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INEQUALITIES FOR QUANTUM f-DIVERGENCE OF CONVEX
FUNCTIONS AND MATRICES

S.S. DRAGOMIR!:2

ABSTRACT. Some inequalities for quantum f-divergence of matrices are ob-
tained. It is shown that for normalised convex functions it is nonnegative.
Some upper bounds for quantum f-divergence in terms of variational and x2-
distance are provided. Applications for some classes of divergence measures
such as Umegaki and Tsallis relative entropies are also given.

1. INTRODUCTION

Let (X,.A) be a measurable space satisfying |.A| > 2 and p be a o-finite measure
on (X, A). Let P be the set of all probability measures on (X,.A) which are ab-
solutely continuous with respect to . For P, Q € P, let p = % and ¢ = % denote
the Radon-Nikodym derivatives of P and ) with respect to u.

Two probability measures P, @) € P are said to be orthogonal and we denote

this by Q L P if
P{q=0})=Q({p=0}) =1

Let f : [0,00) — (—00,00] be a convex function that is continuous at 0, i.e.,

f(0) = limy o f (u).

In 1963, I. Csiszér [3] introduced the concept of f-divergence as follows.

Definition 1. Let P, Q € P. Then

p@1 [19] duto),

is called the f-divergence of the probability distributions Q@ and P.

(L1) (@, P) = /

X

Remark 1. Observe that, the integrand in the formula (1.1) is undefined when
p(x) = 0. The way to overcome this problem is to postulate for f as above that

(1.2) 0f [Q(x)} = ¢ (z)lim {uf (1” , x € X.

0 ul0 u

We now give some examples of f-divergences that are well-known and often used
in the literature (see also [2]).
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2 S.S. DRAGOMIR!:2

1.1. The Class of xy“-Divergences. The f-divergences of this class, which is
generated by the function x%, « € [1,00), defined by

X* (u) = Ju—1|", uel0,0)

have the form

(1.3) Iy (Q, P) =/ p

«

q _

’—1 du=/p1 *lq — p|* dp.
x |P X

From this class only the parameter a« = 1 provides a distance in the topologi-
cal sense, namely the total variation distance V (Q,P) = [y |¢ — p| dp. The most
prominent special case of this class is, however, Karl Pearson’s x2-divergence

@
XZ(Q,P)Z/ —dp—1
x P
that is obtained for oo = 2.

1.2. Dichotomy Class. From this class, generated by the function f, : [0,00) —
R

u—1—Inu for a =0;
fo (u) = ﬁ[au—&—l—a—uo‘] for a e R\{0,1};
l—u+4ulnu for a=1;

only the parameter v = 1 (f; (u) =2 u— 1)2) provides a distance, namely, the

Hellinger distance

H(Q,P)—UX(\/Q\/@QCIMF-

Another important divergence is the Kullback-Leibler divergence obtained for

a=1,
KL(Q,P):/qun (g)) dy.

1.3. Matsushita’s Divergences. The elements of this class, which is generated
by the function ¢, a € (0,1] given by

@a(u) ::|17ua|c%, ’LLE[0,00),

are prototypes of metric divergences, providing the distances [Iwa (Q, P)}

1.4. Puri-Vincze Divergences. This class is generated by the functions ®,, o €
[1,00) given by
1—uf"

T

u € [0, 00).

Q=

It has been shown in [19] that this class provides the distances [, (Q, P)]~ .
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1.5. Divergences of Arimoto-type. This class is generated by the functions

2 [aun® -2 (1) for a e (0,00)\ {1};
Vo (u) := I4+u)In2+ulhmu—(1+u)ln(l4+wu) for a=1,;
21—y for a = oo.

It has been shown in [21] that this class provides the distances [Iy, (Q, P)]min(a’%)
for a € (0,00) and 3V (Q, P) for @ = oc.
For f continuous convex on [0, 00) we obtain the *-conjugate function of f by

= (3). ue0)

and

f7(0) = lim £ (u) .

uw|0
It is also known that if f is continuous convex on [0, c0) then so is f*.

The following two theorems contain the most basic properties of f-divergences.
For their proofs we refer the reader to Chapter 1 of [20] (see also [2]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, fi be continuous convex
on [0,00). We have
Iy, (@, P) = Iy (@, P),
for all P,Q € P if and only if there exists a constant ¢ € R such that
fr(u)=f(u)+clu—1),
for any u € [0, 00).
Theorem 2 (Range of Values Theorem). Let f : [0,00) — R be a continuous

convez function on [0, 00).
For any P,Q € P, we have the double inequality

(1.4) fQQ) <1 (Q,P) < f(0)+ f(0).
(i) If P = Q, then the equality holds in the first part of (1.4).
If f is strictly convex at 1, then the equality holds in the first part of (1.4) if and
only if P = Q;
(ii) If @ L P, then the equality holds in the second part of (1.4).
If £ (0) + f*(0) < oo, then equality holds in the second part of (1.4) if and only
ifQ L P

The following result is a refinement of the second inequality in Theorem 2 (see
[2, Theorem 3]).

Theorem 3. Let f be a continuous convex function on [0,00) with f (1) =0 (f is
normalised) and f (0) + f* (0) < co. Then

(15) 0< I (@P)< L IF0)+ 5 O]V (Q.P)

for any Q,P € P.
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For other inequalities for f-divergence see [1], [5]-[15].

Motivated by the above results, in this paper we obtain some new inequalities for
quantum f-divergence of matrices. It is shown that for normalised convex functions
it is nonnegative. Some upper bounds for quantum f-divergence in terms of vari-
ational and y2-distance are provided. Applications for some classes of divergence
measures such as Umegaki and Tsallis relative entropies are also given.

2. QUANTUM f-DIVERGENCE

Quasi-entropy was introduced by Petz in 1985, [22] as the quantum generalization
of Csiszar’s f-divergence in the setting of matrices or von Neumann algebras. The
important special case was the relative entropy of Umegaki and Araki.

In what follows some inequalities for the quantum f-divergence of convex func-
tions in the finite dimensional setting are provided.

Let M denotes the algebra of all n x n matrices with complex entries and M
the subclass of all positive matrices.

On complex Hilbert space (M, (-,-),), where the Hilbert-Schmidt inner product
is defined by

(U, V), = tr(VU), U, VeM,
for A, B € M™ consider the operators £4 : M — M and Rp : M — M defined
by
LAT := AT and RgT :=TB.

We observe that they are well defined and since
(EAT,T), = (AT, T), = tr (T*AT) = tr (|T*\2A) >0

and

(RpT,T), = (TB,T), = tr (I"TB) = tr (|T\2 B) >0

for any T' € M, they are also positive in the operator order of B (M), the Banach
algebra of all bounded operators on M with the norm ||-||, where || T[], = tr (|T\2) )

T e M.
Since tr (|X*|2) =tr (\X|2) for any X € M, then also

tr (T* AT) = tr (T*A1/2A1/2T> _ ((Al/QT)* A1/2T>

— i (jaer ) = (|(aer) [) = (jrea])

for A>0and T € M.
We observe that £4 and Rp are commutative, therefore the product £4Rp is
a selfadjoint positive operator in B (M) for any positive matrices A, B € M.
For A, B € M* with B invertible, we define the Araki transform A p: M —
M by Ay g := L4Rp-1. We observe that for T' € M we have A, T = ATB™!
and

(UAa, 5T, T), = (ATB~",T), = tr (T*"ATB™").
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Observe also, by the properties of trace, that
tr (T*ATB_l) — tr (B—1/2T*A1/2A1/2TB—1/2)
—tr ((A1/2TB—1/2)* <A1/2TB—1/2)) — i (‘A1/2TB1/2‘2)
giving that
(2.1) (Aa, 5T, T), = tr <‘A1/2TB—1/2’2> >0

for any T' € M.
We observe that, by the definition of operator order and by (2.1) we have r1 <
A4, < Rlpq for some R > r > 0 if and only if

(2.2) rtr (|T\2) <tr (‘A1/2T31/2‘2> < Ritr (|T\2)

for any T' € M.
We also notice that a sufficient condition for (2.2) to hold is that the following
inequality in the operator order of M is satisfied

2
(2.3) r|T)? < ‘AUQTB*/?‘ < R|T|?

for any T € By (H) .

Let U be a selfadjoint linear operator on a complex Hilbert space (K;{(-,-)).
The Gelfand map establishes a *-isometrically isomorphism ® between the set
C (Sp (U)) of all continuous functions defined on the spectrum of U, denoted Sp (U)
and the C*-algebra C* (U) generated by U and the identity operator 1x on K as
follows:

For any f,9€C(Sp(U)) and any a, 5 € C we have

(i) (s +59) Z o (f) + 5 (g)

(i) ®(fg) = (f)®(g) and & (f) = & ()"

(i) 19 (F) = 171 = suprespon 1 (B

(iv) @ (fo) =1k and @ (f1) = U, where fo (t) =1 and f1(t) =¢t,fort € Sp(U).

With this notation we define

fU):=d(f) forall feC(Sp((U))

and we call it the continuous functional calculus for a selfadjoint operator U.

If U is a selfadjoint operator and f is a real valued continuous function on Sp (U),
then f (¢t) > 0 for any ¢t € Sp (U) implies that f(U) > 0, i.e. f(U) is a positive
operator on K. Moreover, if both f and g are real valued functions on Sp (U) then
the following important property holds:

(P) f()>g() forany teSp(U) impliesthat f(U)>g(U)

in the operator order of B (K).

Let f :[0,00) — R be a continuous function. Utilising the continuous functional
calculus for the Araki selfadjoint operator g p € B (M) we can define the quan-
tum f-divergence for Q, P € S1 (M) :={P e M, P >0 with tr(P)=1} and P
invertible, by

S¢(Q.P) = <f Ao.p) P1/2,P1/2>2 = tr (Pl/Zf Ao.p) P1/2) .
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If we consider the continuous convex function f : [0,00) — R, with f(0) := 0
and f (t) = tlnt for ¢ > 0 then for Q, P € S; (M) and @, P invertible we have

S5p(@,P)=tr[Q(InQ@—InP)] = U(Q,P),

which is the Umegaki relative entropy.
If we take the continuous convex function f : [0,00) = R, f (¢t) = [t — 1| for ¢ > 0
then for Q, P € Sy (H) with P invertible we have

S5p(Q,P)=tr(|Q = P|) =V (Q,P),

where V' (Q, P) is the variational distance.
If we take f: [0,00) — R, f(t) =t*> — 1 for t > 0 then for Q, P € S1 (M) with
P invertible we have

Sp(Q,P) =tr (Q°P") —1=:x*(Q, P),

which is called the x2-distance
Let ¢ € (0,1) and define the convex function f; : [0,00) — R by f, (t) = 11_};.
Then

1 — tr (QIP'~¢
51, (@p) = LT

which is T'sallis relative entropy.
If we consider the convex function f :[0,00) — R by f(t) = 3 (Vt — 1)2 , then

)

Sp(Q.P)=1—tr (Q1/2P1/2) = h2(Q,P),

which is known as Hellinger discrimination.
If we take f : (0,00) — R, f(t) = —Int then for Q, P € S; (M) and Q, P
invertible we have

S¢(Q,P)=tr[P(InP — Q)] = U (P,Q).

The reader can obtain other particular quantum f-divergence measures by utilizing
the normalized convex functions from Introduction, namely the convex functions
defining the dichotomy class, Matsushita’s divergences, Puri-Vincze divergences or
divergences of Arimoto-type. We omit the details.

In the important case of finite dimensional spaces and the generalized inverse
P~! numerous properties of the quantum f-divergence, mostly in the case when f
is operator conver, have been obtained in the recent papers [17], [18], [22]-[25] and
the references therein.

In what follows we obtain several inequalities for the larger class of convex func-
tions on an interval.

3. INEQUALITIES FOR f CONVEX AND NORMALIZED

Suppose that I is an interval of real numbers with interior I and f: I —>Ris
a convex function on I. Then f is continuous on I and has finite left and right
derivatives at each point of I. Moreover, if T,y € I and z < y, then f’ (z) <
fi(z) < fL(y) < fi (y), which shows that both f’ and f}| are nondecreasing
function on I. It is also known that a convex function must be differentiable except
for at most countably many points.
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For a convex function f : I — R, the subdifferential of f denoted by Jf is the
set of all functions ¢ : I — [—00, 00| such that ¢ (I) C R and

(G) f(x)>f(a)+ (z—a)p(a) for any z,a € I.

It is also well known that if f is convex on I, then 0f is nonempty, f*, f\ € 0f
and if ¢ € Jf, then

fL(z) <e(x) < fL(x) for any z € 1.

In particular, ¢ is a nondecreasing function.

If f is differentiable and convex on I, then f = {f’}.

We are able now to state and prove the first result concerning the quantum
f-divergence for the general case of convex functions.

Theorem 4. Let f : [0,00) — R be a continuous convex function that is normalized,
i.e. f(1) =0. Then for any Q, P € S1 (M), with P invertible, we have

(3.1) 0<S;(Q,P).
Moreover, if f is continuously differentiable, then also
(3.2) S (Q,P) < Sep (Q, P) = Sp (Q, P),

where the function € is defined as £(t) =t, t € R.

Proof. Since f is convex and normalized, then by the gradient inequality (G) we
have

f@) = @=1)f (1)
for t > 0.
Applying the property (P) for the operator 2g p, then we have for any T' € M
(f Aq.p)T,T)y > fi(1)((Ae.r—1s,m) T.T),
= L) [(@epT.T), —ITl,]

which, in terms of trace, can be written as

33w @en ) = £ [ (jQrre ) < (1717)

for any T' € M.
Now, if we take in (3.3) T = P'/? where P € S; (M), with P invertible, then
we get
Sp(Q,P) = f1 (1) [tr(Q) — tr (P)] =0
and the inequality (3.1) is proved.
Further, if f is continuously differentiable, then by the gradient inequality we
also have

=11 )= f()
for t > 0.
Applying the property (P) for the operator 2g, p, then we have for any T' € M
<(Q'(Q,P - 132(H)) fl (QLQ,P) T7 T>2 2 <f (Q’lQ,P) T7 T>2 )

namely

Qo pf Aop)T,T)y — (f' Qg,p)T.T)y > (f Aqg,p)T,T),,
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for any 7' € M, or in terms of trace

(3-4) tr (T"Uq.pf (Aq,p) T) — tr (T"f (Uq.p) T) = tr (T f (Aq.p) T),

for any T' € M.
If in (3.4) we take T = P'/2 where P € S; (M), with P invertible, then we get
the desired result (3.2). O

Remark 2. If we take in (3.2) f: (0,00) — R, f(t) = —Int then for Q, P €
S1 (M) and Q, P invertible we have

(3.5) 0<U(P.Q) <X*(PQ).
We need the following lemma.

Lemma 1. Let S be a selfadjoint operator on the Hilbert space (H,(-,-)) and with
spectrum Sp (S) C [v, ] for some real numbers ~,T. If g : [v,T'] — C is a continuous
function such that

(3.6) l9(t) = X < p for any t € [7,T]
for some complex number A € C and positive number p, then

B.7) Sy (S)z,z) = (Sx,2) (g (S)z, 2)| < p(|F = (Sz,2) Lu|x, )

< p[(st.2) — (s2.07]

for any x € H, ||z|| = 1.
Proof. We observe that
(3.8) (Sg(S)z,z) —(Sz,2) (g(F) z,2) = ((§ — (Sz,2) 1) (9 (F) — Alu) z, )

for any « € H, ||z| = 1.
For any selfadjoint operator B we have the modulus inequality

(3.9) [(Bz,z)| < (|B|xz,z) for any x € H, ||z| = 1.

Also, utilizing the continuous functional calculus we have for each fixed x € H, ||z| =
1

(S = (Sz,2) 1) (9 (S) = AMlu)| =[S = (Sz,z) L[ [g (S) — Mul|
< p‘S— <SI’,.’IJ> 1H|7
which implies that
(3.10) (15 = (Sz,2) 1) (9 (S) — Mu)|z,x) < p(|F = (Sz, ) 1u |z, )

for any « € H,||z|| = 1.
Therefore, by taking the modulus in (3.8) and utilizing (3.9) and (3.10) we get

(3.11) (Sg (5) z,z) — (Sz,z) (9 () @, )]
= [{(S = (Sz,2) 1m) (9 (5) — Alu) z, z)|
<A(I(S = (Sz,2)1x) (9 (S) — Alu)| 2, z)
< p{S—(Sz,x)1g|x,x)

for any = € H, ||z|| = 1, which proves the first inequality in (3.7).
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Using Schwarz inequality we also have

(1S — (Sz, ) 1g|z, ) < <(S —(Sz,2) 151)? w,z>l/2

1/2

= {<52x,m> - <Sm,z>2}
for any x € H, ||z|| = 1, and the lemma is proved. O
Corollary 1. With the assumption of Lemma 1, we have

1

(3.12) 0 < (S%r,z)—(Sz,z)’< 5 T =) (S = (S2,2) 1| 2, 2)
1
2
for any x € H, ||z| = 1.

IN

(' =) [(523:,33> - (Sm,x)g} 2 <

Proof. If we take in Lemma 1 g (¢t) =¢, A= 1 (I'++) and p = 3 (I' — ), then we
get

(3.13) 0 < (S%z,z) — (Sz,z)* < % (T —~) (S — (Sz,z) 15|z, z)

< % (T —7) [<52x, x> — (Sx,x)ﬂ 2

for any z € H, ||z|| = 1.
From the first and last terms in (3.13) we have

/2 1
[<S’2$,x> - (Sx7m>2] < 3 (T —7),
which proves the rest of (3.12). O

We can prove the following result that provides simpler upper bounds for the
quantum f-divergence when the operators P and @ satisfy the condition (2.2).

Theorem 5. Let f : [0,00) — R be a continuous convex function that is normalized.
IfQ, P € S; (M), with P invertible, and there exists R > 1> r > 0 such that

(3.14) rir (77) < (’Ql/sz—l/zf) < Rur (|1?)

for any T € M, then

(3.15) 0< 854 (@QP) < 5 [1L(R) ~ f1 (] V (Q.P)
< LR~ £ ()] x (@ P)
1

IN

L (R=0) [ (B) = 11 )].

Proof. Without loosing the generality, we prove the inequality in the case that f is
continuously differentiable on (0, c0) .
Since f’ is monotonic nondecreasing on [r, R] we have that

fr(r)y<f @ <f(R) for any t € [r, R],
which implies that

R+ )|

) T SR~ ()
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for any ¢ € [r, R].
Applying Lemma 1 and Corollary 1 in the Hilbert space (M, (-,-),) and for the
selfadjoint operator Ao p we have

|(Aq.pf Ro.p)T,T), — (Aq.pT,T), (f' (Uq.p) T, T),|

< % [f'(R) = f" (M) {|[™Aq.p — (AqpT,T), 15,(m) | T.T),
< L1p ) - £ 0] [, T), - (1112
< 3 (R=1) [ (B)~ 11 ()

for any T'e M, |T|, = 1.
If in this inequality we take T' = PY/2 P € S; (M), with P invertible, then we
get

‘<91Q7Pf/ (2o.p) P1/2,P1/2>2 _ <f/ (Ao.p) P1/2,P1/2>2‘

<SR = £ O {[fa.r — (g PV PY2) 1| P2, PV)
<1 R = ]| (P2 P2) (g P2 P | -
< R0 [ (R) - £1.0],
which can be written as
[Sug (@ P) — S (@ P)| < 5 [1 (B) — 11 ()] V Q. P)
<5 (B~ 1 ()] X(@.P)
< J(R-D [/ (R - 1L ().
Making use of Theorem 4 we deduce the desired result (3.15). O

Remark 3. If we take in (3.15) f (t) = t*> — 1, then we get
(316) 0 (@QP)S3(R-NVQP) <5 (R-1)x(@P)

(R—7)°

IN
=

for @Q, P € S; (M), with P invertible and satisfying the condition (3.14).
If we take in (3.15) f (t) = tlnt, then we get the inequality

~—

r

< %(R—r)ln (f)

provided that @, P € Sy (H), with P, Q invertible and satisfying the condition
(8.14).

317) 0<U(Q,P)< %m (R) V(Q,P) < %m <f) Y (Q, P)
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With the same conditions and if we take f (t) = —Int, then

R—r R—r (R—r)?
(1)  0SUPQ <L IVQP) < x@P) <k
If we take in (3.15) f(t) = f, (¢) = %, then we get
Rl-9 _ pl-q
B oss,@p syt (L ven
q leq _ ,,,lfq
ST ( oy >X(Q,P)
q leq _ ,rlfq

provided that Q, P € S; (M), with P, Q invertible and satisfying the condition
(8.14).

4. OTHER REVERSE INEQUALITIES

Utilising different techniques we can obtain other upper bounds for the quan-
tum f-divergence as follows. Applications for Umegaki relative entropy and x2-
divergence are also provided.

Theorem 6. Let f : [0,00) — R be a continuous convex function that is normalized.
IfQ, P € S; (M), with P invertible, and there exists R > 1 >r > 0 such that the
condition (8.14) is satisfied, then

(4.1) 0<5Sr(Q P)S(R—l)f(r)+(l—r)f(R).

Proof. By the convexity of f we have
L ((R-t)r+(t—-7)R
rio =g (EEIE

for any t € [r, R].
This inequality implies the following inequality in the operator order of B (M)

(Rlm —g.p) f(r) + Rlgr —1lm) f(R)

<
f@g.p) < T, ,
which can be written as
42)  (f(Aq.p)T,T),
f(r) f(R)
< I — 7T —rlp) T, T
_R—T«RM QlQ,P) , >2+R—T<(Q[Q’P TM) , >2
for any T € M.

Now, if we take in (4.2) T = P2 P € S; (M), then we get the desired result
(4.2). O
Remark 4. If we take in (4.1) f (t) =t> — 1, then we get

2
(43) 0< X (QP) < (R-1)(1-r) LETE2
—r

for @, P € S; (M), with P invertible and satisfying the condition (3.14).
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If we take in (4.1) f (t) = tint, then we get the inequality

(4.4) 0<U(Q,P)<In [7«(%112"3%1—::’]

provided that Q, P € S1 (M), with P, Q invertible and satisfying the condition

(3.14).
If we take in (4.1) f (t) = —1Int, then we get the inequality

r—1

(4.5) 0<U(PQ) <In[ri R

for @, P € S1 (M), with P, Q invertible and satisfying the condition (3.14).
We also have:
Theorem 7. Let f : [0,00) — R be a continuous convex function that is normalized.

IfQ, P € S; (M), with P invertible, and there exists R > 1 > r > 0 such that the
condition (3.14) is satisfied, then

(4.6) 0<57(QP) < W\Iﬁ (L;7, R)
(R-1D(1—r) ,
S TRy S Y k)

S(R—l)(l_r)w
1

1 (R=n) [fL(R) = [} (r)]

IN

where Wy (37, R) : (r, R) — R is defined by

(4.7) \I/f(t;r,R):f(R]%:{(t)_f(t?f:?{(r).

We also have

R-1U-0)y (0

(R—r)T;(1;m,R)

(4.8) 0< S (QP) <

IN

IN
N N

(R—r) sup ¥y (t;r R)
te(r,R)

(R=7) [f(R) = fi ()]

IN
N

Proof. By denoting

t—r)f(R)+(R-1t)[f(r)

Ay (t;r, R) ==
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we have
, =R+ R-Of(r)-(R-—1)f(Q)
(4.9) Ay (t;r,R) = -
_ =) B+ Rt f(r) (T —t+t—r)f ()
R—r
_ = [fR)=FOI=(R=O[f () = f ()]
M—-m

(R=t)(t—mr)
= -_— W t. R
- s (& R)
for any t € (1, R) .
From the proof of Theorem 6 we have

(4.10) (f Aq.p)T.T),

= % (Rlpm —Aq,p) T, T)y + % (Rg,p —rlpm) T, T),
_ (o pT,T)y —7) f(B) + (R— (Uo.pT,T),) f ()
R—r

for any T e M, ||T||, = 1.
This implies that

(411) 0 <(f (AQ.p)T,T), — [ ((A@.pT,T),)

(<Q[Q,PT7 T>2 - T) f (R) + (R - <9’lQ,PTa T>2) f (T)
R—r

= Af (<Q[Q,pT, T>2 3Ty R)

:(R_%mequg{%?Q£T¥m2_W)Wf«ﬂQPTJWﬁTJa

IN

— f ((Uq.pT.T),)

for any T'e M, ||T'||, = 1.

Since

(4.12) Uy ((Aq,pT,T)y;r,R) < sup Uy (t;7, R)

te(r,R)
-y [HB=10_10-10)
tE(T',R) N R—t t—r
f(R)—f(t) f@)—f(r)
< o [HE=0) wyp | LO-T0)
o [FBFO] [0 f )
_te(,};) i R—t } te(r,fR)|: t—r }

and, obviously

(4.13)
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then by (4.11)-(4.13) we have
(4'14) 0< <f (mQ,P) T, T>2 - f

—~

(o.pT,T),)

< - BorT: T;%)_(?Q’PT’ Dy =r)y, ({2, pT, T),; 7, R)

< B BorhT)) (Morla=1) yy w,(ir,
- te(r,R)

< (R—(Aq.pT.T),) (Ao, pT,T)y — 1) %

1
<R [1L(B) - 11 ()]
for any T e M, ||T||, = 1.
Now, if we take in (4.14) T = P2, then we get the desired result (4.6).
The inequality (4.8) is obvious from (4.6). O

Remark 5. If we consider the convexr normalized function f (t) =t> — 1, then
R2 _ t2 t2 _ ,],.2

Uy (t; = - =R-r t
and we get from (4.6) the simple inequality
(4.15) 0<x*(@Q,P)<(R-1)(1—r)

for Q, P € S; (M), with P invertible and satisfying the condition (3.14), which is
better than (4.3).
If we take the convex normalized function f (t) =t=! — 1, then we have
R‘l—t_l_t_l—r_l R—r

Us(t;r,R) = - P rRt’te[T’R]'

Also
Sr(Q,P)=x*(P,Q).
Using (4.6) we get
(R—1)(1-r)
Rr
for @Q, P € S1 (M), with Q invertible and satisfying the condition (3.14).
If we consider the convex function f (t) = —Int defined on [r, R] C (0,00), then
—InR+Int —Int+Inr

(4.16) 0<x*(PQ) <

U (t; =
f(t,'f',R) R_t t_{r
 (R—r)lnt—(R—t)lnr —(t—7)InR
B (M —t) (t—m)
(R—r T
= In (TR—t]\ﬁ—T‘) 5 te (T,R).
Then by (4.6) we have
1-R _r-1 (R—1)(1-7)
. < < e RE= | < i T )
(4.17) O_U(P,Q)_ln[r R ]_ o

for @Q, P € S1 (M), with P, Q invertible and satisfying the condition (3.14).

We also have:
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Theorem 8. Let f : [0,00) — R be a continuous convex function that is normalized.
IfQ,P € Sy (M), with P invertible, and there exists R > 1 > r > 0 such that the
condition (8.14) is satisfied, then

(4.18) ogSﬂQ,P)gQ[Wf(r;R)]

Proof. We recall the following result (see for instance [4]) that provides a refinement
and a reverse for the weighted Jensen’s discrete inequality:

(4.19) nie{r?inn} {pi} li Z fzi)— f <711 sz>‘|
i=1 i=1
1 « 1 <
<5 ;pif (wg) — f (Pn ;m&)

n

1< 1 &
S, ) [nzf ()= 7 QZ)} ’

where f : C' — R is a convex function defined on the convex subset C' of the linear
space X, {xi}i€{17...,n} C C are vectors and {pi}ie{17”.,n} are nonnegative numbers
with P, := Y"1 p; > 0.

For n = 2 we deduce from (3.6) that

(4.20) 2 min {s,1 — s} [f(a:) —;f(y) _f (x—;—y)}
<sf(x)+(1=s)f(y)—fsz+(1-3s)y)

(1 5] {f(x);f(y) _f(x;y)]

for any z,y € C and s € [0,1].
Now, if we use the second inequality in (4.20) for z = r, y = R, s = % with
t € [r, R], then we have

(R=t) f(r)+(t=r) [ (R)

(4.21) y —f ()
o (12 e} 102410 ()
ety ()
for any t € [r, R].
This implies in the operator order of B (M)
(R1m — g p) f(r])%t(le,P —rlp) f(R) f (o)
< [f(r);f(R) _f(r;R)]

2 r+ R
1 — A — 1
X|:M+RT‘ Q,P 9 MH
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which implies that

(4.22) 0<(f (Ao.p)T,T), — f ((AQ.pT.T),)

(<91Q pT,T),—7) f(R)+ (R— (Aq.pT,T),) f (r)
R—r

[z rin(c2 )
[ <\%P—rww>}
SETED)

for any T € M, ||T], = 1.

If we take in (4.22) T = P2, P € S; (M), then we get the desired result
(4.18). O

— [ ((Uq,pT,T),)

Remark 6. If we take f (t) =t> — 1 in (4.18), then we get
1
0<x*(QP) <5 (R-7)

for Q, P € 81 (M), with P invertible and satisfying the condition (3.14), which is
not as good as (4.15).
If we take in (4.18) f (t) =t~ — 1, then we have

(R - 7")2
(4~23) 0< X2 (Pa Q) < m

for Q,P € S1 (M), with P invertible and satisfying the condition (3.14).
If we take in (4.18) f (t) = —1Int, then we have

(R+ 7“)2>

(4.24) 0<U(P,Q)<In ( e

for Q,P € S1 (M), with P invertible and satisfying the condition (3.14).
From (8.18) we have the following absolute upper bound

(R—1)*
4rR

for Q,P € S1 (M), with P invertible and satisfying the condition (3.14).
Utilising the elementary inequality Inxz < x — 1, x > 0, we have that

m((mrf) U

(4.25) 0<U(P,Q) <

4rR 4R
which shows that (4.24) is better than (4.25).
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