also get

$$(2.10) \langle T \circledast_{1-t} V u, u \rangle \le \langle V \circledast_t T u, u \rangle$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $u \in H$.

Therefore, by (2.9) and (2.10) we can conclude that, for $t \in [0, 1]$,

$$\langle T \widehat{\mathbb{S}}_{1-t} V u, u \rangle = \langle V \widehat{\mathbb{S}}_t T u, u \rangle$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $u \in H$.

Using the polarization identity for a positive operator P, namely

$$\langle Px, y \rangle = \frac{1}{4} \sum_{k=1}^{4} i^k \left\langle P\left((x + i^k y), x + i^k y\right), x, y \in H \right\rangle$$

and by the identity (2.11) we conclude that for $t \in [0,1]$ we have

$$\langle T(\mathfrak{S})_{1-t}Vx, y\rangle = \langle V(\mathfrak{S})_tTx, y\rangle$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $x, y \in H$, which proves the desired result (2.7).

We have the following inequalities:

Theorem 2. For any $T, V \in \mathcal{B}^{-1}(H)$ and $\nu \in [0,1]$ we have the inequality

(2.12)
$$\left| \left\langle |V|^2 x, y \right\rangle \right|^2 \le \left\langle T \circledS_{2\nu} V x, x \right\rangle \left\langle T \circledS_{2(1-\nu)} V y, y \right\rangle$$

and the inequality

$$(2.13) |\langle T \otimes Vx, y \rangle|^2 \le \langle T \otimes_{\nu} Vx, x \rangle \langle T \otimes_{1-\nu} Vy, y \rangle$$

for any $x, y \in H$.

Proof. If we write Kato's inequality (2.2) for $U = |VT^{-1}|^2$, which is an invertible positive operator for any $T, V \in \mathcal{B}^{-1}(H)$, then we get

$$(2.14) \qquad \left| \left\langle \left| V T^{-1} \right|^2 u, v \right\rangle \right|^2 \le \left\langle \left| V T^{-1} \right|^{4\alpha} u, u \right\rangle \left\langle \left| V T^{-1} \right|^{4(1-\alpha)} v, v \right\rangle$$

for any $u, v \in H$.

If we take in (2.14) u = Tx and v = Ty, then we get

$$\left|\left\langle \left|VT^{-1}\right|^{2}Tx,Ty\right\rangle \right|^{2}\leq\left\langle \left|VT^{-1}\right|^{4\alpha}Tx,Tx\right\rangle \left\langle \left|VT^{-1}\right|^{4(1-\alpha)}Ty,Ty\right\rangle$$

for any $x, y \in H$, namely

$$(2.15) \quad \left| \left\langle T^* \left| V T^{-1} \right|^2 T x, y \right\rangle \right|^2 \le \left\langle T^* \left| V T^{-1} \right|^{4\alpha} T x, x \right\rangle \left\langle T^* \left| V T^{-1} \right|^{4(1-\alpha)} T y, y \right\rangle$$

for any $x, y \in H$ and $\nu \in [0, 1]$.

Since

$$T^* |VT^{-1}|^2 T = T^* (T^*)^{-1} V^* V T^{-1} T = |V|^2$$

and

$$T^* \left| V T^{-1} \right|^{4\alpha} T = T \circledS_{2\nu} V, \ T^* \left| V T^{-1} \right|^{4(1-\alpha)} T = T \circledS_{2(1-\nu)} V$$

then by (2.15) we get (2.12).

Now, if we take in Kato's inequality $U = |VT^{-1}|$, which is an invertible positive operator for any $T, V \in \mathcal{B}^{-1}(H)$, then we also get

$$\left|\left\langle \left|VT^{-1}\right|x,y\right\rangle \right|^{2}\leq\left\langle \left|VT^{-1}\right|^{2\alpha}x,x\right\rangle \left\langle \left|VT^{-1}\right|^{2(1-\alpha)}y,y\right\rangle$$

for any $x, y \in H$ and $\nu \in [0, 1]$.

Further, if we take in (2.16) u = Tx and v = Ty, then we get

$$\left|\left\langle T^{*}\left|VT^{-1}\right|Tx,y\right\rangle \right|^{2}\leq\left\langle T^{*}\left|VT^{-1}\right|^{2\alpha}Tx,x\right\rangle \left\langle T^{*}\left|VT^{-1}\right|^{2(1-\alpha)}Ty,y\right\rangle$$

for any $x, y \in H$ and $\nu \in [0, 1]$, which proves (2.13).

Remark 1. Since $T \circledast_{1-\nu} V = V \circledast_{\nu} T$, then inequality (2.13) also can be written as

(2.17)
$$|\langle T \otimes Vx, y \rangle|^2 \le \langle T \otimes_{\nu} Vx, x \rangle \langle V \otimes_{\nu} Ty, y \rangle$$

for any $x, y \in H$.

If we use the mean $T \otimes_{\nu}^{1/2} V := (T \otimes_{\nu} V)^{1/2}$, then we have the equivalent inequalities

(2.18)
$$\left| \left\langle |V|^2 x, y \right\rangle \right| \le \left\| T \bigotimes_{2\nu}^{1/2} Vx \right\| \left\| T \bigotimes_{2(1-\nu)}^{1/2} Vy \right\|$$

and

$$(2.19) |\langle T \otimes Vx, y \rangle| \le ||T \otimes_{\nu}^{1/2} Vx|| ||T \otimes_{1-\nu}^{1/2} Vy||$$

for any $T, V \in \mathcal{B}^{-1}(H), \nu \in [0, 1] \text{ and } x, y \in H.$

Taking the supremum over $\|x\| = \|y\| = 1$ in (2.12) and (2.13) we get the norm inequalities

$$||V||^4 \le ||T|_{2\nu}V|| ||T|_{2(1-\nu)}V||$$

and

$$||T \otimes V||^2 \le ||T \otimes_{\nu} V|| ||T \otimes_{1-\nu} V||$$

for any $T, V \in \mathcal{B}^{-1}(H)$ and $\nu \in [0, 1]$.

If A,B are invertible positive operators, then by taking $T=A^{1/2}$ and $V=B^{1/2}$ in Theorem 2 we get

$$(2.22) |\langle Bx, y \rangle|^2 \le \langle A\sharp_{2\nu} Bx, x \rangle \langle A\sharp_{2(1-\nu)} By, y \rangle$$

and the inequality

for any $x, y \in H$.

We also have the norm inequalities

and

for any A, B invertible positive operators and $\nu \in [0,1]$.

3. Inequalities for n-Tuples of Operators

Consider the Cartesian product $\mathcal{B}^{-1,(n)}(H) := \mathcal{B}^{-1}(H) \times \cdots \times \mathcal{B}^{-1}(H)$, where $\mathcal{B}^{-1}(H)$ denotes the class of all bounded linear invertible operators on H.

Theorem 3. Let $(T_1, ..., T_n)$, $(V_1, ..., V_n)$, $\in \mathcal{B}^{-1,(n)}(H)$ and $(p_1, ..., p_n) \in \mathbb{R}_+^{*n}$ be an n-tuple of nonnegative weights not all of them equal to zero. Then we have

(3.1)
$$\sum_{j=1}^{n} p_{j} \left| \left\langle |V_{j}|^{2} x, y \right\rangle \right|$$

$$\leq \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{2\nu} V_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{2(1-\nu)} V_{j} y, y \right\rangle^{1/2}$$

and

$$(3.2) \quad \sum_{j=1}^{n} p_{j} \left| \left\langle T_{j} \circledS V_{j} x, y \right\rangle \right| \leq \left\langle \sum_{j=1}^{n} p_{j} T_{j} \circledS_{\nu} V_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} T_{j} \circledS_{1-\nu} V_{j} y, y \right\rangle^{1/2}$$

for any $x, y \in H$ and $\alpha \in [0, 1]$.

In particular, we have

$$(3.3) \left\langle \sum_{j=1}^{n} p_{j} \left| V_{j} \right|^{2} x, x \right\rangle \leq \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{2\nu} V_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{2(1-\nu)} V_{j} x, x \right\rangle^{1/2}$$

and

$$(3.4) \quad \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes V_{j} x, x \right\rangle \leq \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{\nu} V_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{1-\nu} V_{j} x, x \right\rangle^{1/2}$$

for any $x \in H$ and $\alpha \in [0,1]$.

Proof. From inequality (2.12) we have

$$\left| \left\langle \left| V_{j} \right|^{2} x, y \right\rangle \right| \leq \left\langle T_{j} \otimes_{2\nu} V_{j} x, x \right\rangle^{1/2} \left\langle T_{j} \otimes_{2(1-\nu)} V_{j} y, y \right\rangle^{1/2}$$

for any $j \in \{1,...,n\}$, for any $x,y \in H$ and $\alpha \in [0,1]$.

If we multiply (3.5) by $p_i \geq 0, j \in \{1, ..., n\}$ and sum from 1 to n, then we get

(3.6)
$$\sum_{j=1}^{n} p_{j} \left| \left\langle |V_{j}|^{2} x, y \right\rangle \right| \leq \sum_{j=1}^{n} p_{j} \left\langle T_{j} \circledast_{2\nu} V_{j} x, x \right\rangle^{1/2} \left\langle T_{j} \circledast_{2(1-\nu)} V_{j} y, y \right\rangle^{1/2}$$

for any $x, y \in H$ and $\alpha \in [0, 1]$.

Now, on making use of the weighted Cauchy-Bunyakovsky-Schwarz discrete inequality

$$\sum_{j=1}^{n} p_j a_j b_j \le \left(\sum_{j=1}^{n} p_j a_j^2\right)^{1/2} \left(\sum_{j=1}^{n} p_j b_j^2\right)^{1/2}$$

where $(a_1,...,a_n)$, $(b_1,...,b_n) \in \mathbb{R}^n_+$, and choose $a_j = \langle T_j \otimes_{2\nu} V_j x, x \rangle^{1/2}$ and $b_j = \langle T_j \otimes_{2(1-\nu)} V_j y, y \rangle^{1/2}$, then we get

$$(3.7) \qquad \sum_{j=1}^{n} p_{j} \langle T_{j} \otimes_{2\nu} V_{j} x, x \rangle^{1/2} \langle T_{j} \otimes_{2(1-\nu)} V_{j} y, y \rangle^{1/2}$$

$$\leq \left(\sum_{j=1}^{n} p_{j} \langle T_{j} \otimes_{2\nu} V_{j} x, x \rangle \right)^{1/2} \left(\sum_{j=1}^{n} p_{j} \langle T_{j} \otimes_{2(1-\nu)} V_{j} y, y \rangle \right)^{1/2}$$

$$= \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{2\nu} V_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{2(1-\nu)} V_{j} y, y \right\rangle^{1/2}$$

for any $x, y \in H$.

On making use of (3.6) and (3.7) we get (3.1).

From (2.13) we also have

$$(3.8) |\langle T_j \otimes V_j x, y \rangle| \le \langle T_j \otimes_{\nu} V_j x, x \rangle^{1/2} \langle T_j \otimes_{1-\nu} V_j y, y \rangle^{1/2}$$

for any $j \in \{1, ..., n\}$, for any $x, y \in H$ and $\alpha \in [0, 1]$.

By making use of a similar argument as above we deduce the desired result (3.2). The details are omitted.

We have the norm inequalities:

Corollary 1. With the assumptions of Theorem 3 we have

(3.9)
$$\left\| \sum_{j=1}^{n} p_j |V_j|^2 \right\| \le \left\| \sum_{j=1}^{n} p_j T_j \otimes_{2\nu} V_j \right\|^{1/2} \left\| \sum_{j=1}^{n} p_j T_j \otimes_{2(1-\nu)} V_j \right\|^{1/2}$$

and

for any $\alpha \in [0,1]$.

Proof. By the generalized triangle inequality for modulus, we have

$$\left| \left\langle \sum_{j=1}^{n} p_j |V_j|^2 x, y \right\rangle \right| \le \sum_{j=1}^{n} p_j \left| \left\langle |V_j|^2 x, y \right\rangle \right|$$

for any $x, y \in H$.

By (3.1) we then have

$$\left| \left\langle \sum_{j=1}^{n} p_{j} |V_{j}|^{2} x, y \right\rangle \right| \leq \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{2\nu} V_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} T_{j} \otimes_{2(1-\nu)} V_{j} y, y \right\rangle^{1/2}$$

for any $x, y \in H$ and $\alpha \in [0, 1]$.

By taking the supremum over ||x|| = ||y|| = 1 in this inequality and since the operators $\sum_{j=1}^{n} p_j T_j \otimes_{2\nu} V_j$ and $\sum_{j=1}^{n} p_j T_j \otimes_{2(1-\nu)} V_j$ are selfadjoint, we get the desired result (3.9).

The inequality (3.10) follows in a similar way by utilising (3.2).

We have the inequalities in the operator order:

Corollary 2. With the assumptions of Theorem 3 we have

(3.11)
$$\sum_{j=1}^{n} p_j |V_j|^2 \le \sum_{j=1}^{n} p_j \left(\frac{T_j \widehat{\mathbb{S}}_{2\nu} V_j + T_j \widehat{\mathbb{S}}_{2(1-\nu)} V_j}{2} \right)$$

and

(3.12)
$$\sum_{j=1}^{n} p_j T_j \Im V_j \le \sum_{j=1}^{n} p_j \left(\frac{T_j \Im V_j + T_j \Im I_{-\nu} V_j}{2} \right)$$

for any $\alpha \in [0,1]$.

Proof. Using the elementary inequality

$$\sqrt{ab} \le \frac{1}{2} (a+b), \ a, \ b \ge 0,$$

we have

$$\left\langle \sum_{j=1}^{n} p_{j} T_{j} \circledast_{2\nu} V_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} T_{j} \circledast_{2(1-\nu)} V_{j} x, x \right\rangle^{1/2}$$

$$\leq \frac{1}{2} \left(\left\langle \sum_{j=1}^{n} p_{j} T_{j} \circledast_{2\nu} V_{j} x, x \right\rangle + \left\langle \sum_{j=1}^{n} p_{j} T_{j} \circledast_{2(1-\nu)} V_{j} x, x \right\rangle \right)$$

$$= \left\langle \frac{1}{2} \left(\sum_{j=1}^{n} p_{j} T_{j} \circledast_{2\nu} V_{j} + \sum_{j=1}^{n} p_{j} T_{j} \circledast_{2(1-\nu)} V_{j} \right) x, x \right\rangle$$

for any $x \in H$ and $\alpha \in [0, 1]$.

Making use of this inequality and (3.3) we deduce the desired result (3.11). \square

Remark 2. If A_j , B_j are invertible positive operators for $j \in \{1, ..., n\}$, then by taking $T_j = A_j^{1/2}$ and $V_j = B_j^{1/2}$ in Theorem 2 we get

$$(3.13) \quad \sum_{j=1}^{n} p_{j} \left| \left\langle B_{j} x, y \right\rangle \right| \leq \left\langle \sum_{j=1}^{n} p_{j} A_{j} \sharp_{2\nu} B_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} A_{j} \sharp_{2(1-\nu)} B_{j} y, y \right\rangle^{1/2}$$

and

$$(3.14) \quad \sum_{j=1}^{n} p_{j} \left| \left\langle A_{j} \sharp B_{j} x, y \right\rangle \right| \leq \left\langle \sum_{j=1}^{n} p_{j} A_{j} \sharp_{\nu} B_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} p_{j} A_{j} \sharp_{1-\nu} B_{j} y, y \right\rangle^{1/2}$$

for any $x, y \in H$ and $\alpha \in [0, 1]$.

From (3.9) and (3.10) we get the norm inequalities

(3.15)
$$\left\| \sum_{j=1}^{n} p_{j} B_{j} \right\| \leq \left\| \sum_{j=1}^{n} p_{j} A_{j} \sharp_{2\nu} B \right\|^{1/2} \left\| \sum_{j=1}^{n} p_{j} A_{j} \sharp_{2(1-\nu)} B_{j} \right\|^{1/2}$$

and

(3.16)
$$\left\| \sum_{j=1}^{n} p_{j} A_{j} \sharp B_{j} \right\| \leq \left\| \sum_{j=1}^{n} p_{j} A_{j} \sharp_{\nu} B_{j} \right\|^{1/2} \left\| \sum_{j=1}^{n} p_{j} A_{j} \sharp_{1-\nu} B_{j} \right\|^{1/2}$$

for any $\alpha \in [0,1]$.

From (3.11) and (3.12) we have the operator inequalities

(3.17)
$$\sum_{j=1}^{n} p_j B_j \le \sum_{j=1}^{n} p_j \left(\frac{A_j \sharp_{2\nu} B + A_j \sharp_{2(1-\nu)} B_j}{2} \right)$$

and

(3.18)
$$\sum_{j=1}^{n} p_j A_j \sharp B_j \le \sum_{j=1}^{n} p_j \left(\frac{A_j \sharp_{\nu} B_j + A_j \sharp_{1-\nu} B_j}{2} \right)$$

for any $\alpha \in [0,1]$.

We have the following generalization of Schwarz inequality:

Corollary 3. Let $(T_1, ..., T_n)$, $(V_1, ..., V_n)$, $\in \mathcal{B}^{-1,(n)}(H)$ with $\sum_{j=1}^{n} |V_j|^2 = 1_H$ and $\nu \in [0, 1]$. Then we have

$$(3.19) |\langle x, y \rangle| \le \left\langle \sum_{j=1}^{n} T_{j} \otimes_{2\nu} V_{j} x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} T_{j} \otimes_{2(1-\nu)} V_{j} y, y \right\rangle^{1/2}$$

for any $x, y \in H$ and $\alpha \in [0, 1]$.

In particular, if $|V|^2 = 1_H$, then for any $T \in \mathcal{B}^{-1}(H)$ we have

$$(3.20) |\langle x, y \rangle| \le \left\langle \left| |T^*|^{-2\nu} T \right|^2 x, x \right\rangle^{1/2} \left\langle \left| |T^*|^{-2(1-\nu)} T \right|^2 y, y \right\rangle^{1/2}$$

for any $x, y \in H$ and $\alpha \in [0, 1]$.

Proof. We have by (3.1) for $p_i = 1, j \in \{1, ..., n\}$

$$(3.21) \qquad |\langle x, y \rangle| = \left| \left\langle \sum_{j=1}^{n} |V_j|^2 x, y \right\rangle \right| \le \sum_{j=1}^{n} \left| \left\langle |V_j|^2 x, y \right\rangle \right|$$

$$\le \left\langle \sum_{j=1}^{n} T_j \otimes_{2\nu} V_j x, x \right\rangle^{1/2} \left\langle \sum_{j=1}^{n} T_j \otimes_{2(1-\nu)} V_j y, y \right\rangle^{1/2}$$

for any $x, y \in H$ and $\alpha \in [0, 1]$.

For n = 1, namely when $V_1 = V$ with $|V|^2 = 1_H$ then we have

$$(3.22) |\langle x, y \rangle| \le \langle T \otimes_{2\nu} V x, x \rangle^{1/2} \langle T \otimes_{2(1-\nu)} V y, y \rangle^{1/2}$$

for any $x, y \in H$ and $\alpha \in [0, 1]$.

Since

$$T \circledast_{2\nu} V = T^* \left((T^*)^{-1} V^* V T^{-1} \right)^{2\nu} T = T^* \left((T^*)^{-1} T^{-1} \right)^{2\nu} T$$

$$= T^* \left((TT^*)^{-1} \right)^{2\nu} T = T^* \left(|T^*|^{-2} \right)^{2\nu} T = T^* \left(|T^*|^{-2\nu} \right)^2 T$$

$$= \left| |T^*|^{-2\nu} T \right|^2$$

and

$$T \otimes_{2(1-\nu)} V = \left| |T^*|^{-2(1-\nu)} T \right|^2,$$

then by (3.22) we get (3.20).

Remark 3. The inequality (3.20) can be written in an equivalent form as

$$(3.23) |\langle x, y \rangle| \le ||T^*|^{-2\nu} Tx|| ||T^*|^{-2(1-\nu)} Ty||$$

for any $x, y \in H$ and $\alpha \in [0, 1]$. If we use Schwarz's inequality

$$|\langle u, v \rangle| < ||u|| \, ||v||$$

for the choices $u = |T^*|^{-2\nu} Tx$ and $v = |T^*|^{-2(1-\nu)} Ty$ and since

$$\begin{split} \langle u, v \rangle &= \left\langle |T^*|^{-2\nu} \, Tx, |T^*|^{-2(1-\nu)} \, Ty \right\rangle = \left\langle \left(|T^*|^{-2(1-\nu)} \, T \right)^* |T^*|^{-2\nu} \, Tx, y \right\rangle \\ &= \left\langle T^* \, |T^*|^{-2(1-\nu)} \, |T^*|^{-2\nu} \, Tx, y \right\rangle = \left\langle T^* \, |T^*|^{-2} \, Tx, y \right\rangle \\ &= \left\langle T^* \, (TT^*)^{-1} \, Tx, y \right\rangle = \left\langle x, y \right\rangle, \end{split}$$

then we also obtain inequality (3.23).

If we consider the Hölder's numbers p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then, for instance, the equality (2.7) can be written as

(3.24)
$$T \Im_{1/q} V = V \Im_{1/p} T$$

while the inequality (2.13), as

(3.25)
$$\left|\left\langle T \otimes V x, y \right\rangle\right|^2 \le \left\langle T \otimes_{1/p} V x, x \right\rangle \left\langle T \otimes_{1/q} V y, y \right\rangle, \ x, y \in H$$
 for any $T, V \in \mathcal{B}^{-1}(H)$.

Theorem 4. Let $(T_1, ..., T_n)$, $(V_1, ..., V_n)$, $\in \mathcal{B}^{-1,(n)}(H)$, $(p_1, ..., p_n) \in \mathbb{R}^{*n}_+$ an n-tuple of nonnegative weights not all of them equal to zero and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Then we have

(3.26)
$$\sum_{j=1}^{n} p_{j} \left| \left\langle |V_{j}|^{2} x, y \right\rangle \right|^{2}$$

$$\leq \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \widehat{\mathbb{S}}_{2/p} V_{j} \right)^{p} x, x \right\rangle^{1/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \widehat{\mathbb{S}}_{2/q} V_{j} \right)^{q} y, y \right\rangle^{1/q}$$

and

$$(3.27) \qquad \sum_{j=1}^{n} p_{j} \left| \left\langle T_{j} \otimes V_{j} x, y \right\rangle \right|^{2}$$

$$\leq \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{1/p} V_{j} \right)^{p} x, x \right\rangle^{1/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{1/q} V_{j} \right)^{q} y, y \right\rangle^{1/q}$$

for any $x, y \in H$ with ||x|| = ||y|| = 1. In particular, we have

(3.28)
$$\sum_{j=1}^{n} p_{j} \left\langle |V_{j}|^{2} x, x \right\rangle^{2}$$

$$\leq \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} x, x \right\rangle^{1/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} x, x \right\rangle^{1/q}$$

and

$$(3.29) \qquad \sum_{j=1}^{n} p_{j} \left\langle T_{j} \otimes V_{j} x, x \right\rangle^{2}$$

$$\leq \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{1/p} V_{j} \right)^{p} x, x \right\rangle^{1/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{1/q} V_{j} \right)^{q} x, x \right\rangle^{1/q}$$

for any $x \in H$ with with ||x|| = 1.

Proof. Recall the Hölder-McCarthy inequality $\langle P^r x, x \rangle \leq \langle Px, x \rangle^r$ that holds for any positive operator P and any power $r \in (0, 1)$.

Using the inequality (2.12) for V_j , T_j , $j \in \{1,...,n\}$ and $\nu = \frac{1}{n}$, we have

(3.30)
$$\left|\left\langle \left|V_{j}\right|^{2}x,y\right\rangle \right|^{2} \leq \left\langle T_{j} \otimes_{2/p} V_{j}x,x\right\rangle \left\langle T_{j} \otimes_{2/q} V_{j}y,y\right\rangle$$

for any $x, y \in H$.

If $x, y \in H$ with ||x|| = ||y|| = 1, then by Hölder-McCarthy inequality we have

$$\left\langle T_{j} \circledS_{2/p} V_{j} x, x \right\rangle = \left\langle \left[\left(T_{j} \circledS_{2/p} V_{j} \right)^{p} \right]^{1/p} x, x \right\rangle \leq \left\langle \left(T_{j} \circledS_{2/p} V_{j} \right)^{p} x, x \right\rangle^{1/p}$$

and

$$\left\langle T_{j} \circledS_{2/q} V_{j} y, y \right\rangle = \left\langle \left[\left(T_{j} \circledS_{2/q} V_{j} \right)^{q} \right]^{1/q} y, y \right\rangle \leq \left\langle \left(T_{j} \circledS_{2/q} V_{j} \right)^{q} y, y \right\rangle^{1/q}$$

for any $j \in \{1, ..., n\}$.

Then by (3.2) and these inequalities, we have

$$(3.31) \sum_{j=1}^{n} p_{j} \left| \left\langle \left| V_{j} \right|^{2} x, y \right\rangle \right|^{2} \leq \sum_{j=1}^{n} p_{j} \left\langle \left(T_{j} \circledS_{2/p} V_{j} \right)^{p} x, x \right\rangle^{1/p} \left\langle \left(T_{j} \circledS_{2/q} V_{j} \right)^{q} y, y \right\rangle^{1/q}$$

for any $x, y \in H$ with ||x|| = ||y|| = 1.

Now, on making use of the weighted Hölder discrete inequality

$$\sum_{j=1}^{n} p_j a_j b_j \le \left(\sum_{j=1}^{n} p_j a_j^p\right)^{1/p} \left(\sum_{j=1}^{n} p_j b_j^q\right)^{1/q}, p, q > 1, \frac{1}{p} + \frac{1}{q} = 1,$$

where $(a_1,...,a_n)$, $(b_1,...,b_n) \in \mathbb{R}^n_+$, and choose $a_j = \langle (T_j \otimes_{2/p} V_j)^p x, x \rangle^{1/p}$ while $b_j = \langle (T_j \otimes_{2/p} V_j)^q y, y \rangle^{1/q}$, then we get

$$(3.32) \qquad \sum_{j=1}^{n} p_{j} \left\langle \left(T_{j} \otimes_{2/p} V_{j}\right)^{p} x, x \right\rangle^{1/p} \left\langle \left(T_{j} \otimes_{2/q} V_{j}\right)^{q} y, y \right\rangle^{1/q}$$

$$\leq \left[\sum_{j=1}^{n} p_{j} \left\langle \left(T_{j} \otimes_{2/p} V_{j}\right)^{p} x, x \right\rangle \right]^{1/p} \left[\sum_{j=1}^{n} p_{j} \left\langle \left(T_{j} \otimes_{2/q} V_{j}\right)^{q} y, y \right\rangle \right]^{1/q}$$

$$= \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j}\right)^{p} x, x \right\rangle^{1/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j}\right)^{q} y, y \right\rangle^{1/q}$$

for any $x, y \in H$ with ||x|| = ||y|| = 1.

By making use of (3.31) and (3.32) we deduce the desired inequality (3.26). The inequality (3.27) follows in a similar way by (2.13) and we omit the details.

We have the following norm inequalities:

Corollary 4. Let (T_1, \ldots, T_n) , (V_1, \ldots, V_n) , $\in \mathcal{B}^{-1,(n)}(H)$ and $(p_1, \ldots, p_n) \in \mathbb{R}^{*n}_+$ a probability distribution, i.e. $\sum_{j=1}^n p_j = 1$. If p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then we

have

$$(3.33) \qquad \left\| \sum_{j=1}^{n} p_{j} |V_{j}|^{2} \right\| \leq \left\| \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} \right\|^{2/p} \left\| \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} \right\|^{2/q}$$

and

$$(3.34) \qquad \left\| \sum_{j=1}^{n} p_{j} T_{j} \circledS V_{j} \right\| \leq \left\| \sum_{j=1}^{n} p_{j} \left(T_{j} \circledS_{1/p} V_{j} \right)^{p} \right\|^{2/p} \left\| \sum_{j=1}^{n} p_{j} \left(T_{j} \circledS_{1/q} V_{j} \right)^{q} \right\|^{2/q}.$$

Proof. By the generalized triangle inequality and the Cauchy-Bunyakovsky-Schwarz discrete inequality we have

$$(3.35) \quad \sum_{j=1}^{n} p_{j} \left| \left\langle |V_{j}|^{2} x, y \right\rangle \right|^{2} \geq \left(\sum_{j=1}^{n} p_{j} \left| \left\langle |V_{j}|^{2} x, y \right\rangle \right| \right)^{2} \geq \left| \left\langle \sum_{j=1}^{n} p_{j} |V_{j}|^{2} x, y \right\rangle \right|^{2}$$

for any $x, y \in H$ with ||x|| = ||y|| = 1.

If we use the inequality (3.26) and (3.35), then we have

$$(3.36) \qquad \left| \left\langle \sum_{j=1}^{n} p_{j} \left| V_{j} \right|^{2} x, y \right\rangle \right|^{2}$$

$$\leq \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} x, x \right\rangle^{1/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} y, y \right\rangle^{1/q},$$

which is equivalent to

$$\left| \left\langle \sum_{j=1}^{n} p_{j} \left| V_{j} \right|^{2} x, y \right\rangle \right| \leq \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} x, x \right\rangle^{2/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} y, y \right\rangle^{2/q}$$

for any $x, y \in H$ with ||x|| = ||y|| = 1.

By taking the supremum over ||x|| = ||y|| = 1 in this inequality and since the operators $\sum_{j=1}^{n} p_j \left(T_j \otimes_{2/p} V_j\right)^p$ and $\sum_{j=1}^{n} p_j \left(T_j \otimes_{2/q} V_j\right)^q$ are selfadjoint, then we get the desired result (3.33).

The inequality (3.34) follows from (3.27) in a similar way and we omit the details.

Corollary 5. With the assumptions of Corollary 4 we have the inequalities

(3.37)
$$\left\| \sum_{j=1}^{n} p_j |V_j|^2 \right\|^2 \le \left\| \sum_{j=1}^{n} p_j \left(\frac{1}{p} \left(T_j \otimes_{2/p} V_j \right)^p + \frac{1}{q} \left(T_j \otimes_{2/q} V_j \right)^q \right) \right\|$$

and

(3.38)
$$\left\| \sum_{j=1}^{n} p_j T_j \otimes V_j \right\|^2 \le \left\| \sum_{j=1}^{n} p_j \left(\frac{1}{p} \left(T_j \otimes_{1/p} V_j \right)^p + \frac{1}{q} \left(T_j \otimes_{1/q} V_j \right)^q \right) \right\|.$$

Proof. From (3.36) we have for y = x that

$$\left| \left\langle \sum_{j=1}^{n} p_{j} \left| V_{j} \right|^{2} x, x \right\rangle \right|^{2}$$

$$\leq \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} x, x \right\rangle^{1/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} x, x \right\rangle^{1/q}$$

for any $x, y \in H$ with ||x|| = ||y|| = 1.

By the elementary inequality

$$a^{1/p}b^{1/q} \le \frac{1}{p}a + \frac{1}{q}b, \ a, b > 0, \ \frac{1}{p} + \frac{1}{q} = 1$$

we have

(3.40)
$$\left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} x, x \right\rangle^{1/p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} x, x \right\rangle^{1/q}$$

$$\leq \frac{1}{p} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} x, x \right\rangle + \frac{1}{q} \left\langle \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} x, x \right\rangle$$

$$= \left\langle \left[\frac{1}{p} \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} + \frac{1}{q} \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} \right] x, x \right\rangle$$

for any $x \in H$ with ||x|| = 1.

By (3.39) we then have

$$\left| \left\langle \sum_{j=1}^{n} p_{j} |V_{j}|^{2} x, x \right\rangle \right|^{2} \leq \left\langle \left[\frac{1}{p} \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/p} V_{j} \right)^{p} + \frac{1}{q} \sum_{j=1}^{n} p_{j} \left(T_{j} \otimes_{2/q} V_{j} \right)^{q} \right] x, x \right\rangle$$

for any $x \in H$ with ||x|| = 1.

By taking the supremum over ||x|| = 1 and taking into account that $\sum_{i=1}^{n} p_{i} |V_{i}|^{2}$

and

$$\frac{1}{p} \sum_{j=1}^{n} p_j \left(T_j \otimes_{2/p} V_j \right)^p + \frac{1}{q} \sum_{j=1}^{n} p_j \left(T_j \otimes_{2/q} V_j \right)^q$$

are selfadjoint operators, we obtain the desired result (3.37).

The inequality (3.38) follows in a similar way and the details are omitted.

If A_j , B_j are invertible positive operators for $j \in \{1,...,n\}$, then by taking $T_j = A_j^{1/2}$ and $V_j = B_j^{1/2}$ in Theorem 4 and the subsequent inequalities, we can derive various results for the weighted geometric mean of positive operators. The details are not presented here.

REFERENCES

- S. S. Dragomir, Some inequalities of Kato type for sequences of operators in Hilbert spaces. Publ. Res. Inst. Math. Sci. 48 (2012), no. 4, 937–955.
- [2] S. S. Dragomir, Y. J. Cho and Y.-H. Kim, Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (I). J. Inequal. Appl. 2013, 2013:21, 16 pp

- [3] S. S. Dragomir, Applications of Kato's inequality to operator-valued integrals on Hilbert spaces. Asian-Eur. J. Math. 6 (2013), no. 4, 1350059, 18 pp.
- [4] S. S. Dragomir, Y. J. Cho and Y.-H. Kim, Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (II). J. Inequal. Appl. 2013, 2013:464, 20 pp.
- [5] S. S. Dragomir, Some inequalities generalizing Kato's and Furuta's results. Filomat 28 (2014), no. 1, 179–195.
- [6] S. S. Dragomir, The quadratic weighted geometric mean for bounded linear operators in Hilbert spaces, Preprint, RGMIA Res. Rep. Coll. 19 (2016), Art. 145. [Online http://rgmia.org/papers/v19/v19a145.pdf].
- [7] M. Fujii, C.-S. Lin and R. Nakamoto, Alternative extensions of Heinz-Kato-Furuta inequality. Sci. Math. 2 (1999), no. 2, 215–221.
- [8] M. Fujii and T. Furuta, Löwner-Heinz, Cordes and Heinz-Kato inequalities. Math. Japon. 38 (1993), no. 1, 73–78.
- [9] M. Fujii, E. Kamei, C. Kotari and H. Yamada, Furuta's determinant type generalizations of Heinz-Kato inequality. Math. Japon. 40 (1994), no. 2, 259–267
- [10] M. Fujii, Y.O. Kim, and Y. Seo, Further extensions of Wielandt type Heinz-Kato-Furuta inequalities via Furuta inequality. Arch. Inequal. Appl. 1 (2003), no. 2, 275–283
- [11] M. Fujii, Y.O. Kim and M. Tominaga, Extensions of the Heinz-Kato-Furuta inequality by using operator monotone functions. Far East J. Math. Sci. (FJMS) 6 (2002), no. 3, 225–238
- [12] M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality. Proc. Amer. Math. Soc. 128 (2000), no. 1, 223–228.
- [13] M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality. II. J. Inequal. Appl. 3 (1999), no. 3, 293–302.
- [14] T. Furuta, Equivalence relations among Reid, Löwner-Heinz and Heinz-Kato inequalities, and extensions of these inequalities. *Integral Equations Operator Theory* 29 (1997), no. 1, 1–9.
- [15] T. Furuta, Determinant type generalizations of Heinz-Kato theorem via Furuta inequality. Proc. Amer. Math. Soc. 120 (1994), no. 1, 223–231.
- [16] T. Furuta, An extension of the Heinz-Kato theorem. Proc. Amer. Math. Soc. 120 (1994), no. 3, 785–787.
- [17] G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc. -New York, 1969.
- [18] T. Kato, Notes on some inequalities for linear operators, Math. Ann. 125(1952), 208-212.
- [19] F. Kittaneh, Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293.
- [20] F. Kittaneh, Norm inequalities for fractional powers of positive operators. Lett. Math. Phys. 27 (1993), no. 4, 279–285.
- [21] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 246 (1979/80), no. 3, 205– 224
- [22] C.-S. Lin, On Heinz-Kato-Furuta inequality with best bounds. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (2008), no. 1, 93-101.
- [23] C.-S. Lin, On chaotic order and generalized Heinz-Kato-Furuta-type inequality. Int. Math. Forum 2 (2007), no. 37-40, 1849–1858,
- [24] C.-S. Lin, On inequalities of Heinz and Kato, and Furuta for linear operators. Math. Japon. 50 (1999), no. 3, 463–468.
- [25] C.-S. Lin, On Heinz-Kato type characterizations of the Furuta inequality. II. Math. Inequal. Appl. 2 (1999), no. 2, 283–287.
- [26] M. Uchiyama, Further extension of Heinz-Kato-Furuta inequality. Proc. Amer. Math. Soc. 127 (1999), no. 10, 2899–2904.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

URL: http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa