Received 16/09/16

REMARKS ON SOME INEQUALITIES FOR ANALOGUES OF
THE POLYGAMMA FUNCTION

KWARA NANTOMAH*

ABSTRACT. The purpose of this study is twofold. The first is, to point out
drawbacks of some recent results concerning analogues the Polygamma func-
tion. The second is to resolve the drawbacks by providing improvements of the
previous results.

1. INTRODUCTION

We begin by recalling the following definitions which will be used in the sequel.

The Polygamma function, ¢ (x) is defined for m € N and z > 0 by
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where 1) (z) = (), and (z) is the Digamma function.
The p-analogue of the Polygamma function, wg(;m) (x) or in short, the p-Polygamma

function is defined for p € N and 2 > 0 by (See [2], [1])
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where 1™ (z) — ™ (z) as p — 0.
The ¢-Polygamma function, ¥{™ (z) is also defined for ¢ € (0,1) and = > 0 by
(See [1], [3] and the references therein)
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where wém)(x) — M (z) as ¢ = 1, py(t) = —Ing Y re, 6(t + klng) is a discrete
measure and J(¢) is the Dirac delta function.

Then the (p, ¢)-Polygamma function, 1[)%) (z) is also defined for ¢ € (0,1), k>0
and z > 0 by (See [5], [7])
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where 1% (z) — ™ () as p — oo, and Y (z) — ™ () as ¢ — 1.
Also, the (g, k)-Polygamma function, wt(;;:) (x) is defined for ¢ € (0,1), £ > 0 and
x> 0 by (See [0])
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where Q,Dgz) (x) — @/J,(gm)(x) as ¢ — 1, and ¢(7Z) x) — L (x) as k — 1.

Recently, the following results were established among others for the various
analogues of the Polygamma function.

Theorem 1.1 ([9], Theorem 2.2). Forn=1,2,3,...,
(G+s) (L Y m 3 (o 3
o (242) < (@) (0 )

AL s an integer, a > 1, 1+ 1 = 1.

where
Theorem 1.2 (9], Theorem 2.3). Forn =1,2,3,...,
(W (@) + 00 )* < (@) + ()

min is an integer, u > 1.
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Theorem 1.3 ([!], Theorem 2.1). Forn=1,2,3,...,
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Theorem 1.4 ([!], Theorem 2.3). Forn=1,2,3,...,
(U4 (@) + 90 w) " < (W) + (0 (0)*

AR s an integer, u > 1.

where
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Theorem 1.6 ([5], Theorem 2.2). Forn=1,2,3,...,

(007 () + 6™ ) * < (B (@) + (0 (1))

MmN s an integer, u > 1.
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Theorem 1.7 ([6], Theorem 2.1). Forn =1,2,3,...,

AP E D) < (W) (b))
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where =57 is an integer, a > 1, -+ 3 = 1.

where

Theorem 1.8 ([6], Theorem 2.3). Forn=1,2,3,...,

1
u

(1@ + 5w < (B0@)" + (020)

where mT” 15 an integer, u > 1.

Nonetheless, these elegant inequalities do have some drawbacks. They do not
hold for even m and n. Notice from (1), (2), (3) and (4) that, for even m,

wt(]m)(x) <0, 1[11(,”1) (x) <0, wg;z)(x) <0 and wg';)(x) < 0.

Consequently, if a = b = v = 2 in particular, the quantities

1 1 1 1
(@) @) (6@) md ()’
are not defined since they have to be real. Also, since ** + % is an order of a
derivative, there is the need to add to the hypotheses of Theorems 1.1, 1.3, 1.5
and 1.7 that 2 + 2 € N. Furthermore, in the proofs of Theorems 1.2, 1.4, 1.6
and 1.8, the authors relied on the fact that a* + % < (a+ 5)", for o, f > 0 and
u > 1. However, for even m and n, the requirement that o, 5 > 0 was overlooked
in the proofs.

In the following section, we resolve these challenges by providing improvements
of the above results. We utilize the techniques of the previous authors.

2. IMPROVEMENTS
Theorem 2.1. Let m,n €N, a > 1, %4— % =1 such that *> + 3 € N. Then, the
imequality
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Proof. We use the Holder’s inequality for integrals. Then by (3) we obtain
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Theorem 2.2. Let m,n € N and u > 1. Then, the inequality

(lops (@)] + W%(y)})% < |w§,f2)(x)‘% + W}(jz)(y)ﬁ (6)
holds for x,y > 0.

Proof. We used the fact that o* + g* < (a4 B)*, for a, 8 > 0, u > 1, and the
Minkowski’s inequality for integral. Then by (3), we obtain
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Theorem 2.3. Let m,n € N, a > 1, %+ % =1 such that *> + 3 € N. Then, the

inequality
(Z+3) (T Y
ui ™ (G p)l
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(7)
holds for x,y > 0.
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Proof. By (4) and the Hélder’s inequality for sums, we obtain
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Theorem 2.4. Let m,n € N and u > 1. Then, the inequality

(el @] + R w))” < [l @]+ [piw)
holds for x,y > 0.
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Proof. Here too, we use the Minkowski’s inequality for sums and the fact that
at + p* < (a+ pB)*, for o, 5 > 0, u > 1. Then from (4) we obtain
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Theorem 2.5. Let m,n € N, a > 1, %%— % =1 such that %} + 3 € N. Then, the

inequality
(T+s) (L Y m 1 3
u P C+ D < @) e )] (9)

holds for x,y > 0.

Proof. Let p — oo in Theorem 2.1 or let £k — 1 in Theorem 2.3.
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Theorem 2.6. Let m,n € N and u > 1. Then, the inequality

(@) + 1oy W) < [y @) + v )]
holds for x,y > 0.

1
u

Proof. Let p — oo in Theorem 2.2 or let £ — 1 in Theorem 2.4.

Theorem 2.7. Let m,n € N, a > 1, £+ % =1 such that *> + 3 € N. Then, the

inequality
1

B (y)|? (11)

SED (1| < g
holds for z,y > 0.
Proof. Let ¢ — 1 in Theorem 2.1.

Theorem 2.8. Let m,n € N and u > 1. Then, the inequality

([0 (@)] + [ )])* < [l (@) + 60 ()| (12)
holds for z,y > 0.

Proof. Let ¢ — 1 in Theorem 2.2.

3. CONCLUSION

In this paper, drawbacks of some recent results concerning analogues of the
Polygamma function are pointed out and some improved results provided to re-
solve the drawbacks.
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