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QUADRATIC RELATIVE OPERATOR ENTROPY IN
HERMITIAN UNITAL BANACH *ALGEBRAS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we introduce the quadratic relative operator entropy
O (zly) == z*In (|yx_1 |2) x

for invertible elements x, y in a Hermitian unital Banach *-algebra. We show
that

2112
© (aly) = S (o] 1y/?) ,
where S (-|-) is the relative operator entropy defined for positive invertible
elements ¢, d by

S (c|d) := c/? (ln (C_I/Qdc_1/2>) 2.

Several upper and lower bounds in terms of the corresponding Tsallis’ type
relative entropies are also provided.

1. INTRODUCTION

We recall some definitions and fundamental facts that will be used in the sequel.

Let A be a unital Banach *-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

In what follows we assume that A is a Hermitian unital Banach x-algebra.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0,00) . We say that a is positive and write a > 0ifa > 0and 0 ¢ o (a) . Thus
a > 0 implies that its inverse a~! exists. Denote the set of all invertible elements
of A by Inv (A).If a, b € Inv (A), then ab € Inv (A) and (ab)™" = b~1a~. Also,
saying that a > b means that a — b > 0 and, similarly a > b means that a — b > 0.

The Shirali-Ford theorem asserts that [10] (see also [1, Theorem 41.5])

(SF) a*a > 0 for every a € A.

Based on this fact, Okayasu [9], Tanahashi and Uchiyama [11] proved the following

fundamental properties (see also [5]):
(i) fa, b€ A, then a > 0, b > 0 imply a + b > 0 and a > 0 implies aa > 0;
(ii) If a, b € A, then a > 0, b > 0 imply a + b > 0;

(iii) If a, b € A, then either a > b > 0 or a > b > 0 imply a > 0;

(iv) If a > 0, then a=! > 0;

(v) If ¢ > 0, then 0 < b < a if and only if cbe < cac, also 0 < b < a if and only
if ¢be < cac;

(vi) If 0 < a <1, then 1 <a™%;
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(vii) fO<b<a,then0<a ! <b ! alsoif 0 <b<a,then0<a!<b L

Okayasu [9] showed that the Léwner-Heinz inequality remains valid in a Her-
mitian unital Banach #-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (aP > bP).

In order to introduce the real power of a positive element, we need the following
facts [1, Theorem 41.5].

Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € 0 (a)} > 0 and sup{z : z € 0 (a)} < co. Choose v to
be close rectifiable curve in {Rez > 0}, the right half open plane of the complex
plane, such that o (a) C ins (), the inside of «. Let G be an open subset of C with
o(a) CG. If f: G — C is analytic, we define an element f (a) in A by

(1.1) f(a):= %/f(z) (z—a) " dz

It is well known (see for instance [2, pp. 201-204]) that f (a) does not depend on
the choice of v and the Spectral Mapping Theorem (SMT)

o (f(a)) = f(o(a))
holds.
For any o € R we define for @ € A and a > 0, the real power
1 _
a® = 5 Wza(z—a) "z,
where z® is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z* is analytic in {Re z > 0}, then by (SMT) we have
o(a*)=(o(a)*={2*:2€0(a)} C(0,00).
Following [5], we list below some important properties of real powers:

(viii) If0 < a € A and @ € R, then a® € A with a® > 0 and (a2)"/? = q, [11,
Lemma 6];
(ix) If0 < a € A and o, B € R, then a®a® = a**+7;
(x) f0<a€ Aand a€R, then (a*)”" = (a1 =a™
(xi) If0 < a, b€ A, a, B €R and ab = ba, then a®b® = b7a.
We define the following means for v € [0, 1], see also [5] for different notations:
(A) aVy,b:=(1—-v)a+uvb, a, be A
the weighted arithmetic mean of (a,b),
(H) alb:i=(1=v)a ' +b™) " a, b>0

the weighted harmonic mean of positive elements (a,b) and
(G) atyb = al/? (a‘1/2ba_1/2)v al/?

the weighted geometric mean of positive elements (a,b). Our notations above are
motivated by the classical notations used in operator theory. For simplicity, if
V= %, we use the simpler notations aVb, alb and affb. The definition of weighted
geometric mean can be extended for any real v.

In [5], B. Q. Feng proved the following properties of these means in A a Hermitian
unital Banach x-algebra:

(xii) If 0 < a, b € A, then a!b = bla and affb = bia;
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(xiii) If 0 < a, b€ A and ¢ € Inv (A), then
c* (alb) ¢ = (c*ac)! (¢*be) and ¢* (afb) ¢ = (c*ac)f (c*be) ;
(xiv) If 0 < a, b€ A and v € [0,1], then
(al,b)™" = (@) V, (b7") and (a )4, (b71) = (at,b)~".
Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real

numbers, B. Q. Feng obtained in [5] the following inequality between the weighted
means introduced above:

(HGA) aV,b > afl,b > al,b

forany 0 <a,be Aand v e|0,1].
In [11], Tanahashi and Uchiyama obtained the following identity of interest:

Lemma 1. If0 < ¢, d and X is a real number, then
A—1
(1.2) (ded) = dc'/? (01/2d201/2> c?d.
As a consequence of this equality we proved the following fact [4]:
Proposition 1. For any 0 < a, b € A we have
(1.3) bf1_,a = aff,b
for any real number v.

Following [4] we can introduce the quadratic weighted mean of (z,y) with x,
y € Inv (A) and the real weight v € R, as the positive element denoted by z@®),y
and defined by

(S) 2@,y = z* ((az*)f1 y*ya:fl) x=x" \y:c*1|zu T = “ya:*lr/ x
When v = 1/2, we denote 2®); /2y by @y and we have
. N2
1Qy =z ((w*) Y yx ) r=2a"
If we take in (S) z = a/? and y = b"/? with a, b > 0 then we get
(L1/2®Vb1/2 _ a]j,,b

for any v € R that shows that the quadratic weighted mean can be seen as an
extension of the weighted geometric mean for positive elements considered in the
introduction.

Let z, y € Inv (A) . If we take in the definition of "#," the elements a = |z|* > 0
and b = |y|* > 0 we also have for real v

2 2 1, 2.,-1\"
2l 8 1yP? = [l (ol P 21 7") " Ja] = Jo]

By utilizing the following lemma [4] that provides a slight generalization of Lemma
1.

‘ 2

_1|1/2$‘2 )

yx_lyx = “ym

2v v 2
—1 —1
llal ™| fel = |l 12l ™| o]

Lemma 2. If0 < ¢, d €Inv(A) and X is a real number, then
-1
(1.4) (ded*)* = de'/? (01/2 d|? 01/2) c2qr,

we proved the following representation result [4]:
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Theorem 1. If z, y € Inv (A) and X is a real number, then
(1.5) 2®uy = |z* fu [yl

In this paper we introduce the quadratic relative operator entropy for invertible
elements z, y in a Hermitian unital Banach x-algebra. We show that it can be
expressed in terms of the relative operator entropy defined for positive invertible
elements ¢, d. Several upper and lower bounds in terms of the corresponding Tsallis’
type relative entropies are also provided.

2. RELATIVE ENTROPY

Consider the scalar function T3 : (0,00) — R defined for ¢ # 0 by

t
-1
(2.1) T, (z) = = —.
We have

l—zt zt-1 _t
(2.2) T i (z) = T T = T (z)z™".

For t > 0 and the elements 0 < ¢, d € Inv (A) we define the Tsallis relative
operator entropy by

cfid — ¢
T, (c|d) == ﬁtt .

We have for ¢t > 0 and the elements 0 < ¢, d € Inv (A) that
T, (c|d) = /T, (0_1/2d6_1/2> /2

and
T (c|d) = *T, (cfl/zdcfl/Q) 2 =T, (c|d) (ctid) ' e

For z, y € Inv(A) and ¢t > 0 we define the quadratic Tsallis relative operator
entropy by

t
2 (’ylﬁlF) -1
(2.3) © (z|y) := 2™ T} (’ymﬁl’ ) x = x*fx
gt |?
_ ey faf? _ |l ['a] —lol
B t B t

By the representation (1.5) we have

I e L
(2.4) ©¢ (z]y) = T lz|” [ ly]
for any z, y € Inv (A) and ¢t > 0.

We also have for ¢ > 0 and z, y € Inv (A) that
. qp2 .
(2.5) @1 (aly) = Ty (Jyo™'|") @ = 4 (aly) (2@u) " |of*.

We observe that for z = ¢'/2 and y = d*/? with 0 < ¢, d € Inv (A), we get the
equality

(2.6) ® (01/2\d1/2> =T, (c|d).

Consider the function f (z) := Ln z, where Ln z := In|z| +4 Arg z is the principal
of the complex logarithm function. Then f(z) is analytic in the right half open plane
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{Re z > 0} of the complex plane and by using the analytic functional calculus (1.1)
we can introduce the relative operator entropy

(2.7) S (c|d) := ¢'/? (ln (c_l/2dc_1/2)) /2,

for 0 < ¢, d € Inv (A) and the quadratic relative operator entropy by
. 12

(2.8) O (zly) === <ln (|yx d )) x

for z, y € Inv (A4).
If we take in (2.8) = = ¢'/? and y = d"/? with 0 < ¢, d € Inv (A) then we get

(2.9) ® (01/2|d1/2) — S(c|d).

Now, assume that f (z) is analytic in the right half open plane {Rez > 0} and
for the interval I C (0,00) assume that f(z) > 0 for any z € I. If u € A such that
o (u) C I, then by (SMT) we have

o (f(u) = f(o(w)c f)cC0,00)

meaning that f (u) > 0 in the order of A.
Therefore, we can state the following fact that will be used to establish various
inequalities in A.

Lemma 3. Let f (z) and g (z) be analytic in the right half open plane {Re z > 0}
and for the interval I C (0,00) assume that f (z) > g (z) for any z € I. Then for
any u € A with o (u) C I we have f (u) > g (u) in the order of A.

‘We have:

Theorem 2. For any x, y € Inv (A) and t > 0 we have the double inequality

(2.10) @ (zly) = © (zly) = ©@—¢ (z]y) -

In particular,

(2.11) [y = Jal* 2 © (aly) = (1 ol |y1 ) [al*,
(2.12) 2 (2@ — [of’) = @ (aly) = 2 (1= |of (2@y) ") I
and

@13) g (1ol ?) = 1) ol 2 0 el > 5 (1 (1l %)) lof”

Proof. Consider the convex function f (t) = —Int, ¢t > 0. By the gradient inequality
for f, namely

F®)(b—a)=f(b)—f(a) > f (a) (b—a)
we have

aibzlna—lnbz a—b

for any a, b > 0.
If we take in this inequality b = 1 and a = 2! with ¢ > 0, then we get
2t —1 1—27t z7t-1
>

>Inz > =
t t —t
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namely
(2.14) T (z2)>lnz>T_;(2)

for any t, z > 0.

Consider the functions f (z) := Ty (2), g(2) := Lnz and h(z) = T_; (z) where
Ln z is the principal of the logarithmic function. Then f(z), g(z) and h(z) are
analytic in the right half open plane {Re z > 0} of the complex plane and by (2.14)
we have f(z) > g (z) > h(z) for any z > 0.

If we use Lemma 3 for the positive invertible element u, then we have

(2.15) T (u) >Inu>T 4 (u).

For any x, y € Inv (4) we have that u = |yx71|2 € Inv (A). If we take in (2.15)

U= |yac_1 2 , then we get
(2.16) T; (|y:c71|2> >1In |y3:71|2 >T (’ym71’2> ,
for any t > 0.

By multiplying (2.16) at left with «* and at right with = we get
x*T; (|yx71|2) x>z (ln |yafl|2) x> T, (|ya:71|2) x,

which proves the desired result (2.10).
For t = 1 we have

@1 (zly) = =" ((ﬂv*)_1 yrya ! — 1) z = |yl

©_1 (z|y) =" (1 - (|yx_1|2)_1) = g (1 _ ((x*)fl y*yx_l)_1> .
" (1 —ay ™ (y)T x) v =z = |2 |y 2 |2,

which by (2.10) gives (2.11).
For ¢t = 1/2 we have

and

©1/2 (ly) =2 (2@ — |
and
@172 (aly) = @172 (aly) (2@y) " |of* = 2 (2@  [2I*) (@) " Jal?
=2 (1= 2 (2@y) ") Iaf*,

which by (2.10) gives (2.12).
For t = 2 we have

2
(@) yryet) @ faf
2
* — N 2 2 —2 2
yiyr (@) gty —loT e Jyl” — e
2 2
|—2

2 2, =2 2 2
ylI” 2| |yl” |z 7 2] — |z 1 2, =22 2
o ()

@2 (zly) =
2
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and
-2 (aly) = ©2 (aly) (2@2p) " |zf”
1 2 2 -2, 2\ ! 2
=5 (1l (W kel 2 0?) ) b
1 20 =2 42 -2 2 1 2, -2\ 2
= (1= 1l o y17) bl = 5 (1= (2191 7%) ) Jal?,
2 2
which by (2.10) gives (2.13). O

Corollary 1. For any z, y € Inv (A) we have the strong limit
(2.17) s-lim ©; (zly) = © (z]y) .

Proof follows by the double inequality (2.10) on taking the strong limit over
t—0+.

Remark 1. If we take in Theorem 2 x = c'/?, y = d*/? with 0 < ¢, d € Inv (A),
then we get the inequalities

(2.18) T, (c|d) > S (c|d) > T (c|d)

for any t > 0. The inequality (2.18) was obtained by Fujii and Kamei in [6] for
positive invertible operators in Hilbert spaces.
In particular,

(2.19) d—c>S(cld) > (1—cd ™),

(2.20) 2 (ctd — ¢) > S (c|d) > 2 (1 - c(cﬁd)*l) c
and

(2.21) % (@)’ 1) e = S(cld) = % (1= (™))
We have the strong limit

(2.22) s-lim T3 (cld) = S (cld)

for0 < ¢, d € Inv (A). The representation (2.23) was obtained for positive invertible
operators in Hilbert spaces by Uhlmann in [12].

Corollary 2. For any x, y € Inv (A) we have the representation
(2.23) o (aly) = 5 (o | 1)) -
Proof. We have for any z, y € Inv (A) that
© (zly) = s-lim @ (z[y) by (2.17)
o 201 12
= s-lim T, (|2 |yf”) by (2.6)
=5 (lal 11yl?) by (222)

and the representation (2.23) is proved. O
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For the invertible element x € Inv (A) we define the quadratic operator entropy
by

(2.24) ©(z):=0(z|l)=2"In (|x_1’2) x=2a"In (|m*|_2> x=—=2z"In(|z"])x

and quadratic Tsallis operator entropy by

t
(=) :
1—
(2.25) O (z) = 2T} (|x*1|2> x=a" ; x = 2O ; i
R [P

t t
for ¢ > 0.

Corollary 3. For any z € Inv (A) and t > 0 we have

(2.26) Ot (z) SO(z) <@ (2).

In particular,

(2:27) (1= 1ef) el < @ (@) <1~ Jaf,

(2.28) 2 (1 — ot g (m*)_l) 2 < ©(z) <2 (x |z — |x|2>
and

(2.29) % (1-lal*) laf* <@ (@) < % (124~ — 1) Jaf*.

For a positive invertible element ¢ we define the operator entropy by
n(c) =8 (c]1)=c? (In(c')) c/? = —clnc

and the Tsallis operator entropy by

=t —¢

t 9
where ¢t # 0. The operator entropy for bounded linear operators in Hilbert spaces

was considered by Nakamura-Umegaki in [8].
We have

Ty (c) := Ty (c]1) = Ty () /2 =

n(c)=0 (cl/2> and T} (¢) = @ (61/2>
for ¢ > 0 and t # 0.
By Corollary 3 we get the inequalities

(2.30) Tt (c)<n(e) <Ti(e)
for ¢ > 0 and ¢ > 0. In particular,
(2.31) (I-¢cc<n(c)<1l—cg,
(2.32) 2 (1 - 01/2) c<n(c)<2 (1 - 01/2) 2
and
1 , 1,
(2.33) i(lfc)cgn(c)gi(c -1)e,

for ¢ > 0.
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3. FURTHER BOUNDS

We start with the following scalar double inequality:

Lemma 4. For any «, f > 0 we have

1 min {«, 8} 2 1 (B—a)
30 (- imed) " imeeed
< 6?%—1nﬁ—|—1na

1 (B-a) 1 (max{af} \*
= 2min®{a, 8} 2 <min{avﬁ} 1) '

Proof. Integrating by parts, we have

o [ i)

:Bia—lnﬂ—klna
@

B 81
- [ g
« (e} t

for any «, 8 > 0.

If 8 > «, then

1-a)? _ [Pp-t, _1B-a)?
(3.3) 3o z/a At 5 32
If @ > [ then

Pt [YB-t. _ [t=8

[t [t [
and

1(B-a)® _ [*t=B, _1(B-a)’
(3.4) 2622/3 ot > S

Therefore, by (3.3) and (3.4) we have for any «, 5 > 0 that

Bﬂft 1 (5704)2 1 (min{a, 8} 2
/a t2 dtZZma}@{a,ﬁ}2<max{a,ﬁ}1>

and

Pp—t 1 (B-a)” _ 1 (max{a,p} 2
/a 3 dtSQmin2{a,ﬁ}_2<min{avﬁ}_l) .

By the representation (3.2) we then get the desired result (3.1).

Remark 2. If we take in (3.1) a =1 and § =7 € (0,00), then we get

1 min {1,7}\*> 1 (r—1)°
(3:5) 2 (1 B max{l,r}) " 2max? {1,7}

<7—-1-In7

_1 (-1’ ;<max{1,7} 1>2

- §min2{1,7'} - min {1, 7}
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and if we take o = 7 and § =1, then we also get

1 min {1, 7} 2 1 (T — 1)°
(3:6) 2 (1 a max{l,T}) T 2max?{1,7}

T—1
<lnt-—

T

Ll (-’ 1<max{1,7}1>2'

2 min {1, 7}

= 2min?{1,7} 2
If 7 € [k, K] C (0,00), then by analyzing all possible locations of the interval
[k, K] and 1 we have
min {1, k} <min{1,7} <min {1, K}
and
max {1,k} <max{1l,7} <max{l, K}.
By (3.5) and (3.6) we get the local bounds

1 (r—1)° 1 (r—1)°
3.7 —————<7-1-In7< -—5—7"—
(37) 2 max? {1, K} =7 BT =0 min? {1,k}
and

1 (r—1)° r—1 _1 (r—1)>
3.8 ———— <In7— <=
(3.8) 2max?{1,K} — nr T 7 2min®{1,k}
for any 7 € [k, K].

Observe also that for 7 € [k, K| we have
{— min {1, 7} S min {1, K} >0
max {1, 7} max {1, k}

and
max {1, 7} < max {1, K}
~ min{l,7} ~ min{l,k}
Now, by (3.5) and (3.6) we get the global bounds

(3.9) ;<1—M)237—1—1m§1<w—1)2

1.

max {1, k} 2 \ min{1, k}
and
1 min {1, K} 2 7—1 1 (max{l,K} 2
. (1 /) < — < - (EEEA BT
(3:.10) 2 (1 max{l,k}) Slhr T T2 ( min {1, k} !

for any 7 € [k, K].
We also have:

Lemma 5. For any «, 8 > 0, the following inequalities are valid

2
(3.11) (0 g)ﬁ;a—lnﬁ—&—lnag(ﬁ;ﬁa)
and

2
(3.12) (0<)mf—ma- =% B=0

B of
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Proof. If 8 > «, then

[/t

If @ > 3, then

o Bt -5 °1 . a-f (B—a)
/a - /ﬁ - _(a—ﬁ)/ﬁ it =(a—p) 22 = 2l

Therefore,

B N2
/ —dt = a)ﬂaﬁa:(ﬁa;)'

8 a 2
o P af
for any «, 8 > 0 and by the representation (3.2) we get the desired result (3.11). O

It is natural to ask, which of the upper bounds for the quantity
b —a«
@

—Inf+Ina

as provided by (3.1) and (3.11) is better?
Consider the difference

L (- (B-a)
2 min? {a, B} af
We observe that for 5 > a we get

A(a, 8) ::%(B ;f) - (5;;) = (*82;22) (B —20).

Therefore A (o, 5) > 0if 8 > 2a and A (o, 8) < 0 if @ < 8 < 2a, meaning that
neither of the upper bounds in (3.1) and (3.11) is always best.
If we take in (3.11) and (3.12) e =1 and f =7 € (0,00), then we get

A(a,B) =

, a, B>0.

(r—1)?
(3.13) 0<)r—1—-InT < —~—
-
and
T—1 (17— 1)2
3.14 0<)Int — <
(314) O<)mr- T2 <2
for any 7 > 0.

If 7 € [k, K], then we have the global upper bounds
(3.15) 0)r—1—In7 < U (k,K)
and

T—1
(3.16) O0<L)lnT— — < U (k,K),
T
where

SELETY e
% 1 < 17
2 2
1 , = max{ ———, ——— ¢ k<1 <K,
3.17 U (k, K (k) DL ek K

& if1< k.
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Indeed, if we consider the function f (r) = (T_Tl)27 7 > 0, then we observe that

£ =T and ) =

which shows that f is strictly decreasing on (0, 1), strictly increasing on [1, 00) and
strictly convex for 7 > 0. We also have f (%) = f(r) for 7 > 0.
By (3.13) and by the properties of f we then have that for any 7 € [k, K]

(r—1)?
(3.18) 7T—1—-In7 < max
TEk,K] T
G-D® 5 K < 1,
r (k— 1)2 K—1)2
B i1 < k.
= U (k, K)
Let 7 = 1 with 7 € [k, K]. Then 7 € [+, 1] and we have like in (3.18) that
7T—1—In7t< max (r 1)
TEK 1 k1] T
1_
u ifk~ ! <1,

N 2
= max{(KKll) , (kfkl,ll) } if k<1< K1

1 _1)?
Er) g o 1

k 1
=U (k,K),
which implies (3.16).
Now, let
k) G K< 1
1 (max{l,K} 2 g CF) ) ’
3.19 V(k,K -1 == K-k
19V K) =g (B o) <58 (G ki <k
(K 1)?if 1<k,
and

. (1-K)?ifK <1,
(3.20) MhKy=;<1—mm?ﬁg) _ ) oik<i<k,
s (527 i1 <k,

then by (3.9) and (3.10) we have

(3.21) vk, K)<T—-1—-In7 <V (k, K)

and

(3.22) v K) <lnr— =L <V (b K)
T

for any 7 € [k, K].
Therefore, we have the double inequalities of interest:

(3.23) vk, K)<7—1—In7T <min{V (k,K),U (k,K)}
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and
(3.24) v(k,K)SlnT—TT_lgmin{V(k,K),U(k,K)}
for any 7 € [k, K].

Lemma 6. Let x € [k, K] and t > 0, then we have

t_
(3.25) So (e KY) < Tt e < Cwin V(KK U (K KY))
and
-t
(326) o (KK <z 1T < Dwin{V (KK, U (KK}

The proof follows by choosing 7 = z' € [k*, K'] in the inequalities (3.23) and
(3.24).
Assume that z, y € Inv (A) and the constants M > m > 0 are such that

(3.27) M > ‘yw‘l‘ > m.
The inequality (3.27) is equivalent to

M? > |yx_1|2

= @) e 2w
If we multiply at left with * and at right with  we get the equivalent relation
(3.28) M [zf* > |y > m? [o].

We have:

Theorem 3. Assume that z, y € Inv (A) and the constants M > m > 0 are such
that either (3.27), or, equivalently (3.28) is true. Then for any t > 0 we have

(3.29) %v (m?, M) |2]* < @y (zly) — © (zly)

< %min {V (m?®, M?") U (m*, M?")} jz?
and
(330) o, M) b < 0 (ely) — 0 aly)

1
< : min {V (mzt, M2t) U (mzt7 Mzt)} |m|2 ,
where the functions v, V and U are defined by (3.20), (3.19) and (3.17), respectively.

Proof. From Lemma 6 for k = m? and K = M?, if z € [m? M?] and ¢ > 0, then
we have

1 2t —1 1.
(331) v (m*,M*) < Z—— —Inz < ;mln{V (m*, M), U (m*, M*)}
and

—t

—z 1
t

(3.32) %v (mZt,M%) <Ilnz-— 1 < = min {V (mQt,MZt) U (mzt,Mﬂ)} .
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If x, y € Inv (A) and the constants M > m > 0 are such that (3.27) is true, then the
element u = |yz~! |2 has the spectrum o (u) C [m?, M?] . Making use of Lemma 3
we have in the order of A that

2 t
1 |ya:*1| -1 112
(3.33) 2o (m?, M) < (t> ~1n ([ya[)
1.
Emm {V (m2t,M2t) U (mzt,M%)}

IN

and

2 -t

1 12 1= |yx71|
(3.34) 7Y (m*, M?) <In (|yz Y ) - (t)
< Smin {V (m?, M) U (m*, M)}

for any t > 0.
By multiplying (3.33) and (3.34) at left with 2* and at right with 2 we get the
desired results. O

If we take t =1 in (3.29) and (3.30), then we get

(3.35) o (m2, M) [ < [y ~ Jal* - © (aly)

<min {V (m?* M?),U (m? M?)} |z|?
and
(336) v (m® M) ol <0 (aly) — (1 [af Iyl ?) P

< min {V (mQ,M2) U (mQ,MQ)} |3:|27

provided that z, y € Inv (A) and the constants M > m > 0 are such that (3.27) is
valid.
For t = 1, we get from (3.29) and (3.30) that

(3.37) 20 (m, M) |2 <2 (2@ — |al*) - © (aly)

< 2min{V (m, M) ,U (m, M)} |z|?
and
(3.38) 20 (m, M) [of” < © (aly) =2 (1~ | @®y) ") |of

< 2min{V (m, M), U (m, M)} |z|*.

Recall that a C*-algebra A is a Banach *-algebra such that the norm satisfies
the condition
la*al| = ||la]|® for any a € A.
If a C*-algebra A has a unit 1, then automatically ||1]| = 1.
It is well know that, if A is a C*-algebra, then (see for instance [7, 2.2.5 Theorem])

b > a > 0 implies that [|b]| > ||a]| .
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Corollary 4. Let A be a unital C*-algebra. If x, y € Inv (A) and the constants
M > m > 0 are such that either (3.27), or, equivalently (3.28) is true, then we
have the norm inequalities

1
(3.39) Tv (m*, M*) lz)* < ll@¢ (2ly) — @ (aly)|
< Smin {V (m?, M%) U (m*, M%)} ]
and

(340) o (m*, M) fal* < |6 (aly) — 0. (al)

IN

1
cmin {V (m®, M), U (m®, M) } |||
where the functions v, V and U are defined by (5.20), (3.19) and (3.17), respectively.
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