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SOME INEQUALITIES OF HOLDER TYPE FOR QUADRATIC
WEIGHTED GEOMETRIC MEAN OF BOUNDED LINEAR
OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we consider the quadratic weighted geometric mean
T,V = ||[vT =" T|?

for bounded linear operators T, V in the Hilbert space H with T invertible
and v € [0,1]. Using the celebrated McCarthy’s inequality we show that

<T@1/p\/w,x> < <\V\2 w,a:>1/p <|T\2 a:,$>1/q

for any ©* € H, where p, ¢ > 1 with % + % = 1. We also provide some norm
inequalities such as

n 1/p 1/q
ij Ti®1/pVi|| <

j=1

n n
2 2
> _p;lVjl > i |7l
j=1 j=1

for any n-tuples of invertible operators (T1,...,Ty), (Vi,...,Vs) and any n-
tuple of positive weights. (p1,...,pn).

1. INTRODUCTION

Let A be a nonnegative operator on the complex Hilbert space (H, (-, -)), namely
(Az,z) > 0 for any « € H. We write this as A > 0.

By the use of the spectral resolution of A and the Hélder inequality, C. A.
McCarthy [18] proved that

(1.1) (Az,z)? < (APz,z), p e (1,00)
and
(1.2) (APz x) < (Ax,z) ) pe (0,1)

for any x € H with ||z| = 1.

For various related inequalities, see [1], [2], [8]-[12] and [16]-[17].

Assume that A, B are positive operators on a complex Hilbert space (H, (-,-)).
The weighted operator arithmetic mean for the pair (A, B) is defined by

AV,B:=(1-v)A+vB.

In 1980, Kubo & Ando, [15] introduced the weighted operator geometric mean for
the pair (A4, B) with A positive and invertible and B positive by

Aty B = AV (A*WBA*W)V A2,

1991 Mathematics Subject Classification. 47TA63, 47A30, 15A60, 26D15, 26D10.
Key words and phrases. Weighted geometric mean, Weighted harmonic mean, Kato’s inequal-
ity, Operator modulus, Arithmetic mean-geometric mean-harmonic mean inequality.

1

RGMIA Res. Rep. Coll. 19 (2016), Art. 151


e5011831
Typewritten Text
Received 15/09/16, Revised 04/10/16

e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 19 (2016), Art. 151


2 S.S. DRAGOMIRY2

If A, B are positive invertible operators then we can also consider the weighted
operator harmonic mean defined by (see for instance [15])

Al B = ((1 V) AT+ Z/B_l)i1 .

We have the following fundamental operator means inequalities, or Young’s in-
equalities

(1.3) Al,B < Af,B < AV, B, v € [0,1]

for any A, B positive invertible operators. For v = %, we denote the above means
by AVB, AtB and A!B.

For some new reverses and refinements of Young’s inequality see [3]-[4], [13]-[14],
[19] and [21].

We denote by B~! (H) the class of all bounded linear invertible operators on
H.For T € B (H) and V € B(H) we define the quadratic weighted operator
geometric mean of (T, V') by [6]

(1.4) T®,V := MVT—1|”T)2

for v > 0. For V € B~ (H) we can also extend the definition (1.4) for v < 0.
By the definition of modulus, we also have

(1.5) T®,V =T VT ¥ T =1 () Vv T

for any T € B~' (H) and V € B(H). For v = 1 we denote

TeV = |[vr [ Tf =7 v T =1 (1) V*VT‘1>1/2 T,

It has been shown in [6] that the following representation holds
(1.6) O,V =T/t [V

for T,V € B! (H) and any real v.
We have the following fundamental inequalities extending (1.3):

(1.7) TPV, [V 2 Te,V > |17, V]
for T,V € B~! (H) and for v € [0,1]. In particular, we have
(1.8) TV V] > TV > [T [V

for T, V € B~ (H).
We have the following identities [7] as well

(1.9) (TEV) '=T) '@, (V)" and T®,_,V = VE,T

for any T, V € B! (H) and v € [0,1] .

In this paper we establish some Holder type inequalities for the quadratic weighted
operator geometric mean for both a pair and two n-tuples of invertible operators on
the Hilbert space H. Refinements, reverses and norm inequalities with applications
to the usual weighted operator geometric mean are also given.
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2. SOME HOLDER’S TYPE INEQUALITIES

We have the following result:

Theorem 1. Let T € B~ (H) and V € B(H). Then for p, ¢ > 1 with % + % =1
we have that

(2.1) (TGnpVm,z) < <W|2 x, x>1/p <|T|2 x, x>1/q

for any x € H.
In particular, we have

(2.2) (TEVz,z) < <|V|2 x,a:>1/2 <\T|2x,m>1/2
for any x € H.

Proof. By the inequality (1.2) we have

(2.3) (AYu,u) < (Au,u)”, v e (0,1)

for any uw € H with |Ju| = 1.
If we take in (2.3) v = y/ ||y|| for y # 0, then we have

(2.4) (A"y,y) < (Ay,y)” (g, )"

for any y € H.
Let T € B~' (H)and V € B(H).If wetakein (2.4) A = }VT*1|2 = (T*) vV
and v = % € (0,1), then we have

(2.5) <|VT*1|2/p yy> < <(T*)’1 V*VT*Iy,y>1/p (y. )"/

for any y € H.
Now, if we take in (2.5) y = Tx, x € H, then we get

<yVT—1}2/” Ta:,Tm> < <(T*)_1 V*VT‘lT:v,Tx>1/p (Tz, Tz)"
that is equivalent to
<T* |VT71|2/p Ta:,x> < {(V*Vu, x>1/p (T*Tx, x>1/q
for any o € H, which proves (2.1). O

If we assume that A, B are positive invertible operators, then by taking 7' = A'/2
and V = B2 in (2.1) and (2.2) we get for p, ¢ > 1 with % + % =1 that

(2.6) (At ),Bz,z) < (Az, 2)"/? (B, )"

for any = € H.
In particular, we have

(2.7) (AfBzx, z) < (Az, :z:>1/2 (Bz, m}l/z

for any z € H.
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Remark 1. If we use the inequality (1.7) for v = % and take the inner product,
then we get

(2.8) (TG pVw,z) < 2% <|V|2 z, g;> + é <|T\2 mx>

for any x € H.
By the elementary inequality

at/Ppt/e < la—i— lb,
p q
that holds for a, b > 0 and % + % =1 with p, ¢ > 1, we have

<|V|2x,9c>1/p <|T\2m,x>l/q < % (IVPo,o)+ % (1P 2,)
and by (2.1) we deduce
(2.9) (T®),V,3) < <|V|2m,x>1/p <\T|2x,x>1/q
< % (VPz)+ é (TP ,2)

for any x € H, which provides a refinement of (2.8).
Since

<\V\2m,x> = |Vz|?® and <|T|2£c,x> = ||

then (2.1) is equivalent to

(2.10) (T®1Va,2)'"* < |Val /P | Tz] ',
for any x € H, where p,q > 1 with % —+ % =1, while (2.2) is equivalent to
(2.11) (TEVz,z) < ||Vz| || Tx|

for any x € H.
Since

10, Ve = v 7 e e = v 1|z el
/P

then the inequality (2.10) can also be written as
(2.12) HyVT-1|1/p T:cH < |Va|'? Tz, x e H
while the inequality (2.11), as
_111/2 2
(2.13) H|VT | TmH < |Vl |Tz|, = € H.
Corollary 1. With the assumptions of Theorem 1 we have the norm inequalities

(2.14) 1T®1,,V ||

Equivalently, we have

1/2
< V1P|V and |TEVI < V] 1T

1/2

111/ _ 2
@15)  |[vr | < i and (e o] < v
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The proof follows by (2.10) and (2.11) on taking the supremum over z € H,
]l = 1.

If we assume that A, B are positive invertible operators, then by taking 7 = A'/2
and V = B'/? in (2.14) we get for p, ¢ > 1 with § 4+ 1 =1 that

(2.16) || Aty B|| < IIAIY7 | B[ and ||A£B|* < ||A] || BI|.

Further on, consider the Cartesian product B~5(" (H) := B™'(H) x --- x
B~ (H), where B~! (H) denotes the class of all bounded linear invertible oper-
ators on H.

Corollary 2. Let (Tt,...,T,), (Vi,...,V,) € B-V™ (H) and (p1,...,p,) € RY"
be an n-tuple of nonnegative weights not all of them equal to zero. Then we have

n n 1/p n 1/q
o (Sunouvin)<(Snbfas) (Sninior)
j=1 j=1 j=1
for any x € H, where p, ¢ > 1 with % + % =1, and, in particular
n n /2 4 5 1/2

019 (Cutevne) < (Snlitar) (Yuinfo)

j=1 j=1 j=1
for any x € H.

Proof. From inequality (2.1) we have

(219) (Lo Viaa) < (VP o) (1P o)

for any j € {1,....,n} and x € H.
If we multiply by p; > 0, j € {1,...,n} and sum over j from 1 to n, then we get

(2.20) <ijTj®1/ijx,x> < ij <|V]|2 x,gg>1/p <|Tj|2 a:,g;>1/q
Jj=1 j=1

for any z € H.
Now, on making use of the weighted Holder discrete inequality

1/p 1/q

n n n
11
> pjajb; < | Y pial bt opa>1l-+-=1,
j=1 j=1 j=1 P4
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1/
where (ai,...,an), (bi,...,b,) € R} and choose a; = <|Vj|2:c,x> " while b; =

2 l/q
|T5|" =,z , then we get

(2.21) jzj;pj<|vj|2z,z>”p<Tj|2:c,x>”q

» 1/p . 1/q
- 1/p i 1/q
< (S ((wras) ™)) (X ((nree) ™)
Jj=1 j=1
n Vp s 1/q
2 2
= ij<\Vj| xl‘> > v <|Tj| $$>
j=1 j=1
n p | p 1/q
2 2
~(Snmbas) (Snimien)
Jj=1 j=1
for any = € H.
On using (2.20) and (2.21) we deduce (2.17). O
Corollary 3. With the assumptions of Theorem 2 we have the norm inequalities
" " vey, 1/q
2 2
(2.22) D o T® V|| < (1D ps Vil > pi Ty
7=1 i=1 =1
and
1/2 1/2
2 2
(2:23) > p TV, < |1> p; Vil > p 1T
j=1 j=1 j=1

whe'rep,q>1wz'th%+%:1.

Remark 2. If (Ay,...,A,), (B1,...,By) are positive invertible operators, then by
taking T; = A}/z, V; = B;/2 in (2.17) and (2.18) we get

n n 1/1) n 1/q
(2.24) <ZPjAjﬁ1/ij%fU> < <ZPjAj~T7$> <ZP;’B;’$,SE>
j=1 j=1 j=1

and, in particular

n n 1/2 n 1/2
(2.25) <ZPjAjﬁBjx,x> < <ijij,x> <ij3jx,w>
j=1 J=1 j=1

for any x € H, where p, ¢ > 1 with%—i—%:l.
By the use of (2.22) and (2.23) we get the norm inequalities

1/p 1/q

(2.26) > piAitypBil| <D opid; > piB;
j=1 j=1 j=1
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and, in particular
1/2 1/2

n n n
j=1 j=1 j=1
where p, ¢ > 1 with%—l—%:l.
3. REFINEMENTS AND REVERSES

We need the following lemma that is of interest in itself, [5]:

Lemma 1. Let A be a positive operator, namely (Ay,y) > 0 for anyy € H, y #0
and v € (0,1)\ {3}. Then for any y € H with |ly|| = 1, we have

(3.1) 2r (Ay,y)""? (<Ay,y>1/2 - <A1/2y,y>)

< (Ay,y)" — (A"y,y)

< 2R (Ay,y)""* ((Ay)'? = (420))
where 1 := min {1 — v, v} and R := max {1 — v, v}.

Proof. We use the following double inequality obtained by Kittaneh and Manasrah
[13], [14] that provide a refinement and an additive reverse for Young’s inequality
as follows:

(3.2) r(\f—\/l;)Qg(lfu)anLl/bfal”’b”§R(ff\[b)2

where a, b >0, v € [0,1], r =min {1 — v,v} and R = max{l —v,v}.
This is equivalent to

(3.3) r(a—2\/5\/5+b> <(1—-v)a+vb—a " §R(a—2\/a\/l;+b)

for any a, b > 0, v € [0,1].
Fix a > 0 and by using the continuous functional calculus, we have by replacing
b with the operator A > 0 that

(3.4) r <a1 — 2y/aA? + A) <(1-v)al+vA—a'""A"
<R (aI — 2y/aA? 4+ A) .
Therefore, by (3.4) we have
(35) 1 (a—2va(AY2y,y) + (Ay,)) < (1= v)a+v{Ay,y) —a' ™ (Ayy)
<R (a ~-2va <A1/2y, y> + (Ay, y>)

for any y € H with ||y| =1 and any a > 0.
Now, if we take a = (Ay,y) with y € H and ||y|| = 1, then by (3.5) we get

2r (Ay,y)'/? (<Ay,y>1/2 — <A1/2y,y>)
< (Ay, ) " ((Ay, )" — (A%y, 1))
< 2R (Ay, )"/ (<Ay,y>1/2 - <A1/2y,y>)

and, by dividing with (Ay, y)lﬂ' > 0, we get the desired result (3.1). |
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Theorem 2. Let T, V € B~ (H) and p, ¢ > 1 with % + % =1, then we have that

—q

11 2 N i\
(3.6) 2m1n{p,q}<|V| x,m> <\T| m,z>

X <<|V|2x,x>1/2 <|T\2x,x>1/2 - (T@Vw,x))

< <|V|2 :r,x>1/p <|T|2 z,a:>1/q — <T®1/pVx,x>

< 2max{ll), 2} <|V|2$,x>22;pp <|T\2x,x>22;qq
X <<|V|2x,x>1/2 <|T\2x,x>1/2 — (T@Vx,x))

for any x € H, x # 0,

Proof. If we take y = u/ ||u|| for w € H, uw # 0 in (3.1), then we get

g (A ) F ((Ay ) (AVPu,u)
[ ] ]

< (Au,u)”  (AYu,u)

]| * [
y_1
< oplAuw)® (Ay,»)'* (A0, u)
T [[ull ul* )’

that is equivalent to
v_1
gy fAw )" <<Au,u>”2 Jul| — <A1/2u,u>>
[ [

_ A’ [l — (A, )

= 2
i

(A, N <<Au, w2 || — (A2, u>>

2v—1 2
[l [
or to

(3.7) 2r (Au, u)"ié (u,u)éﬂ’ ((Au,u>1/2 (u,u)'/? — <A1/2u,u>>
< (Au, u)” (u,u)' 7" — (AYu, u)

< 2R (Au, )" luf 7 ((Au ) ) = (A4 200)),

where v € (0,1) \ {3}.
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Let T € B~'(H)and V € B(H).If we takein (3.7) A = }V:F—l\2 = (%) 'vrvT,
then we have

(3.8) 2r<(T*)*1v*VT*1u,u>"_%<u,u>%*"
X (<(T*)1 V*VT_lu,u>1/2 (u, u)/? — <((T*)1 V*VT‘1)1/2 uu>>
< (@)™ V*VT_lu,u>V ()~ = (@)™ V*VT_1>Vu,u>
<2R <(T*)‘1 V*VT_lu,u>U7% (u,u)* ™"
X (<(T*)_1 V*VT’lu,u>1/2 (u, u)? — <((T*)‘1 V*VT*)I/2 uu>> ,

for any u € H, u # 0.
If we take in (3.8) u =Tz, x € H, x # 0, then we get

2r<(T*)‘1V*VT*1Tx,Tz> * (T, Tz)? ™"
B 1/2 1/2 L e 1\ /2
X <(T) VVT Tm,T:c> (Tz, Tz)"/? - ((T) VYT ) Tz, Tz
< (@™ V*VT’lTx,Tx>y (T, T2y ™ = (1) V*VT’I)VTx,Tx>
v—1 1
< 2R<(T*)‘1 V*VT_lTx,T;c> P (T, Tx)E ™"
e 1/2 1/2 L e 1\ /2
X <(T) VYT Ta;,Ta:> (T, Tz)/? — ((T) VVT ) T, Tz ) ),
namely
or (V*Vac,xyl_% (T*Tm,x>%_y
1/2 1/2 —1 1)\ /?
x((V*Vx,x> (T*Tz, ) —<T*((T*) VVT ) Ta:x>>
< V'V, 2) (T T, 2) ™ = (17 (1) V*VT‘1>VT33, )
<OR(V*Va, )" "% (T"Tx,z)% "
1/2 1/2 —1 1\ /2
x (((V*Va, o) (1" Tz, 2)"/* - { T* ((T*) VVT ) Tz,z)),

which, for v = = € (0,1), is equivalent to the desired result (3.6). O

1
p
Remark 3. The inequality (3.6) can be written as
. 11 2-p 2-q

(3.9) 2mm{p,q}nv$n = T2 5 (IVal [Tl - (T@Va, )

< Vel |\ Tz||'* = (T®\ Ve, z)

11 2-p 2-g
< 2max ) o WVal 7Tl 5 (Val | T — (T®Ve,2))

for any x € H, x # 0.
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If we divide (3.9) by |Va||*? | T=|*9, x € H, x # 0, then we get

T®:,, Ve,
pral A [Vel|iTal [Vl |Ta] >/

11 (T@Vx,a:))
<2 g 1 ="
= ma"{p’ q} ( [Vl Tz]

where T, V. € B~Y(H) and p, ¢ > 1 wz‘th%—f—%:l.

Finally, if we assume that A, B are positive invertible operators, then by taking
T = AY? and V = B'/? in (3.10) we get for p, ¢ > 1 with % + % =1 that

(1, (ABaw)
(3.11) Qmm{p,q} 1 A% [ B
<Aﬁ1/pr,z>
Atz ][> | Brr2a]

1 } ) (A$Bz, z)

1
<zmc b1 IR

for any z € H, x # 0.
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