
INEQUALITIES FOR QUANTUM f-DIVERGENCE OF CONVEX
FUNCTIONS AND MATRICES

S.S. DRAGOMIR1;2

Abstract. Some inequalities for quantum f -divergence of matrices are ob-
tained. It is shown that for normalised convex functions it is nonnegative.
Some upper bounds for quantum f -divergence in terms of variational and �2-
distance are provided. Applications for some classes of divergence measures
such as Umegaki and Tsallis relative entropies are also given.

1. Introduction

Let (X;A) be a measurable space satisfying jAj > 2 and � be a �-�nite measure
on (X;A) : Let P be the set of all probability measures on (X;A) which are ab-
solutely continuous with respect to �: For P; Q 2 P, let p = dP

d� and q =
dQ
d� denote

the Radon-Nikodym derivatives of P and Q with respect to �:
Two probability measures P; Q 2 P are said to be orthogonal and we denote

this by Q ? P if
P (fq = 0g) = Q (fp = 0g) = 1:

Let f : [0;1) ! (�1;1] be a convex function that is continuous at 0; i.e.,
f (0) = limu#0 f (u) :
In 1963, I. Csiszár [3] introduced the concept of f -divergence as follows.

De�nition 1. Let P; Q 2 P. Then

(1.1) If (Q;P ) =

Z
X

p (x) f

�
q (x)

p (x)

�
d� (x) ;

is called the f-divergence of the probability distributions Q and P:

Remark 1. Observe that, the integrand in the formula (1.1) is unde�ned when
p (x) = 0: The way to overcome this problem is to postulate for f as above that

(1.2) 0f

�
q (x)

0

�
= q (x) lim

u#0

�
uf

�
1

u

��
; x 2 X:

We now give some examples of f -divergences that are well-known and often used
in the literature (see also [2]).
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2 S.S. DRAGOMIR1;2

1.1. The Class of ��-Divergences. The f -divergences of this class, which is
generated by the function ��; � 2 [1;1); de�ned by

�� (u) = ju� 1j� ; u 2 [0;1)

have the form

(1.3) If (Q;P ) =

Z
X

p

����qp � 1
����� d� = Z

X

p1�� jq � pj� d�:

From this class only the parameter � = 1 provides a distance in the topologi-
cal sense, namely the total variation distance V (Q;P ) =

R
X
jq � pj d�: The most

prominent special case of this class is, however, Karl Pearson�s �2-divergence

�2 (Q;P ) =

Z
X

q2

p
d�� 1

that is obtained for � = 2:

1.2. Dichotomy Class. From this class, generated by the function f� : [0;1)!
R

f� (u) =

8>>>><>>>>:
u� 1� lnu for � = 0;

1
�(1��) [�u+ 1� �� u

�] for � 2 Rn f0; 1g ;

1� u+ u lnu for � = 1;

only the parameter � = 1
2

�
f 1
2
(u) = 2 (

p
u� 1)2

�
provides a distance, namely, the

Hellinger distance

H (Q;P ) =

�Z
X

(
p
q �pp)2 d�

� 1
2

:

Another important divergence is the Kullback-Leibler divergence obtained for
� = 1;

KL (Q;P ) =

Z
X

q ln

�
q

p

�
d�:

1.3. Matsushita�s Divergences. The elements of this class, which is generated
by the function '�; � 2 (0; 1] given by

'� (u) := j1� u�j
1
� ; u 2 [0;1);

are prototypes of metric divergences, providing the distances
�
I'� (Q;P )

��
:

1.4. Puri-Vincze Divergences. This class is generated by the functions ��; � 2
[1;1) given by

�� (u) :=
j1� uj�

(u+ 1)
��1 ; u 2 [0;1):

It has been shown in [19] that this class provides the distances [I�� (Q;P )]
1
� :



INEQUALITIES FOR QUANTUM f -DIVERGENCE 3

1.5. Divergences of Arimoto-type. This class is generated by the functions

	� (u) :=

8>>>>><>>>>>:

�
��1

h
(1 + u�)

1
� � 2 1

��1 (1 + u)
i

for � 2 (0;1) n f1g ;

(1 + u) ln 2 + u lnu� (1 + u) ln (1 + u) for � = 1;

1
2 j1� uj for � =1:

It has been shown in [21] that this class provides the distances [I	�
(Q;P )]

min(�; 1� )

for � 2 (0;1) and 1
2V (Q;P ) for � =1:

For f continuous convex on [0;1) we obtain the �-conjugate function of f by

f� (u) = uf

�
1

u

�
; u 2 (0;1)

and
f� (0) = lim

u#0
f� (u) :

It is also known that if f is continuous convex on [0;1) then so is f�:
The following two theorems contain the most basic properties of f -divergences.

For their proofs we refer the reader to Chapter 1 of [20] (see also [2]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f; f1 be continuous convex
on [0;1): We have

If1 (Q;P ) = If (Q;P ) ;

for all P;Q 2 P if and only if there exists a constant c 2 R such that

f1 (u) = f (u) + c (u� 1) ;

for any u 2 [0;1):

Theorem 2 (Range of Values Theorem). Let f : [0;1) ! R be a continuous
convex function on [0;1):
For any P;Q 2 P, we have the double inequality

(1.4) f (1) � If (Q;P ) � f (0) + f� (0) :

(i) If P = Q; then the equality holds in the �rst part of (1.4).

If f is strictly convex at 1; then the equality holds in the �rst part of (1.4) if and
only if P = Q;

(ii) If Q ? P; then the equality holds in the second part of (1.4).
If f (0) + f� (0) <1; then equality holds in the second part of (1.4) if and only

if Q ? P:

The following result is a re�nement of the second inequality in Theorem 2 (see
[2, Theorem 3]).

Theorem 3. Let f be a continuous convex function on [0;1) with f (1) = 0 (f is
normalised) and f (0) + f� (0) <1: Then

(1.5) 0 � If (Q;P ) �
1

2
[f (0) + f� (0)]V (Q;P )

for any Q;P 2 P.
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For other inequalities for f -divergence see [1], [5]-[15].
Motivated by the above results, in this paper we obtain some new inequalities for

quantum f -divergence of matrices. It is shown that for normalised convex functions
it is nonnegative. Some upper bounds for quantum f -divergence in terms of vari-
ational and �2-distance are provided. Applications for some classes of divergence
measures such as Umegaki and Tsallis relative entropies are also given.

2. Quantum f-Divergence

Quasi-entropy was introduced by Petz in 1985, [22] as the quantum generalization
of Csiszár�s f -divergence in the setting of matrices or von Neumann algebras. The
important special case was the relative entropy of Umegaki and Araki.
In what follows some inequalities for the quantum f -divergence of convex func-

tions in the �nite dimensional setting are provided.
LetM denotes the algebra of all n� n matrices with complex entries andM+

the subclass of all positive matrices.
On complex Hilbert space (M; h�; �i2) ; where the Hilbert-Schmidt inner product

is de�ned by

hU; V i2 := tr (V
�U) ; U; V 2M;

for A; B 2 M+ consider the operators LA :M!M and RB :M!M de�ned
by

LAT := AT and RBT := TB:

We observe that they are well de�ned and since

hLAT; T i2 = hAT; T i2 = tr (T
�AT ) = tr

�
jT �j2A

�
� 0

and

hRBT; T i2 = hTB; T i2 = tr (T
�TB) = tr

�
jT j2B

�
� 0

for any T 2M; they are also positive in the operator order of B (M) ; the Banach

algebra of all bounded operators onM with the norm k�k2 where kTk2 = tr
�
jT j2

�
;

T 2M:

Since tr
�
jX�j2

�
= tr

�
jXj2

�
for any X 2M; then also

tr (T �AT ) = tr
�
T �A1=2A1=2T

�
= tr

��
A1=2T

��
A1=2T

�
= tr

����A1=2T ���2� = tr�����A1=2T�����2� = tr����T �A1=2���2�
for A � 0 and T 2M:
We observe that LA and RB are commutative, therefore the product LARB is

a selfadjoint positive operator in B (M) for any positive matrices A; B 2M+:
For A; B 2 M+ with B invertible, we de�ne the Araki transform AA;B :M!

M by AA;B := LARB�1 : We observe that for T 2 M we have AA;BT = ATB�1

and

hAA;BT; T i2 =


ATB�1; T

�
2
= tr

�
T �ATB�1

�
:
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Observe also, by the properties of trace, that

tr
�
T �ATB�1

�
= tr

�
B�1=2T �A1=2A1=2TB�1=2

�
= tr

��
A1=2TB�1=2

�� �
A1=2TB�1=2

��
= tr

����A1=2TB�1=2���2�
giving that

(2.1) hAA;BT; T i2 = tr
����A1=2TB�1=2���2� � 0

for any T 2M:
We observe that, by the de�nition of operator order and by (2.1) we have r1M �

AA;B � R1M for some R � r � 0 if and only if

(2.2) r tr
�
jT j2

�
� tr

����A1=2TB�1=2���2� � R tr�jT j2�
for any T 2M:
We also notice that a su¢ cient condition for (2.2) to hold is that the following

inequality in the operator order ofM is satis�ed

(2.3) r jT j2 �
���A1=2TB�1=2���2 � R jT j2

for any T 2 B2 (H) :
Let U be a selfadjoint linear operator on a complex Hilbert space (K; h�; �i) :

The Gelfand map establishes a �-isometrically isomorphism � between the set
C (Sp (U)) of all continuous functions de�ned on the spectrum of U; denoted Sp (U) ;
and the C�-algebra C� (U) generated by U and the identity operator 1K on K as
follows:
For any f; g 2 C (Sp (U)) and any �; � 2 C we have
(i) � (�f + �g) = �� (f) + �� (g) ;
(ii) � (fg) = � (f) � (g) and �

�
�f
�
= �(f)

�
;

(iii) k� (f)k = kfk := supt2Sp(U) jf (t)j ;
(iv) � (f0) = 1K and � (f1) = U; where f0 (t) = 1 and f1 (t) = t; for t 2 Sp (U) :
With this notation we de�ne

f (U) := � (f) for all f 2 C (Sp (U))
and we call it the continuous functional calculus for a selfadjoint operator U:
If U is a selfadjoint operator and f is a real valued continuous function on Sp (U),

then f (t) � 0 for any t 2 Sp (U) implies that f (U) � 0; i.e. f (U) is a positive
operator on K: Moreover, if both f and g are real valued functions on Sp (U) then
the following important property holds:

(P) f (t) � g (t) for any t 2 Sp (U) implies that f (U) � g (U)
in the operator order of B (K) :
Let f : [0;1)! R be a continuous function. Utilising the continuous functional

calculus for the Araki selfadjoint operator AQ;P 2 B (M) we can de�ne the quan-
tum f-divergence for Q; P 2 S1 (M) := fP 2M; P � 0 with tr (P ) = 1 g and P
invertible, by

Sf (Q;P ) :=
D
f (AQ;P )P

1=2; P 1=2
E
2
= tr

�
P 1=2f (AQ;P )P

1=2
�
:
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If we consider the continuous convex function f : [0;1) ! R, with f (0) := 0
and f (t) = t ln t for t > 0 then for Q; P 2 S1 (M) and Q; P invertible we have

Sf (Q;P ) = tr [Q (lnQ� lnP )] =: U (Q;P ) ;

which is the Umegaki relative entropy.
If we take the continuous convex function f : [0;1)! R, f (t) = jt� 1j for t � 0

then for Q; P 2 S1 (H) with P invertible we have

Sf (Q;P ) = tr (jQ� P j) =: V (Q;P ) ;

where V (Q;P ) is the variational distance.
If we take f : [0;1)! R, f (t) = t2 � 1 for t � 0 then for Q; P 2 S1 (M) with

P invertible we have

Sf (Q;P ) = tr
�
Q2P�1

�
� 1 =: �2 (Q;P ) ;

which is called the �2-distance
Let q 2 (0; 1) and de�ne the convex function fq : [0;1) ! R by fq (t) = 1�tq

1�q :

Then

Sfq (Q;P ) =
1� tr

�
QqP 1�q

�
1� q ;

which is Tsallis relative entropy.
If we consider the convex function f : [0;1)! R by f (t) = 1

2

�p
t� 1

�2
; then

Sf (Q;P ) = 1� tr
�
Q1=2P 1=2

�
=: h2 (Q;P ) ;

which is known as Hellinger discrimination.
If we take f : (0;1) ! R, f (t) = � ln t then for Q; P 2 S1 (M) and Q; P

invertible we have

Sf (Q;P ) = tr [P (lnP � lnQ)] = U (P;Q) :

The reader can obtain other particular quantum f -divergence measures by utilizing
the normalized convex functions from Introduction, namely the convex functions
de�ning the dichotomy class, Matsushita�s divergences, Puri-Vincze divergences or
divergences of Arimoto-type. We omit the details.
In the important case of �nite dimensional spaces and the generalized inverse

P�1; numerous properties of the quantum f -divergence, mostly in the case when f
is operator convex, have been obtained in the recent papers [17], [18], [22]-[25] and
the references therein.
In what follows we obtain several inequalities for the larger class of convex func-

tions on an interval.

3. Inequalities for f Convex and Normalized

Suppose that I is an interval of real numbers with interior �I and f : I ! R is
a convex function on I. Then f is continuous on �I and has �nite left and right
derivatives at each point of �I. Moreover, if x; y 2 �I and x < y; then f 0� (x) �
f 0+ (x) � f 0� (y) � f 0+ (y) ; which shows that both f

0
� and f 0+ are nondecreasing

function on �I. It is also known that a convex function must be di¤erentiable except
for at most countably many points.
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For a convex function f : I ! R, the subdi¤erential of f denoted by @f is the
set of all functions ' : I ! [�1;1] such that '

�
�I
�
� R and

(G) f (x) � f (a) + (x� a)' (a) for any x; a 2 I:
It is also well known that if f is convex on I; then @f is nonempty, f 0�, f

0
+ 2 @f

and if ' 2 @f , then

f 0� (x) � ' (x) � f 0+ (x) for any x 2 �I.
In particular, ' is a nondecreasing function.
If f is di¤erentiable and convex on �I, then @f = ff 0g :
We are able now to state and prove the �rst result concerning the quantum

f -divergence for the general case of convex functions.

Theorem 4. Let f : [0;1)! R be a continuous convex function that is normalized,
i.e. f (1) = 0: Then for any Q; P 2 S1 (M) ; with P invertible, we have

(3.1) 0 � Sf (Q;P ) :
Moreover, if f is continuously di¤erentiable, then also

(3.2) Sf (Q;P ) � S`f 0 (Q;P )� Sf 0 (Q;P ) ;
where the function ` is de�ned as ` (t) = t; t 2 R.

Proof. Since f is convex and normalized, then by the gradient inequality (G) we
have

f (t) � (t� 1) f 0+ (1)
for t > 0:
Applying the property (P) for the operator AQ;P ; then we have for any T 2M

hf (AQ;P )T; T i2 � f 0+ (1)

�
AQ;P � 1B2(H)

�
T; T

�
2

= f 0+ (1)
�
hAQ;PT; T i2 � kTk2

�
;

which, in terms of trace, can be written as

(3.3) tr (T �f (AQ;P )T ) � f 0+ (1)
�
tr

����Q1=2TP�1=2���2�� tr�jT j2��
for any T 2M:
Now, if we take in (3.3) T = P 1=2 where P 2 S1 (M) ; with P invertible, then

we get
Sf (Q;P ) � f 0+ (1) [tr (Q)� tr (P )] = 0

and the inequality (3.1) is proved.
Further, if f is continuously di¤erentiable, then by the gradient inequality we

also have
(t� 1) f 0 (t) � f (t)

for t > 0:
Applying the property (P) for the operator AQ;P ; then we have for any T 2M
�

AQ;P � 1B2(H)
�
f 0 (AQ;P )T; T

�
2
� hf (AQ;P )T; T i2 ;

namely

hAQ;P f 0 (AQ;P )T; T i2 � hf
0 (AQ;P )T; T i2 � hf (AQ;P )T; T i2 ;
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for any T 2M; or in terms of trace

(3.4) tr (T �AQ;P f
0 (AQ;P )T )� tr (T �f 0 (AQ;P )T ) � tr (T �f (AQ;P )T ) ;

for any T 2M:
If in (3.4) we take T = P 1=2; where P 2 S1 (M) ; with P invertible, then we get

the desired result (3.2). �

Remark 2. If we take in (3.2) f : (0;1) ! R, f (t) = � ln t then for Q; P 2
S1 (M) and Q;P invertible we have

(3.5) 0 � U (P;Q) � �2 (P;Q) :

We need the following lemma.

Lemma 1. Let S be a selfadjoint operator on the Hilbert space (H; h�; �i) and with
spectrum Sp (S) � [
;�] for some real numbers 
;�: If g : [
;�]! C is a continuous
function such that

(3.6) jg (t)� �j � � for any t 2 [
;�]

for some complex number � 2 C and positive number �; then

jhSg (S)x; xi � hSx; xi hg (S)x; xij � � hjS � hSx; xi 1H jx; xi(3.7)

� �
h

S2x; x

�
� hSx; xi2

i1=2
for any x 2 H; kxk = 1:

Proof. We observe that

(3.8) hSg (S)x; xi � hSx; xi hg (S)x; xi = h(S � hSx; xi 1H) (g (S)� �1H)x; xi

for any x 2 H; kxk = 1:
For any selfadjoint operator B we have the modulus inequality

(3.9) jhBx; xij � hjBjx; xi for any x 2 H; kxk = 1:

Also, utilizing the continuous functional calculus we have for each �xed x 2 H; kxk =
1

j(S � hSx; xi 1H) (g (S)� �1H)j = jS � hSx; xi 1H j jg (S)� �1H j
� � jS � hSx; xi 1H j ;

which implies that

(3.10) hj(S � hSx; xi 1H) (g (S)� �1H)jx; xi � � hjS � hSx; xi 1H jx; xi

for any x 2 H; kxk = 1:
Therefore, by taking the modulus in (3.8) and utilizing (3.9) and (3.10) we get

jhSg (S)x; xi � hSx; xi hg (S)x; xij(3.11)

= jh(S � hSx; xi 1H) (g (S)� �1H)x; xij
� hj(S � hSx; xi 1H) (g (S)� �1H)jx; xi
� � hjS � hSx; xi 1H jx; xi

for any x 2 H; kxk = 1; which proves the �rst inequality in (3.7).
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Using Schwarz inequality we also have

hjS � hSx; xi 1H jx; xi �
D
(S � hSx; xi 1H)2 x; x

E1=2
=
h

S2x; x

�
� hSx; xi2

i1=2
for any x 2 H; kxk = 1; and the lemma is proved. �
Corollary 1. With the assumption of Lemma 1, we have

0 �


S2x; x

�
� hSx; xi2 � 1

2
(�� 
) hjS � hSx; xi 1H jx; xi(3.12)

� 1

2
(�� 
)

h

S2x; x

�
� hSx; xi2

i1=2
� 1

4
(�� 
)2 ;

for any x 2 H; kxk = 1:

Proof. If we take in Lemma 1 g (t) = t; � = 1
2 (� + 
) and � =

1
2 (�� 
) ; then we

get

0 �


S2x; x

�
� hSx; xi2 � 1

2
(�� 
) hjS � hSx; xi 1H jx; xi(3.13)

� 1

2
(�� 
)

h

S2x; x

�
� hSx; xi2

i1=2
for any x 2 H; kxk = 1:
From the �rst and last terms in (3.13) we haveh


S2x; x
�
� hSx; xi2

i1=2
� 1

2
(�� 
) ;

which proves the rest of (3.12). �
We can prove the following result that provides simpler upper bounds for the

quantum f -divergence when the operators P and Q satisfy the condition (2.2).

Theorem 5. Let f : [0;1)! R be a continuous convex function that is normalized.
If Q; P 2 S1 (M) ; with P invertible, and there exists R � 1 � r � 0 such that

(3.14) r tr
�
jT j2

�
� tr

����Q1=2TP�1=2���2� � R tr�jT j2�
for any T 2M; then

0 � Sf (Q;P ) �
1

2

�
f 0� (R)� f 0+ (r)

�
V (Q;P )(3.15)

� 1

2

�
f 0� (R)� f 0+ (r)

�
� (Q;P )

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

Proof. Without loosing the generality, we prove the inequality in the case that f is
continuously di¤erentiable on (0;1) :
Since f 0 is monotonic nondecreasing on [r;R] we have that

f 0 (r) � f 0 (t) � f 0 (R) for any t 2 [r;R] ;
which implies that ����f 0 (t)� f 0 (R) + f 0 (r)2

���� � 1

2
[f 0 (R)� f 0 (r)]
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for any t 2 [r;R] :
Applying Lemma 1 and Corollary 1 in the Hilbert space (M; h�; �i2) and for the

selfadjoint operator AQ;P we have��hAQ;P f 0 (AQ;P )T; T i2 � hAQ;PT; T i2 hf 0 (AQ;P )T; T i2��
� 1

2
[f 0 (R)� f 0 (r)]


��AQ;P � hAQ;PT; T i2 1B2(H)��T; T�2
� 1

2
[f 0 (R)� f 0 (r)]

h

A2Q;PT; T

�
2
� hAQ;PT; T i22

i1=2
� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
for any T 2M; kTk2 = 1.
If in this inequality we take T = P 1=2; P 2 S1 (M) ; with P invertible, then we

get ���DAQ;P f 0 (AQ;P )P 1=2; P 1=2E
2
�
D
f 0 (AQ;P )P

1=2; P 1=2
E
2

���
� 1

2
[f 0 (R)� f 0 (r)]

D���AQ;P � DAQ;PP 1=2; P 1=2E
2
1B2(H)

���P 1=2; P 1=2E
2

� 1

2
[f 0 (R)� f 0 (r)]

�D
A2Q;PP

1=2; P 1=2
E
2
�
D
AQ;PP

1=2; P 1=2
E2
2

�1=2
� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
;

which can be written as

jS`f 0 (Q;P )� Sf 0 (Q;P )j �
1

2

�
f 0� (R)� f 0+ (r)

�
V (Q;P )

� 1

2

�
f 0� (R)� f 0+ (r)

�
� (Q;P )

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

Making use of Theorem 4 we deduce the desired result (3.15). �

Remark 3. If we take in (3.15) f (t) = t2 � 1; then we get

0 � �2 (Q;P ) � 1

2
(R� r)V (Q;P ) � 1

2
(R� r)� (Q;P )(3.16)

� 1

4
(R� r)2

for Q; P 2 S1 (M) ; with P invertible and satisfying the condition (3.14).
If we take in (3.15) f (t) = t ln t, then we get the inequality

0 � U (Q;P ) � 1

2
ln

�
R

r

�
V (Q;P ) � 1

2
ln

�
R

r

�
� (Q;P )(3.17)

� 1

4
(R� r) ln

�
R

r

�
provided that Q; P 2 S1 (H) ; with P; Q invertible and satisfying the condition
(3.14).
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With the same conditions and if we take f (t) = � ln t; then

(3.18) 0 � U (P;Q) � R� r
2rR

V (Q;P ) � R� r
2rR

� (Q;P ) � (R� r)2

4rR
:

If we take in (3.15) f (t) = fq (t) = 1�tq
1�q ; then we get

0 � Sfq (Q;P ) �
q

2 (1� q)

�
R1�q � r1�q
R1�qr1�q

�
V (Q;P )(3.19)

� q

2 (1� q)

�
R1�q � r1�q
R1�qr1�q

�
� (Q;P )

� q

4 (1� q)

�
R1�q � r1�q
R1�qr1�q

�
(R� r)

provided that Q; P 2 S1 (M) ; with P; Q invertible and satisfying the condition
(3.14).

4. Other Reverse Inequalities

Utilising di¤erent techniques we can obtain other upper bounds for the quan-
tum f -divergence as follows. Applications for Umegaki relative entropy and �2-
divergence are also provided.

Theorem 6. Let f : [0;1)! R be a continuous convex function that is normalized.
If Q; P 2 S1 (M) ; with P invertible, and there exists R � 1 � r � 0 such that the
condition (3.14) is satis�ed, then

(4.1) 0 � Sf (Q;P ) �
(R� 1) f (r) + (1� r) f (R)

R� r :

Proof. By the convexity of f we have

f (t) = f

�
(R� t) r + (t� r)R

R� r

�
� (R� t) f (r) + (t� r) f (R)

R� r
for any t 2 [r;R] :
This inequality implies the following inequality in the operator order of B (M)

f (AQ;P ) �
(R1M � AQ;P ) f (r) + (AQ;P � r1M) f (R)

R� r ;

which can be written as

hf (AQ;P )T; T i2(4.2)

� f (r)

R� r h(R1M � AQ;P )T; T i2 +
f (R)

R� r h(AQ;P � r1M)T; T i2

for any T 2M:
Now, if we take in (4.2) T = P 1=2; P 2 S1 (M) ; then we get the desired result

(4.2). �

Remark 4. If we take in (4.1) f (t) = t2 � 1; then we get

(4.3) 0 � �2 (Q;P ) � (R� 1) (1� r) R+ r + 2
R� r

for Q; P 2 S1 (M) ; with P invertible and satisfying the condition (3.14).
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If we take in (4.1) f (t) = t ln t, then we get the inequality

(4.4) 0 � U (Q;P ) � ln
h
r
(R�1)r
R�r R

R(1�r)
R�r

i
provided that Q; P 2 S1 (M) ; with P; Q invertible and satisfying the condition
(3.14).
If we take in (4.1) f (t) = � ln t, then we get the inequality

(4.5) 0 � U (P;Q) � ln
h
r
1�R
R�rR

r�1
R�r

i
for Q; P 2 S1 (M) ; with P; Q invertible and satisfying the condition (3.14).

We also have:

Theorem 7. Let f : [0;1)! R be a continuous convex function that is normalized.
If Q; P 2 S1 (M) ; with P invertible, and there exists R > 1 > r � 0 such that the
condition (3.14) is satis�ed, then

0 � Sf (Q;P ) �
(R� 1) (1� r)

R� r 	f (1; r;R)(4.6)

� (R� 1) (1� r)
R� r sup

t2(r;R)
	f (t; r;R)

� (R� 1) (1� r)
f 0� (R)� f 0+ (r)

R� r

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
where 	f (�; r;R) : (r;R)! R is de�ned by

(4.7) 	f (t; r;R) =
f (R)� f (t)

R� t � f (t)� f (r)
t� r :

We also have

0 � Sf (Q;P ) �
(R� 1) (1� r)

R� r 	f (1; r;R)(4.8)

� 1

4
(R� r)	f (1; r;R)

� 1

4
(R� r) sup

t2(r;R)
	f (t; r;R)

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

Proof. By denoting

�f (t; r;R) :=
(t� r) f (R) + (R� t) f (r)

R� r � f (t) ; t 2 [r;R]
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we have

�f (t; r;R) =
(t� r) f (R) + (R� t) f (r)� (R� r) f (t)

R� r(4.9)

=
(t� r) f (R) + (R� t) f (r)� (T � t+ t� r) f (t)

R� r

=
(t� r) [f (R)� f (t)]� (R� t) [f (t)� f (r)]

M �m

=
(R� t) (t� r)

R� r 	f (t; r;R)

for any t 2 (r;R) :
From the proof of Theorem 6 we have

hf (AQ;P )T; T i2(4.10)

� f (r)

R� r h(R1M � AQ;P )T; T i2 +
f (R)

R� r h(AQ;P � r1M)T; T i2

=

�
hAQ;PT; T i2 � r

�
f (R) +

�
R� hAQ;PT; T i2

�
f (r)

R� r

for any T 2M; kTk2 = 1:
This implies that

0 � hf (AQ;P )T; T i2 � f
�
hAQ;PT; T i2

�
(4.11)

�
�
hAQ;PT; T i2 � r

�
f (R) +

�
R� hAQ;PT; T i2

�
f (r)

R� r � f
�
hAQ;PT; T i2

�
= �f

�
hAQ;PT; T i2 ; r;R

�
=

�
R� hAQ;PT; T i2

� �
hAQ;PT; T i2 � r

�
R� r 	f

�
hAQ;PT; T i2 ; r;R

�
for any T 2M; kTk2 = 1:
Since

	f
�
hAQ;PT; T i2 ; r;R

�
� sup

t2(r;R)
	f (t; r;R)(4.12)

= sup
t2(r;R)

�
f (R)� f (t)

R� t � f (t)� f (r)
t� r

�
� sup

t2(r;R)

�
f (R)� f (t)

R� t

�
+ sup
t2(r;R)

�
�f (t)� f (r)

t� r

�
= sup

t2(r;R)

�
f (R)� f (t)

R� t

�
� inf
t2(r;R)

�
f (t)� f (r)

t� r

�
= f 0� (R)� f 0+ (r) ;

and, obviously

(4.13)
1

R� r
�
R� hAQ;PT; T i2

� �
hAQ;PT; T i2 � r

�
� 1

4
(R� r) ;
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then by (4.11)-(4.13) we have

0 � hf (AQ;P )T; T i2 � f
�
hAQ;PT; T i2

�
(4.14)

�
�
R� hAQ;PT; T i2

� �
hAQ;PT; T i2 � r

�
R� r 	f

�
hAQ;PT; T i2 ; r;R

�
�
�
R� hAQ;PT; T i2

� �
hAQ;PT; T i2 � r

�
R� r sup

t2(r;R)
	f (t; r;R)

�
�
R� hAQ;PT; T i2

� �
hAQ;PT; T i2 � r

� f 0� (R)� f 0+ (r)
R� r

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
for any T 2M; kTk2 = 1:
Now, if we take in (4.14) T = P 1=2; then we get the desired result (4.6).
The inequality (4.8) is obvious from (4.6). �

Remark 5. If we consider the convex normalized function f (t) = t2 � 1; then

	f (t; r;R) =
R2 � t2
R� t � t

2 � r2
t� r = R� r; t 2 (r;R)

and we get from (4.6) the simple inequality

(4.15) 0 � �2 (Q;P ) � (R� 1) (1� r)
for Q; P 2 S1 (M) ; with P invertible and satisfying the condition (3.14), which is
better than (4.3).
If we take the convex normalized function f (t) = t�1 � 1; then we have

	f (t; r;R) =
R�1 � t�1
R� t � t

�1 � r�1
t� r =

R� r
rRt

; t 2 [r;R] :

Also
Sf (Q;P ) = �

2 (P;Q) :

Using (4.6) we get

(4.16) 0 � �2 (P;Q) � (R� 1) (1� r)
Rr

for Q; P 2 S1 (M) ; with Q invertible and satisfying the condition (3.14).
If we consider the convex function f (t) = � ln t de�ned on [r;R] � (0;1) ; then

	f (t; r;R) =
� lnR+ ln t
R� t � � ln t+ ln r

t� r

=
(R� r) ln t� (R� t) ln r � (t� r) lnR

(M � t) (t�m)

= ln

�
tR�r

rR�tM t�r

� 1
(R�t)(t�r)

; t 2 (r;R) :

Then by (4.6) we have

(4.17) 0 � U (P;Q) � ln
h
r
1�R
R�rR

r�1
R�r

i
� (R� 1) (1� r)

rR

for Q; P 2 S1 (M) ; with P; Q invertible and satisfying the condition (3.14).

We also have:
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Theorem 8. Let f : [0;1)! R be a continuous convex function that is normalized.
If Q;P 2 S1 (M) ; with P invertible, and there exists R > 1 > r � 0 such that the
condition (3.14) is satis�ed, then

(4.18) 0 � Sf (Q;P ) � 2
�
f (r) + f (R)

2
� f

�
r +R

2

��
:

Proof. We recall the following result (see for instance [4]) that provides a re�nement
and a reverse for the weighted Jensen�s discrete inequality:

n min
i2f1;:::;ng

fpig
"
1

n

nX
i=1

f (xi)� f
 
1

n

nX
i=1

xi

!#
(4.19)

� 1

Pn

nX
i=1

pif (xi)� f
 
1

Pn

nX
i=1

pixi

!

� n max
i2f1;:::;ng

fpig
"
1

n

nX
i=1

f (xi)� f
 
1

n

nX
i=1

xi

!#
;

where f : C ! R is a convex function de�ned on the convex subset C of the linear
space X; fxigi2f1;:::;ng � C are vectors and fpigi2f1;:::;ng are nonnegative numbers
with Pn :=

Pn
i=1 pi > 0:

For n = 2 we deduce from (3.6) that

2min fs; 1� sg
�
f (x) + f (y)

2
� f

�
x+ y

2

��
(4.20)

� sf (x) + (1� s) f (y)� f (sx+ (1� s) y)

� 2max fs; 1� sg
�
f (x) + f (y)

2
� f

�
x+ y

2

��
for any x; y 2 C and s 2 [0; 1] :
Now, if we use the second inequality in (4.20) for x = r; y = R; s = R�t

R�r with
t 2 [r;R] ; then we have

(R� t) f (r) + (t� r) f (R)
R� r � f (t)(4.21)

� 2max
�
R� t
R� r ;

t� r
R� r

��
f (r) + f (R)

2
� f

�
r +R

2

��
=

�
1 +

2

R� r

����t� r +R2
����� �f (r) + f (R)2

� f
�
r +R

2

��
for any t 2 [r;R] :
This implies in the operator order of B (M)

(R1M � AQ;P ) f (r) + (AQ;P � r1M) f (R)
R� r � f (AQ;P )

�
�
f (r) + f (R)

2
� f

�
r +R

2

��
�
�
1M +

2

R� r

����AQ;P � r +R2 1M

�����
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which implies that

0 � hf (AQ;P )T; T i2 � f
�
hAQ;PT; T i2

�
(4.22)

�
�
hAQ;PT; T i2 � r

�
f (R) +

�
R� hAQ;PT; T i2

�
f (r)

R� r � f
�
hAQ;PT; T i2

�
�
�
f (r) + f (R)

2
� f

�
r +R

2

��
�
�
1 +

2

R� r

�����AQ;P � r +R2 1M

����T; T�
2

�
� 2

�
f (r) + f (R)

2
� f

�
r +R

2

��
for any T 2M; kTk2 = 1:
If we take in (4.22) T = P 1=2; P 2 S1 (M) ; then we get the desired result

(4.18). �

Remark 6. If we take f (t) = t2 � 1 in (4.18), then we get

0 � �2 (Q;P ) � 1

2
(R� r)2

for Q;P 2 S1 (M) ; with P invertible and satisfying the condition (3.14), which is
not as good as (4.15).
If we take in (4.18) f (t) = t�1 � 1; then we have

(4.23) 0 � �2 (P;Q) � (R� r)2

rR (r +R)

for Q;P 2 S1 (M) ; with P invertible and satisfying the condition (3.14).
If we take in (4.18) f (t) = � ln t; then we have

(4.24) 0 � U (P;Q) � ln
 
(R+ r)

2

4rR

!
for Q;P 2 S1 (M) ; with P invertible and satisfying the condition (3.14).
From (3.18) we have the following absolute upper bound

(4.25) 0 � U (P;Q) � (R� r)2

4rR

for Q;P 2 S1 (M) ; with P invertible and satisfying the condition (3.14).
Utilising the elementary inequality lnx � x� 1; x > 0; we have that

ln

 
(R+ r)

2

4rR

!
� (R� r)2

4rR
;

which shows that (4.24) is better than (4.25).

References

[1] P. Cerone and S. S. Dragomir, Approximation of the integral mean divergence and f -
divergence via mean results. Math. Comput. Modelling 42 (2005), no. 1-2, 207�219.

[2] P. Cerone, S. S. Dragomir and F. Österreicher, Bounds on extended f -divergences for a variety
of classes, Kybernetika (Prague) 40 (2004), no. 6, 745�756. Preprint, RGMIA Res. Rep. Coll.
6(2003), No.1, Article 5. [ONLINE: http://rgmia.vu.edu.au/v6n1.html].



INEQUALITIES FOR QUANTUM f -DIVERGENCE 17

[3] I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis
der Ergodizität von Marko¤schen Ketten. (German) Magyar Tud. Akad. Mat. Kutató Int.
Közl. 8 (1963) 85�108.

[4] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc.
74(3)(2006), 471-476.

[5] S. S. Dragomir, Some inequalities for (m;M)-convex mappings and applications for the
Csiszár �-divergence in information theory. Math. J. Ibaraki Univ. 33 (2001), 35�50.

[6] S. S. Dragomir, Some inequalities for two Csiszár divergences and applications. Mat. Bilten
No. 25 (2001), 73�90.

[7] S. S. Dragomir, An upper bound for the Csiszár f-divergence in terms of the variational
distance and applications. Panamer. Math. J. 12 (2002), no. 4, 43�54.

[8] S. S. Dragomir, Upper and lower bounds for Csiszár f -divergence in terms of Hellinger dis-
crimination and applications. Nonlinear Anal. Forum 7 (2002), no. 1, 1�13

[9] S. S. Dragomir, Bounds for f -divergences under likelihood ratio constraints. Appl. Math. 48
(2003), no. 3, 205�223.

[10] S. S. Dragomir, New inequalities for Csiszár divergence and applications. Acta Math. Viet-
nam. 28 (2003), no. 2, 123�134.

[11] S. S. Dragomir, A generalized f -divergence for probability vectors and applications. Panamer.
Math. J. 13 (2003), no. 4, 61�69.

[12] S. S. Dragomir, Some inequalities for the Csiszár '-divergence when ' is an L-Lipschitzian
function and applications. Ital. J. Pure Appl. Math. No. 15 (2004), 57�76.

[13] S. S. Dragomir, A converse inequality for the Csiszár �-divergence. Tamsui Oxf. J. Math.
Sci. 20 (2004), no. 1, 35�53.

[14] S. S. Dragomir, Some general divergence measures for probability distributions. Acta Math.
Hungar. 109 (2005), no. 4, 331�345.

[15] S. S. Dragomir, A re�nement of Jensen�s inequality with applications for f -divergence mea-
sures. Taiwanese J. Math. 14 (2010), no. 1, 153�164.

[16] S. S. Dragomir, A generalization of f -divergence measure to convex functions de�ned on
linear spaces. Commun. Math. Anal. 15 (2013), no. 2, 1�14.

[17] F. Hiai, Fumio and D. Petz, From quasi-entropy to various quantum information quantities.
Publ. Res. Inst. Math. Sci. 48 (2012), no. 3, 525�542.

[18] F. Hiai, M. Mosonyi, D. Petz and C. Bény, Quantum f -divergences and error correction. Rev.
Math. Phys. 23 (2011), no. 7, 691�747.

[19] P. Kafka, F. Österreicher and I. Vincze, On powers of f -divergence de�ning a distance, Studia
Sci. Math. Hungar., 26 (1991), 415-422.

[20] F. Liese and I. Vajda, Convex Statistical Distances, Teubuer �Texte zur Mathematik, Band
95, Leipzig, 1987.

[21] F. Österreicher and I. Vajda, A new class of metric divergences on probability spaces and its
applicability in statistics. Ann. Inst. Statist. Math. 55 (2003), no. 3, 639�653.

[22] D. Petz, Quasi-entropies for states of a von Neumann algebra, Publ. RIMS. Kyoto Univ.
21(1985), 781�800.

[23] D. Petz, Quasi-entropies for �nite quantum systems, Rep. Math. Phys., 23(1986), 57-65.
[24] D. Petz, From quasi-entropy. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 55 (2012), 81�92.
[25] D. Petz, From f -divergence to quantum quasi-entropies and their use. Entropy 12 (2010),

no. 3, 304�325.
[26] M. B. Ruskai, Inequalities for traces on von Neumann algebras, Commun. Math. Phys.

26(1972), 280� 289.

1Mathematics, School of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2School of Computational & Applied Mathematics, University of the Witwater-
srand, Private Bag 3, Johannesburg 2050, South Africa




