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QUADRATIC WEIGHTED GEOMETRIC MEAN IN HERMITIAN
UNITAL BANACH x-ALGEBRAS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we introduce the quadratic weighted geometric mean

_ 2
vy i= |lyz~1|" 2|
for invertible elements z, y in a Hermitian unital Banach *-algebra and real
number v. We show that

2®uvy = |z|* 4 Iyl

where ff,, is the usual geometric mean and provide some inequalities for this
mean under various assumptions for the elements involved.

1. INTRODUCTION

Let A be a unital Banach *-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

In what follows we assume that A is a Hermitian unital Banach x-algebra.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0,00). We say that a is positive and write a > 0 if a > 0 and 0 ¢ o (a).
Thus @ > 0 implies that its inverse a~! exists. Denote the set of all invertible
elements of A by Inv (A). If a,b € Inv (A), then ab € Inv (4) and (ab) ™" = b ta" L.
Also, saying that a > b means that a — b > 0 and, similarly a¢ > b means that
a—b>0.

The Shirali-Ford theorem asserts that [12] (see also [2, Theorem 41.5])

(SF) a*a > 0 for every a € A.

Based on this fact, Okayasu [11], Tanahashi and Uchiyama [13] proved the following
fundamental properties (see also [5]):

(i) Ifa, b€ A, then a > 0, b > 0 imply a+ b > 0 and a > 0 implies aa > 0;

) Ifa, b€ A, then a >0, b > 0 imply a + b > 0;

) If a, b € A, then either a > b >0 or a > b >0 imply a > 0;

v) If a > 0, then a=* > 0;

) If ¢ >0, then 0 < b < a if and only if cbe < cac, also 0 < b < a if and only
if ¢be < cac;

(vi) If0<a <1, then 1 <a™};

(vii) f0<b<a,then0<a ! <b ' alsoif 0 <b<a,then0<a ! <bh
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Okayasu [11] showed that the Lowner-Heinz inequality remains valid in a Her-
mitian unital Banach x-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (aP > bP).

In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].

Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € o (a)} > 0 and sup{z : z € 0 (a)} < co. Choose v to
be close rectifiable curve in {Rez > 0}, the right half open plane of the complex
plane, such that o (a) C ins (), the inside of . Let G be an open subset of C with
o(a) C G. If f: G — C is analytic, we define an element f (a) in A by

1 -1
(@)= o /f (2) (= —a) " dz.

It is well known (see for instance [3, pp. 201-204]) that f (a) does not depend on
the choice of v and the Spectral Mapping Theorem (SMT)

o (f(a)) = f (o (a))
holds.
For any o € R we define for a € A and a > 0, the real power
1 _
a® = % ’YZQ(Z—CL) 1dZ,
where z® is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z* is analytic in {Re z > 0}, then by (SMT) we have
o(a®)=(o(a)*={2*:2€0(a)} C(0,00).
Following [5], we list below some important properties of real powers:
(viii) If 0 < a € A and « € R, then a® € A with a® > 0 and (a2)1/2 = a, [13,
Lemma 6];
(ix) If0 < a € A and «, B € R, then a®a® = a**+7;
(x) If0<a€ Aand a €R, then (a®)”" = (@) =a™
(xi) If0<a, b€ A, a, B€R and ab = ba, then a*b® = b7a®.
We define the following means for v € [0, 1], see also [5] for different notations:
(A) aVyb:=(1—-v)a+vb, a, be A
the weighted arithmetic mean of (a,b),
(H) alb:=(1-v)a '+ Z/bfl)_1 ,a, b>0

the weighted harmonic mean of positive elements (a,b) and
(G) af,b = al/? (ail/Qbafl/z)U a'’?

the weighted geometric mean of positive elements (a,b). Our notations above are
motivated by the classical notations used in operator theory. For simplicity, if
V= %, we use the simpler notations aVb, alb and affb. The definition of weighted
geometric mean can be extended for any real v.

In [5], B. Q. Feng proved the following properties of these means in A a Hermitian
unital Banach x-algebra:

(xii) If 0 < a, b € A, then a!b = bla and affb = bia;
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(xiii) If 0 < a, b€ A and ¢ € Inv (A), then
¢* (alb) ¢ = (c*ac)! (c*be) and c* (ath) ¢ = (c*ac) # (c*be) ;
(xiv) If 0 < a, b€ A and v € [0, 1], then
(@)t = (@) V, (b7') and ('), (b71) = (at,b) .

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real
numbers, B. Q. Feng obtained in [5] the following inequality between the weighted
means introduced above:

(HGA) aV,b > afl,b > al,b

forany 0 <a,b€ A and v € [0,1].
In [13], Tanahashi and Uchiyama obtained the following identity of interest:

Lemma 1. If0 < ¢, d and X is a real number, then
A 172 ( 1/2 32 1/2 A=l 1/2
(1.1) (ded)” = dc (c d=c ) c’4d.
We can prove the following fact:
Proposition 1. For any 0 < a, b € A we have
(1.2) bf1_,a = af,b
for any real number v.

Proof. We take in (1.1) d = b~/? and ¢ = a to get
A A—1
(b’1/2ab’1/2) — p1/2,1/2 (a1/2b71a1/2> al/2p=1/2.
If we multiply both sides of this equality by b'/2? we get
(1.3) pl/2 (b71/2ab71/2))\ pl/2 — ,1/2 (a1/2b71a1/2> A-l a2,

Since
(al/zlflal/z) Al _ [(a1/2b1a1/2>1} = _ (ail/zba’lﬂ)l#\

then by (1.3) we get
af1_,b=bi,a.

By swapping in this equality a with b we get the desired result (1.2). O

In this paper we introduce the quadratic weighted geometric mean for invertible
elements z, y in a Hermitian unital Banach x-algebra and real number v. We show
that it can be represented in terms of #,,, which is the usual geometric mean and
provide some inequalities for this mean under various assumptions for the elements
involved.
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2. QUADRATIC WEIGHTED GEOMETRIC MEAN

In what follows we assume that A is a Hermitian unital Banach *-algebra.
We observe that if z € Inv (A4), then z* € Inv (A), which implies that z*z €
Inv (A). Therefore by Shirali-Ford theorem we have z*x > 0. If we define the

modulus of the element ¢ € A by |¢| := (c*c)l/2 then for ¢ € Inv(A) we have
l¢|* > 0 and by (viii), || > 0. If ¢ > 0, then by (viii) we have |¢| = c.
For z, y € Inv (A) we consider the element

(2.1) d:= (m*)fly*yx_l = (ya:_l)*y:c_l = |yx_1|2.

Since yz~! € Inv (A) then d > 0, d € Inv (A), d~ ! = |y3:’1|72 , and also

(2.2) d-1 = ((x*)fl y*yxfl)_l _ :L‘yil (y,1)*$* _ ‘(yil)*x* 2

For v € R, by using the property (viii) we get that d¥ = |yx*1|2l’ > 0 and d*/? =
|yz*1|y > 0. Since

* v * —12v v |?

r*d’x=x |y:z: | a::“y:c \ x‘

and ‘yx_l‘y x € Inv (A4), it follows that x*d”z > 0.
We introduce the quadratic weighted mean of (z,y) with x, y € Inv (A) and the
real weight v € R, as the positive element denoted by z(S),y and defined by

1‘2

v 2
(S) 2@y =z ((fc*)fly*yw”) z=a"lyz !V 2= ‘|yw*1|u~””‘ :
When v = 1/2, we denote 2®); /2y by *®y and we have

* «\—1 % —1 1/2 *
1Qy =z ((w) Yy ) r=2

We can also introduce the 1/2-quadratic weighted mean of (x,y) with z, y €
Inv (A) and the real weight v € R by

(1/2-S) 2Oy = (2@wy)"* = ‘|W—1|V@"‘ :

_1|1/2£B‘2

ya:_lyar = “ym

Correspondingly, when v = 1/2 we denote 2®'/?y and we have
2@V 2y = ’|yz71|1/2 x‘ '
The following equalities hold:

Proposition 2. For any x, y € Inv (A) and v € R we have

(2.3) @@y =) e ()
and
(2.4) (x_l) o, (y_l) = (ac*@l,y*)*1 .

Proof. We observe that for any z, y € Inv (A) and v € R we have

(1®vy)~ = (x ((x*)fly*y$—1>yx)71 _ 1 (:Cy—l (y*)flx*)” ()



QUADRATIC WEIGHTED GEOMETRIC MEAN 5

and
(@) @, (y) !

= (@) (™)) (@) e (@) ) @

= (e ) et) @)

which proves (2.3).

If we replace in (2.3) z by 7! and y by y~!

we get

(O (v™) =2 Gy’

and by taking the inverse in this equality we get (2.4). (Il

If we take in (S) z = a'/? and y = b'/? with a, b > 0 then we get
a1/2®yb1/2 _ aljl,b

for any v € R that shows that the quadratic weighted mean can be seen as an
extension of the weighted geometric mean for positive elements considered in the
introduction.

Let z, y € Inv (A) . If we take in the definition of "#," the elements a = |z|* > 0
and b = |y|* > 0 we also have for real v

9 9 1 9 Z1\V 1 2v 1V 2
2l 8 lol? = lal (1ol Iyl 12l ™) " Jol = lal Iyl 217" lal = ||lot 121 7] Jod| -

It is then natural to ask how the positive elements 2@,y and |z|*4, [y|* do
compare, when z, y € Inv (A) and v e R ?
We need the following lemma that provides a slight generalization of Lemma 1.

Lemma 2. If0 < ¢, d € Inv(A) and X is a real number, then

A—1
(25 (ded) = det/2 (/2P 12) " vz

Proof. We provide an argument along the lines in the proof of Lemma 7 from [13].
A—1
Consider the functions F () := (ded*)” and G (A) := dc!/? (c1/2 |d)? cl/2> /2
defined for A € R. It is obvious that F'(1) = G (1).
We have

G2 (1) — del/? (cl/Z |d|261/2>71/2 20 e ? (cl/Q \d|2 61/2)71/2 /2
2

RV (cl/2 |d|2cl/2)_1/2 o1/2 |d|2cl/2 (01/2 |d\2cl/2)_1/2 /2

1
= *— 2 2
ded (2)
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and
1-92 22
¢* () - (dc1/2 (ct/2 jap /2) c1/2d*>
_ dcl/Z( 1/2 \d\Q 1/2)7% 20 de /2 ( 1/2 |d|2 1/2)7% L2
del/? (Cl/2 |d|2cl/2> i A2 2 (61/2 \d|2 Cl/2> i /2 g
_ dcl/Q( 1/2 ‘d‘2 1/2)7% /2 |d|2 /2 ( 1/2 |d|2 1/2) %Cl/Qd*
del/2 (01/2 |d|2c1/2> 7 o172 |d\201/2 (01/2 \d\ch/Q) 7 /2 g
— dct/? (01/2 ‘d‘201/2)7% 20 4t/ (01/2 |d|2c1/2)7% /2
— del/? (Cl/2 ‘d‘201/2)7% /2 |d|2 /2 (01/2 |d|2cl/2)7% L2

1
— ded* = F” () :
922
By induction we can conclude that G2* (5) =
2

n > 0. Since for any a > 0 we have (a2)

F (2%) for any natural number n > 0.

Since F'(A); G () are analytic on the real line R and

deduce that F' () = G (A) for any A € R.

F?" (%) for any natural number
a, [13, Lemma 6], hence G (5+) =

ﬁ—>0forn—>0 we
O

Remark 1. The identity (2.5) was proved by. T. Furuta in [6] for positive operator
¢ and invertible operator d in the Banach algebra of all bonded linear operators on
a Hilbert space by using the polar decomposition of the invertible operator dc'/?.

Theorem 1. If z, y € Inv (A) and X is a real number, then

(2.6) 2®uy = |l b, lyl’

Proof. If we take d = and ¢ = |y|* > 0 in (2.5), then we get

3 w) e
) @) |y|)H

@)

1>A:

(@ ) =) ol (] o

“yl (1wl (

“Hyl (Iyl Iyl)
Hyl (Il ¢ |y\)

TG

lylz~"
i
yl (@ e

lylz~
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If we multiply this equality at left by =* and at right by x, we get
TP Ly A—1
w (@) e ) e =yl (Jyllel 7 l) ol

B 12 —n\A
- )
lyl {1yl =] [yl |yl

which means that

(2.7) 2@y = lyl* v o]

By (1.2) we have for a = |z|* > 0 and b = |y|* that

(2.8) lyI* f1-s |2]* = [l 8, Jyl*

Utilising (2.7) and (2.8) we deduce (2.6). O

Now, assume that f (z) is analytic in the right half open plane {Rez > 0} and
for the interval T C (0,00) assume that f(z) > 0 for any z € I. If u € A such that
o (u) C I, then by (SMT) we have

o (f(w) = f(o(uw) C f{I)C[0,00)
meaning that f (u) > 0 in the order of A.

Therefore, we can state the following fact that will be used to establish various
inequalities in A.

Lemma 3. Let f(2) and g (z) be analytic in the right half open plane {Re z > 0}
and for the interval I C (0,00) assume that f (z) > g(z) for any z € I. Then for
any u € A with o (u) C I we have f (u) > g (u) in the order of A.

We have the following inequalities between means:
Theorem 2. For any x, y € Inv (A) and v € [0, 1] we have
(2.9) @* Vo yl® 2 2@,y = |l [yl

Proof. 1. Follows by the inequality (HGA) and representation (2.6)

2. A direct proof using Lemma 3 is as follows.

For t > 0 and v € [0,1] we have the scalar arithmetic mean-geometric mean-
harmonic mean inequality

(2.10) l—vtut>t" > (1—vfut )

Consider the functions f (2) := 1—v4vz, g (2) ;== 2" and h(z) = (1 —v + uz‘l)_lwhere
z¥ is the principal of the power function. Then f(z), g (z) and h (z) are analytic in
the right half open plane {Rez > 0} of the complex plane and by (2.10) we have
f(z) > g(2) > h(z) for any z > 0.

If 0 <u€lInv(A) and v € [0,1], then by Lemma 3 we get

l—-v+vu>u’ > (1—1/—!—1/1(1)_1

If z, y € Inv (A), then by taking u = |yx’1|2 € Inv (A) we get
_112 12 12\ 1
(2.11) L=v vy 2 e 2 (1= v+ vy )
for any v € [0,1].
If a > 0 and ¢ € Inv (A) then obviously c¢*ac = |al/20|2 > 0. This implies that,
if a > b >0, then c*ac > ¢*bec > 0.
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Therefore, if we multiply the inequality (2.11) at left with z* and at right with
x, then we get

(2.12) o (1 v+ ’y$—1’2) >t yx—1’2ux >zt (1 —v4vy ’y$—1’72)*1 T

for any v € [0,1].
Observe that

z* (1 —v+v ’yx_1’2) x=zx" (1 —v+v (a:*)f1 y*ya:_1> T
=" (1 —v4v () y*ymfl) x

2 2 2 2
=@ =v)lz" +viyl” = lz|"Vy |yl

= @) (1) @) ) ) e

—1
= (@=w)lalZ+vlyl ™) = 2Pl Iy
Therefore by (2.12) we get the desired result (2.9). O

We can define the weighted means for v € [0, 1] and the elements z, y € Inv (A)
and v € [0,1] by

w2y = (1 Vo) = (el )

and 1/2 1/2
w2y = (I ) = (=) 2l + vy )

Corollary 1. Let A be a Hermitian unital Banach x-algebra with continuous invo-
lution. Then for any x, y € Inv (A) and v € [0, 1] we have

(2.13) eV 2y > 2@/ %y > 21L/%y.

Proof. 1t follows by taking the square root in the inequality (2.9 ) and by using
Okayasu’s result from the introduction. O

Recall that a C*-algebra A is a Banach x-algebra such that the norm satisfies
the condition
la*a] = |la||? for any a € A.
If a C*-algebra A has a unit 1, then automatically ||1|| = 1.
It is well know that, if A is a C*-algebra, then (see for instance [10, 2.2.5 Theo-
rem))
b > a > 0 implies that [|b]| > ||a]| .
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Corollary 2. Let A be a unital C*-algebra. Then for any x, y € Inv (A) and
v € [0,1] we have

v 2
@14) =)l vyl = |- ) 2P v lyl| = [l e

3. REFINEMENTS AND REVERSES

If X is a linear space and C' C X a convex subset in X, then for any convex
function f: C — R and any z; € C,r; > 0 fori € {1,....,k},k > 2 with Zle T =
Ry > 0 one has the weighted Jensen’s inequality:

1 o 1 o
(J) ﬁk;rif(zi) > f <Rk ;m%) ~

If f:C — R is strictly convex and r; > 0 for ¢ € {1,...,k} then the equality case
hods in (J) if and only if z; = ... = z,.

By P,, we denote the set of all nonnegative n-tuples (p1, ..., pn) with the property
that >, p; = 1. Consider the normalised Jensen functional

f,X p sz mz (Zpl%) > O

where f : C' — R be a convex function on the convex set C and x = (x1, ..., z,,) € C"
and p €P,.
The following result holds [4]:

Lemma 4. Ifp, q €P,, ¢; > 0 for each i € {1,...,n} then

s wex {27 (x> 7 o) = min {210, (rxa)  0.

1<i<n 1<i<n

In the case n = 2, if we put p1 =1 —p, po = p, g1 = 1 — ¢ and g2 = ¢ with
p € [0,1] and g € (0,1) then by (3.1) we get

32w {20 f @) 4 af )~ 1 (- 2+
21 =p)f@)+pf(y) - f((1-p)z+py)

>mm{1q’ L}}[(lq)f(xqu(y)f((lq)quy)]

for any z, y € C.
If we take ¢ = % in (3.2), then we get

(3.3) 2max {t,1 —t} {f(x);—f(y) _f <x—2|—y>}
> (1) £ @)t/ (1) = £ (L= +ty)

> 2min {t,1 — t}[ ()+f() f<x;y>}

for any z, y € C and ¢t € [0,1].

We consider the scalar weighted arithmetic, geometric and harmonic means de-
fined by A, (a,b) := (1 — v) a+vb, G, (a,b) := a’~"b" and H,, (a,b) = A" (a1, b7")
where a, b > 0 and v € [0,1].
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If we take the convex function f : R — (0,00), f(z) = exp (ax), with « # 0,
then we have from (3.2) that

B {2 1L LA, (exp a0) exp () - exp (0, 0.)

> A, (exp (o) ,exp (o)) — exp (@4, (a, b))

> min {Z }_fl’} (A (exp (o), exp () — exp (@A (a, )]

for any p € [0,1] and g € (0,1) and any z, y € R.
For ¢ = 1 we have by (3.4) that

(3.5) 2max {p,1 — p} [A (exp () , exp (ay)) — exp (A (a,D))]
> Ap (exp (aw) ,exp (ay)) — exp (a4, (a, b))
> 2min {p,1 — p} [A (exp (azx),exp (ay)) — exp (aA (a, b))]

for any p € [0,1] and any z, y € R.
If we take x = Ina and y = Inb in (3.4), then we get

(3.6) max {p 1 : q} [Ag (a®,b%) — G5 (a,b)] > Ay (a®,b%) — Gy (a,b)

q

> min {p, _p} [A, (a®,5%) — G2 (a,b)]

for any a, b > 0, for any p € [0,1], ¢ € (0,1) and « # 0.

For ¢ = § we have by (3.6) that

(3.7) max {p,1 — p} (b2 — %) > A, (a%,0%) — G} (a,b)
> min {p,1 - p} (b2 — %)2

for any a, b > 0, for any p € [0,1] and a # 0.
For a = 1 we get from (3.7) that

(3.8) max {p,1 — p} (\/l; - \/5)2 > A, (a,b) — Gp(a,b)
> min{p, 1 — p} (\/B— \/6)2

for any a, b > 0 and for any p € [0,1], which are the inequalities obtained by
Kittaneh and Manasrah in [8] and [9].
For @ =1 in (3.6) we obtain

39 max {2124, (@) - G, (@8] 2 Ay (0.0) - Gy 0.1
. fp 1-p
zmln{q,H}[Aq(a,b)—Gq(a,b)],

for any a, b > 0, for any p € [0,1], which is the inequality (2.1) from [1] in the
particular case A =1 in a slightly more general form for the weights p, gq.
We have the following refinement and reverse for the inequality (2.1):
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Theorem 3. For any x, y € Inv (A) we have for p € [0,1] and q € (0,1) that
1_—
(3.10) max{?l _5} (|m|2Vq ly|? —x®qy> > |x|2Vp ly|? —z®py
_fp 1—p}( 2 2
> min< =, —— z|"V, |y f:c®y).
e I ER AT

In particular, we have

(3.11) 2max{p,1-p} (lof VI’ —2@y) = 2] V, |y* ~ 2@py

> 2min {p, 1 - p} (|2 V [y - 2®y) ,
for any p € [0,1].
Proof. From the inequality (3.9) for a =1 and b =t > 0 we have

1_
(3.12) max{z,1_5}(1—q+qt—tq)21—p+pt—tp

1—
qg 1—gq

where p € [0,1] and ¢ € (0,1).

Consider the functions f (z) := max{g, }%{;} (1-—q+qz—2%,g9(2)=1—p+

pz — 2P and h(z) = min{%, %} (1 —q+ qt —t%) where 2", v € {p,q}, is the
principal of the power function. Then f(z), g(z) and h(z) are analytic in the
right half open plane {Rez > 0} of the complex plane and and by (3.12) we have
f(z) > g(2) > h(z) for any z > 0.

If 0 <ué€lInv(A) and v € [0,1], then by Lemma 3 we get

1 —
(3.13) maX{Z,lz}(l—q—i—qu—uq)Zl—p—i—pu—ul)

1_
>min{p,p}(1—q+qu—uq),
qg 1—gq

where p € [0,1] and ¢ € (0,1).
If z, y € Inv (A), then by taking u = |yx’1|2 € Inv (A4) in (3.13) we have

(3149 ma"{?iip} (1= a+alpe = (jp=1 "))

i {2172} (1= ol - (e )').

where p € [0,1] and g € (0,1).
By multiplying the inequality (3.14) at left with «* and at right with = we get
the desired result (3.10). O
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Remark 2. If0 < a, b € A, then by taking x = a*/? and y = b"/? in (3.10) and
(8.11) we get

1—
(3.15) max {Z, 1_‘2} (aVgb — aflyb) > aVypb — atipb

. plp}
> mins =, —— ; (aVyb — afyd),
> min {2, 1224 @90 - as)

for any p € [0,1] and q € (0,1).
In particular, for g =1/2 we have
(3.16) 2max {p,1 — p} (aVb — afib) > aV,b — afl,b
> 2min{p,1 —p} (aVb — afd),

for any p € [0,1].

4. INEQUALITIES UNDER BOUNDEDNESS CONDITIONS
We consider the function f, : [0,00) — [0, 00) defined for v € (0,1) by
Lt)=1—v+uvt—t'=A,(1,t) — G, (1,%),

where A, (+,-) and G, (-, -) are the scalar arithmetic and geometric means.
The following lemma holds.

Lemma 5. For any t € [k, K| C [0,00) we have

(4.1)
Az/ (Lk) - Gu (Lk) ZfK < 1’
B ) max{A, (1,k) = G, (1,k), A, (1, K) — G,, (1, K)}
S e @ = B (B B) =0 G <1 <

A, (LK) =G, (1K) ifl<k
and
Ay (LK)_GV (17K) ZfK< 1a

(4.2) min f, (z) =4, (k,K):=¢ 0ifk<1<K,
telk,K]

A, (LK) -G, (Lk) if 1 < K.
Proof. The function f, is differentiable and

f;(t) :l/(l—ty_l) :Vttﬁ’ t>0,

which shows that the function f, is decreasing on [0,1] and increasing on [1,c0),
fr(0)=1—v, f, (1) =0, lim;_ f, (t) = co and the equation f, (t) = 1 — v for
t > 0 has the unique solution t,, = vt > 1.

Therefore, by considering the 3 possible situations for the location of the interval
[k, K] and the number 1 we get the desired bounds (4.1) and (4.2). O

Remark 3. We have the inequalities

0<f,(t)<1—v foranyte [o’y%}
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and
1—v < f,(t) foranyte [Vﬁ,oo) .

Assume that z, y € Inv (A) and the constants M > m > 0 are such that
(4.3) M > |yz~' > m.
The inequality (4.3) is equivalent to

M? > () P2t > m?

If we multiply at left with * and at right with x we get the equivalent relation
(4.4) M2 (2 > Jyl? = m? [af?

We have:

Theorem 4. Assume that x, y € Inv (A) and the constants M > m > 0 are such
that either (4.3), or, equivalently (4.4) is true. Then we have the inequalities

(4.5) A, (m?, M?) lz|* > |2° V,, |y|* — 2@,y > 6, (m?, M?) z)?,

for any v € [0,1], where A, (+,+) and d, (-,-) are defined by (4.1) and (4.2), respec-
tively.

Proof. From Lemma 5 we have the double inequality
Ay (B, K)>1—v+uvt—t" >4, (k,K)

for any « € [k, K] C (0,00) and v € [0,1].
If w € A is an element such that 0 < k < u < K, then o (u) C [k, K] and by
Lemma 3 we have in the order of A that

(4.6) A, (B,K)>1—v+vu—u” >0,k K)

for any v € [0,1].
If we take u = |yx*1|2, then by (4.3) we have 0 < m? < u < M? and by (4.6)
we get in the order of A that

(4.7) A, (m2,M2) >1—-v+v |yac_1|2 - |ym_1|zy >4, (mQ,MQ)

for any v € [0,1].
If we multiply at left with * and at right with x we get

(4.8) A, (m?, M?) lz” > (1 =) |z|° + va* |yx_1|2 x—a”
> 6, (m?, M?) |z|”

_1’21/

yx x

and since z* |ya:_1|2x =2 (") 'y 2"tz = |y|* and z* |yx_1|zyx = 2@,y we
get from (4.8) the desired result (4.5). O
Corollary 3. With the assumptions of Theorem 4 we have

(1—m)? |z if M <1,
(4.9) R x max{(1—m)2,(M—1)2}|x\2 ifm<1<M,

(M —1)|z]* if 1 <m,
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(1—M)?z]* if M <1,
> 2PV, Y — 2@y >rx{ 0ifm<1<M,
(m—1)%|z|” if 1 <m,
where v € [0,1], r =min {1 — v,v} and R = max{l —v,v}.
Proof. From the inequality (3.8) we have for b =¢ and a = 1 that
2 2
R(\/i—l) zfl,(t)zl—y—l—yt—t”zr(\/i—l)

for any ¢ € [0, 1].
Then we have

(1—m)® if M <1,
A, (m*, M?) < R x max{(lfm)2,(M71)2} iftm<1<M,

(M-1%ifl<m

and
(1—M)*if M <1,
6, (m*, M?) >rxq 0ifm<1<M,
(m—1) if 1 < m,
which by Theorem 4 proves the corollary. (Il

We observe that, with the assumptions of Theorem 4 and if A is a unital C*-
algebra, then by taking the norm in (4.5), we get

(410) A, (m2 M?)||z]? > H|x|2 Vo lyl? — 2@y

| > 6, (m2, 022 Jo
for any v € [0,1], which, by triangle inequality also implies that

@11 A2 M) ol 2 [ e o] e e 2 0

for any v € [0,1]. This provides a reverse for the second inequality in (2.14).
Remark 4. If0 < a, b € A and there exists the constants 0 < k < K such that
(4.12) Ka>b>ka>0,

then by (4.5) we get

(4.13) A, (k,K)a>aV,b—af,b>6, (k K)a,
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while by (4.9) we get

(.

LﬂﬁzaﬁK<L
(1-vF)

14) R x max{(l—\/E)Q,(\/[?—1>2}az'fmSlSM,

Vf—lzaﬁl<h
(vE-1)

@—%FfaﬁK<L

>aV,b—af,b>rx 0ifk<1<K, ,

(¢E—Q2aﬁl<k

where v € [0,1], r = min {1 — v,v} and R = max {1 —v,v}.
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