INEQUALITIES FOR WEIGHTED GEOMETRIC MEAN IN HERMITIAN UNITAL BANACH *-ALGEBRAS VIA A RESULT OF CARTWRIGHT AND FIELD

S. S. DRAGOMIR^{1,2}

ABSTRACT. Consider the quadratic weighted geometric mean

$$x \otimes_{\nu} y := \left| \left| y x^{-1} \right|^{\nu} x \right|^{2}$$

for invertible elements x, y in a Hermitian unital Banach *-algebra and real number ν . In this paper, by utilizing a result of Cartwright and Field, we obtain various upper and lower bounds for the positive difference

$$(1-\nu)|x|^2 + \nu|y|^2 - x \Im_{\nu} y,$$

where $\nu \in [0,1]$, under various assumptions for the elements involved. Applications for the classical weighted geometric mean

$$a\sharp_{\nu}b := a^{1/2} \left(a^{-1/2}ba^{-1/2}\right)^{\upsilon} a^{1/2}$$

of positive elements a, b that satisfy the condition $0 < ka \le b \le Ka$ for certain numbers 0 < k < K, are also given.

1. Introduction

Let A be a unital Banach *-algebra with unit 1. An element $a \in A$ is called *selfadjoint* if $a^* = a$. A is called *Hermitian* if every selfadjoint element a in A has real *spectrum* $\sigma(a)$, namely $\sigma(a) \subset \mathbb{R}$.

In what follows we assume that A is a Hermitian unital Banach *-algebra.

We say that an element a is nonnegative and write this as $a \ge 0$ if $a^* = a$ and $\sigma(a) \subset [0,\infty)$. We say that a is positive and write a>0 if $a\ge 0$ and $0\notin \sigma(a)$. Thus a>0 implies that its inverse a^{-1} exists. Denote the set of all invertible elements of A by Inv (A). If $a,b\in \text{Inv}(A)$, then $ab\in \text{Inv}(A)$ and $(ab)^{-1}=b^{-1}a^{-1}$. Also, saying that $a\ge b$ means that $a-b\ge 0$ and, similarly a>b means that a-b>0.

The Shirali-Ford theorem asserts that [14] (see also [2, Theorem 41.5])

(SF)
$$a^*a \ge 0$$
 for every $a \in A$.

Based on this fact, Okayasu [13], Tanahashi and Uchiyama [15] proved the following fundamental properties (see also [7]):

- (i) If $a, b \in A$, then $a \ge 0, b \ge 0$ imply $a + b \ge 0$ and $\alpha \ge 0$ implies $\alpha a \ge 0$;
- (ii) If $a, b \in A$, then $a > 0, b \ge 0$ imply a + b > 0;
- (iii) If $a, b \in A$, then either $a \ge b > 0$ or $a > b \ge 0$ imply a > 0;
- (iv) If a > 0, then $a^{-1} > 0$;

1

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A30, 15A60, 26D15, 26D10.

- (v) If c > 0, then 0 < b < a if and only if cbc < cac, also $0 < b \le a$ if and only if $cbc \le cac$;
- (vi) If 0 < a < 1, then $1 < a^{-1}$;
- (vii) If 0 < b < a, then $0 < a^{-1} < b^{-1}$, also if $0 < b \le a$, then $0 < a^{-1} \le b^{-1}$.

Okayasu [13] showed that the Löwner-Heinz inequality remains valid in a Hermitian unital Banach *-algebra with continuous involution, namely if $a, b \in A$ and $p \in [0, 1]$ then a > b ($a \ge b$) implies that $a^p > b^p$ ($a^p \ge b^p$).

In order to introduce the real power of a positive element, we need the following facts [2, Theorem 41.5].

Let $a \in A$ and a > 0, then $0 \notin \sigma(a)$ and the fact that $\sigma(a)$ is a compact subset of $\mathbb C$ implies that $\inf\{z:z\in\sigma(a)\}>0$ and $\sup\{z:z\in\sigma(a)\}<\infty$. Choose γ to be close rectifiable curve in $\{\operatorname{Re} z>0\}$, the right half open plane of the complex plane, such that $\sigma(a)\subset \operatorname{ins}(\gamma)$, the inside of γ . Let G be an open subset of $\mathbb C$ with $\sigma(a)\subset G$. If $f:G\to\mathbb C$ is analytic, we define an element f(a) in A by

$$f\left(a\right) := \frac{1}{2\pi i} \int_{\gamma} f\left(z\right) \left(z - a\right)^{-1} dz.$$

It is well known (see for instance [4, pp. 201-204]) that f(a) does not depend on the choice of γ and the Spectral Mapping Theorem (SMT)

$$\sigma(f(a)) = f(\sigma(a))$$

holds.

For any $\alpha \in \mathbb{R}$ we define for $a \in A$ and a > 0, the real power

$$a^{\alpha} := \frac{1}{2\pi i} \int_{\mathcal{X}} z^{\alpha} (z - a)^{-1} dz,$$

where z^{α} is the principal α -power of z. Since A is a Banach *-algebra, then $a^{\alpha} \in A$. Moreover, since z^{α} is analytic in $\{\text{Re } z > 0\}$, then by (SMT) we have

$$\sigma\left(a^{\alpha}\right) = \left(\sigma\left(a\right)\right)^{\alpha} = \left\{z^{\alpha} : z \in \sigma\left(a\right)\right\} \subset \left(0, \infty\right).$$

Following [7], we list below some important properties of real powers:

- (viii) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $a^{\alpha} \in A$ with $a^{\alpha} > 0$ and $(a^2)^{1/2} = a$, [15, Lemma 6];
- (ix) If $0 < a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^{\alpha}a^{\beta} = a^{\alpha+\beta}$;
- (x) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $(a^{\alpha})^{-1} = (a^{-1})^{\alpha} = a^{-\alpha}$;
- (xi) If $0 < a, b \in A$, $\alpha, \beta \in \mathbb{R}$ and ab = ba, then $a^{\alpha}b^{\beta} = b^{\beta}a^{\alpha}$.

We define the following means for $\nu \in [0,1]$, see also [7] for different notations:

(A)
$$a\nabla_{\nu}b := (1-\nu) a + \nu b, \ a, \ b \in A$$

the weighted arithmetic mean of (a, b),

(H)
$$a!_{\nu}b := ((1-\nu)a^{-1} + \nu b^{-1})^{-1}, \ a, \ b > 0$$

the weighted harmonic mean of positive elements (a, b) and

(G)
$$a\sharp_{\nu}b := a^{1/2} \left(a^{-1/2}ba^{-1/2}\right)^{\nu} a^{1/2}$$

the weighted geometric mean of positive elements (a,b). Our notations above are motivated by the classical notations used in operator theory. For simplicity, if $\nu = \frac{1}{2}$, we use the simpler notations $a\nabla b$, a!b and $a\sharp b$. The definition of weighted geometric mean can be extended for any real ν .

In [7], B. Q. Feng proved the following properties of these means in A a Hermitian unital Banach *-algebra:

- (xii) If $0 < a, b \in A$, then a!b = b!a and $a\sharp b = b\sharp a$;
- (xiii) If $0 < a, b \in A$ and $c \in Inv(A)$, then

$$c^*(a!b) c = (c^*ac)! (c^*bc)$$
 and $c^*(a\sharp b) c = (c^*ac)\sharp (c^*bc)$;

(xiv) If $0 < a, b \in A$ and $\nu \in [0, 1]$, then

$$(a!_{\nu}b)^{-1} = (a^{-1}) \nabla_{\nu} (b^{-1}) \text{ and } (a^{-1}) \sharp_{\nu} (b^{-1}) = (a\sharp_{\nu}b)^{-1}.$$

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real numbers, B. Q. Feng obtained in [7] the following inequality between the weighted means introduced above:

(HGA)
$$a\nabla_{\nu}b \geq a\sharp_{\nu}b \geq a!_{\nu}b$$

for any $0 < a, b \in A$ and $\nu \in [0, 1]$.

In [15], Tanahashi and Uchiyama obtained the following identity of interest:

Lemma 1. If 0 < c, d and λ is a real number, then

(1.1)
$$(dcd)^{\lambda} = dc^{1/2} \left(c^{1/2} d^2 c^{1/2} \right)^{\lambda - 1} c^{1/2} d.$$

Using this equality we can prove the following fact [6]:

Proposition 1. For any $0 < a, b \in A$ we have

$$(1.2) b\sharp_{1-\nu} a = a\sharp_{\nu} b$$

for any real number ν .

In [6] we introduced the quadratic weighted mean of (x, y) with $x, y \in \text{Inv}(A)$ and the real weight $\nu \in \mathbb{R}$, as the positive element denoted by $x \otimes_{\nu} y$ and defined by

(S)
$$x \otimes_{\nu} y := x^* \left((x^*)^{-1} y^* y x^{-1} \right)^{\nu} x = x^* \left| y x^{-1} \right|^{2\nu} x = \left| \left| y x^{-1} \right|^{\nu} x \right|^2.$$

When $\nu = 1/2$, we denote $x \otimes_{1/2} y$ by $x \otimes y$ and we have

$$x \otimes y = x^* \left((x^*)^{-1} y^* y x^{-1} \right)^{1/2} x = x^* \left| y x^{-1} \right| x = \left| \left| y x^{-1} \right|^{1/2} x \right|^2.$$

We can also introduce the 1/2-quadratic weighted mean of (x,y) with $x,y \in \text{Inv}(A)$ and the real weight $\nu \in \mathbb{R}$ by

(1/2-S)
$$x \bigotimes_{\nu}^{1/2} y := (x \bigotimes_{\nu} y)^{1/2} = \left| \left| y x^{-1} \right|^{\nu} x \right|.$$

Correspondingly, when $\nu = 1/2$ we denote $x \otimes^{1/2} y$ and we have

$$x \otimes^{1/2} y = \left| \left| y x^{-1} \right|^{1/2} x \right|.$$

The following equalities hold [6]:

Proposition 2. For any $x, y \in \text{Inv}(A)$ and $\nu \in \mathbb{R}$ we have

$$(x \otimes_{\nu} y)^{-1} = (x^*)^{-1} \otimes_{\nu} (y^*)^{-1}$$

and

$$(x^{-1}) \, \mathbb{S}_{\nu} (y^{-1}) = (x^* \, \mathbb{S}_{\nu} y^*)^{-1}.$$

If we take in (S) $x = a^{1/2}$ and $y = b^{1/2}$ with a, b > 0 then we get

$$a^{1/2} (\mathbb{S})_{\nu} b^{1/2} = a \sharp_{\nu} b$$

for any $\nu \in \mathbb{R}$ that shows that the quadratic weighted mean can be seen as an extension of the weighted geometric mean for positive elements considered in the introduction.

Let $x, y \in \text{Inv}(A)$. If we take in the definition of " \sharp_{ν} " the elements $a = |x|^2 > 0$ and $b = |y|^2 > 0$ we also have for real ν

$$|x|^{2} \sharp_{\nu} |y|^{2} = |x| (|x|^{-1} |y|^{2} |x|^{-1})^{v} |x| = |x| |y| |x|^{-1}|^{2v} |x| = ||y| |x|^{-1}|^{v} |x| |^{2}.$$

It is then natural to ask how the positive elements $x \otimes_{\nu} y$ and $|x|^2 \sharp_{\nu} |y|^2$ do compare, when $x, y \in \text{Inv}(A)$ and $\nu \in \mathbb{R}$?

In [6] we proved the following lemma that provides a slight generalization of Lemma 1.

Lemma 2. If 0 < c, $d \in \text{Inv}(A)$ and λ is a real number, then

$$(1.3) \qquad (dcd^*)^{\lambda} = dc^{1/2} \left(c^{1/2} |d|^2 c^{1/2} \right)^{\lambda - 1} c^{1/2} d^*.$$

Remark 1. The identity (1.3) was proved by. T. Furuta in [8] for positive operator c and invertible operator d in the Banach algebra of all bonded linear operators on a Hilbert space by using the polar decomposition of the invertible operator $dc^{1/2}$.

The following fundamental fact that connects the quadratic weighted geometric mean \mathbb{S}_{ν} to the weighted geometric mean \sharp_{ν} holds [6]:

Theorem 1. If $x, y \in \text{Inv}(A)$ and λ is a real number, then

(1.4)
$$x \Im_{\nu} y = |x|^2 \sharp_{\nu} |y|^2$$

Now, assume that f(z) is analytic in the right half open plane $\{\text{Re } z > 0\}$ and for the interval $I \subset (0, \infty)$ assume that $f(z) \geq 0$ for any $z \in I$. If $u \in A$ such that $\sigma(u) \subset I$, then by (SMT) we have

$$\sigma\left(f\left(u\right)\right)=f\left(\sigma\left(u\right)\right)\subset f\left(I\right)\subset\left[0,\infty\right)$$

meaning that $f(u) \geq 0$ in the order of A.

Therefore, we can state the following fact that will be used to establish various inequalities in A.

Lemma 3. Let f(z) and g(z) be analytic in the right half open plane $\{\text{Re } z > 0\}$ and for the interval $I \subset (0,\infty)$ assume that $f(z) \geq g(z)$ for any $z \in I$. Then for any $u \in A$ with $\sigma(u) \subset I$ we have $f(u) \geq g(u)$ in the order of A.

We have the following inequalities between means [6]:

Theorem 2. For any $x, y \in \text{Inv}(A)$ and $\nu \in [0, 1]$ we have

(1.5)
$$|x|^2 \nabla_{\nu} |y|^2 \ge x \Im_{\nu} y \ge |x|^2!_{\nu} |y|^2.$$

In particular,

$$|x|^2 \nabla |y|^2 \ge x \Im y \ge |x|^2! |y|^2.$$

We can define the weighted means for $\nu \in [0,1]$ and the elements $x, y \in \text{Inv}(A)$ and $\nu \in [0,1]$ by

$$x\nabla_{\nu}^{1/2}y := (|x|^2 \nabla_{\nu} |y|^2)^{1/2} = ((1-\nu) |x|^2 + \nu |y|^2)^{1/2}$$

and

$$x!_{\nu}^{1/2}y := (|x|^2!_{\nu}|y|^2)^{1/2} = ((1-\nu)|x|^{-2} + \nu|y|^{-2})^{-1/2}.$$

For $\nu = 1/2$ we consider

$$x\nabla^{1/2}y := \left(\left|x\right|^2 \nabla \left|y\right|^2\right)^{1/2} = \frac{\sqrt{2}}{2} \left(\left|x\right|^2 + \left|y\right|^2\right)^{1/2}$$

and

$$x!^{1/2}y := (|x|^2! |y|^2)^{1/2} = \sqrt{2} (|x|^{-2} + |y|^{-2})^{-1/2}.$$

Corollary 1. Let A be a Hermitian unital Banach *-algebra with continuous involution. Then for any $x, y \in \text{Inv}(A)$ and $\nu \in [0, 1]$ we have

(1.7)
$$x\nabla_{\nu}^{1/2}y \ge x \mathbb{S}_{\nu}^{1/2}y \ge x!_{\nu}^{1/2}y.$$

In particular, we have

(1.8)
$$x\nabla^{1/2}y \ge x \$^{1/2}y \ge x!^{1/2}y.$$

Recall that a C^* -algebra A is a Banach *-algebra such that the norm satisfies the condition

$$||a^*a|| = ||a||^2$$
 for any $a \in A$.

If a C^* -algebra A has a unit 1, then automatically ||1|| = 1.

It is well know that, if A is a C^* -algebra, then (see for instance [12, 2.2.5 Theorem])

$$b \ge a \ge 0$$
 implies that $||b|| \ge ||a||$.

Corollary 2. Let A be a unital C^* -algebra. Then for any $x, y \in \text{Inv}(A)$ and $\nu \in [0,1]$ we have

$$(1.9) \qquad (1-\nu) \|x\|^2 + \nu \|y\|^2 \ge \left\| (1-\nu) |x|^2 + \nu |y|^2 \right\| \ge \left\| |yx^{-1}|^{\nu} x \right\|^2.$$

In particular,

$$(1.10) \frac{1}{2} \left(\|x\|^2 + \|y\|^2 \right) \ge \frac{1}{2} \left\| |x|^2 + |y|^2 \right\| \ge \left\| |yx^{-1}|^{1/2} x \right\|^2.$$

Motivated by the above facts, in this paper we obtain various upper and lower bounds for the positive difference

$$(1 - \nu) |x|^2 + \nu |y|^2 - x \Im_{\nu} y,$$

where $\nu \in [0,1]$, under various assumptions for the elements involved. Applications for the classical geometric mean $a\sharp_{\nu}b:=a^{1/2}\left(a^{-1/2}ba^{-1/2}\right)^{\upsilon}a^{1/2}$ of positive elements a,b that satisfy the condition $0< ka \leq b \leq Ka$ for certain numbers 0< k< K, are also given.

2. Refinements and Reverses

We have the following inequality that provides a refinement and a reverse for the celebrated scalar Young's inequality

$$(2.1) \quad \frac{1}{2}\nu\left(1-\nu\right)\frac{\left(\beta-\alpha\right)^{2}}{\max\left\{\alpha,\beta\right\}} \leq \left(1-\nu\right)\alpha + \nu\beta - \alpha^{1-\nu\beta\nu} \leq \frac{1}{2}\nu\left(1-\nu\right)\frac{\left(\beta-\alpha\right)^{2}}{\min\left\{\alpha,\beta\right\}}$$

for any α , $\beta > 0$ and $\nu \in [0, 1]$.

This result was obtained in 1978 by Cartwright and Field [3] who established a more general result for n variables and gave an application for a probability measure supported on a finite interval.

Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that

$$(2.2) M \ge |yx^{-1}| \ge m.$$

The inequality (2.2) is equivalent to

(2.3)
$$M^{2} \ge |yx^{-1}|^{2} = (x^{*})^{-1} |y|^{2} x^{-1} \ge m^{2}.$$

If we multiply at left with x^* and at right with x we get the equivalent relation

$$(2.4) M^2 |x|^2 \ge |y|^2 \ge m^2 |x|^2.$$

For $[k, K] \subset (0, \infty)$ we consider the coefficients

(2.5)
$$c(k,K) := \begin{cases} (K-1)^2 & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ \frac{(k-1)^2}{K} & \text{if } 1 < k \end{cases}$$

and

(2.6)
$$C(k,K) := \begin{cases} \frac{(k-1)^2}{k} & \text{if } K < 1, \\ \frac{1}{k} \max\left\{ (k-1)^2, (K-1)^2 \right\} & \text{if } k \le 1 \le K, \\ (K-1)^2 & \text{if } 1 < k. \end{cases}$$

We have:

Theorem 3. Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (2.2) is true. Then we have the inequalities

$$(2.7) \qquad \frac{1}{2}\nu\left(1-\nu\right)c\left(m^{2},M^{2}\right)\left|x\right|^{2} \leq \frac{1}{2}\frac{\nu\left(1-\nu\right)}{\max\left\{M^{2},1\right\}}\left|\left(\left|yx^{-1}\right|^{2}-1\right)x\right|^{2} \\ \leq \left|x\right|^{2}\nabla_{\nu}\left|y\right|^{2}-x\Im_{\nu}y \\ \leq \frac{1}{2}\frac{\nu\left(1-\nu\right)}{\min\left\{m^{2},1\right\}}\left|\left(\left|yx^{-1}\right|^{2}-1\right)x\right|^{2} \\ \leq \frac{1}{2}\nu\left(1-\nu\right)C\left(m^{2},M^{2}\right)\left|x\right|^{2}$$

for any $\nu \in [0,1]$.

In particular, we have

(2.8)
$$\frac{1}{8}c\left(m^{2}, M^{2}\right)\left|x\right|^{2} \leq \frac{1}{8} \frac{1}{\max\left\{M^{2}, 1\right\}} \left|\left(\left|yx^{-1}\right|^{2} - 1\right)x\right|^{2}$$
$$\leq \left|x\right|^{2} \nabla \left|y\right|^{2} - x \Im y$$
$$\leq \frac{1}{8} \frac{1}{\min\left\{m^{2}, 1\right\}} \left|\left(\left|yx^{-1}\right|^{2} - 1\right)x\right|^{2}$$
$$\leq \frac{1}{8}C\left(m^{2}, M^{2}\right)\left|x\right|^{2}.$$

Proof. If we write the inequality (2.1) for $\alpha = 1$ and $\beta = \tau$ we get

$$(2.9) \qquad \frac{1}{2}\nu \left(1-\nu\right) \frac{\left(\tau-1\right)^{2}}{\max\left\{\tau,1\right\}} \leq 1-\nu+\nu\tau-\tau^{\nu} \leq \frac{1}{2}\nu \left(1-\nu\right) \frac{\left(\tau-1\right)^{2}}{\min\left\{\tau,1\right\}}$$

for any $\tau > 0$ and for any $\nu \in [0, 1]$.

If $\tau \in [k, K] \subset (0, \infty)$, then $\max \{\tau, 1\} \le \max \{K, 1\}$ and $\min \{k, 1\} \le \min \{\tau, 1\}$ and by (2.9) we get

(2.10)
$$\frac{1}{2}\nu(1-\nu)\frac{\min_{\tau\in[k,K]}(\tau-1)^{2}}{\max\{K,1\}} \leq \frac{1}{2}\nu(1-\nu)\frac{(\tau-1)^{2}}{\max\{K,1\}}$$
$$\leq 1-\nu+\nu\tau-\tau^{\nu}$$
$$\leq \frac{1}{2}\nu(1-\nu)\frac{(\tau-1)^{2}}{\min\{k,1\}}$$
$$\leq \frac{1}{2}\nu(1-\nu)\frac{\max_{\tau\in[k,K]}(\tau-1)^{2}}{\min\{k,1\}}$$

for any $\tau \in [k, K]$ and for any $\nu \in [0, 1]$.

Observe that

$$\min_{\tau \in [k,K]} (\tau - 1)^2 = \begin{cases} (K - 1)^2 & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ (k - 1)^2 & \text{if } 1 < k \end{cases}$$

and

$$\max_{\tau \in [k,K]} (\tau - 1)^2 = \begin{cases} (k-1)^2 & \text{if } K < 1, \\ \max \left\{ (k-1)^2, (K-1)^2 \right\} & \text{if } k \le 1 \le K, \\ (K-1)^2 & \text{if } 1 < k. \end{cases}$$

Then

$$\frac{\min_{\tau \in [k,K]} (\tau - 1)^2}{\max \{K, 1\}} = c(k, K)$$

and

$$\frac{\max_{\tau \in [k,K]} (\tau - 1)^2}{\min \left\{k,1\right\}} = C\left(k,K\right)$$

as defined by (2.5) and (2.6).

Using the inequality (2.10) we have

(2.11)
$$\frac{1}{2}\nu(1-\nu)c(k,M) \leq \frac{1}{2}\nu(1-\nu)\frac{(z-1)^{2}}{\max\{M,1\}}$$
$$\leq 1-\nu+\nu z-z^{\nu}$$
$$\leq \frac{1}{2}\nu(1-\nu)\frac{(z-1)^{2}}{\min\{k,1\}}$$
$$\leq \frac{1}{2}\nu(1-\nu)C(k,M)$$

for any real $z \in [k, K] \subset (0, \infty)$ and for any $\nu \in [0, 1]$.

Let $u \in A$ with spectrum $\sigma(u) \subset [k, K] \subset (0, \infty)$. Then by applying Lemma 3 for the corresponding analytic functions in the right half open plane $\{\text{Re } z > 0\}$ involved in the inequality (2.11) we conclude that we have in the order of A that

(2.12)
$$\frac{1}{2}\nu(1-\nu)c(k,K) \leq \frac{1}{2}\frac{\nu(1-\nu)}{\max\{K,1\}}(u-1)^{2}$$
$$\leq 1-\nu+\nu u-u^{\nu}$$
$$\leq \frac{1}{2}\frac{\nu(1-\nu)}{\min\{k,1\}}(u-1)^{2}$$
$$\leq \frac{1}{2}\nu(1-\nu)C(k,K)$$

for any $\nu \in [0, 1]$.

If $x, y \in \text{Inv}(A)$ satisfy the condition (2.2) then, by (2.3), the element $u = \left|yx^{-1}\right|^2 \in \text{Inv}(A)$ and $\sigma(u) \subset \left[m^2, M^2\right] \subset (0, \infty)$. By (2.12) we then have

$$(2.13) \qquad \frac{1}{2}\nu(1-\nu)c(m^{2},M^{2}) \leq \frac{1}{2}\frac{\nu(1-\nu)}{\max\{M^{2},1\}}\left(\left|yx^{-1}\right|^{2}-1\right)^{2}$$

$$\leq 1-\nu+\nu\left|yx^{-1}\right|^{2}-\left(\left|yx^{-1}\right|^{2}\right)^{\nu}$$

$$\leq \frac{1}{2}\frac{\nu(1-\nu)}{\min\{m^{2},1\}}\left(\left|yx^{-1}\right|^{2}-1\right)^{2}$$

$$\leq \frac{1}{2}\nu(1-\nu)C(m^{2},M^{2})$$

for any $\nu \in [0,1]$.

If we multiply this inequality at left with x^* and at right with x we get

$$(2.14) \qquad \frac{1}{2}\nu (1-\nu) c (m^{2}, M^{2}) |x|^{2}$$

$$\leq \frac{1}{2} \frac{\nu (1-\nu)}{\max \{M^{2}, 1\}} x^{*} (|yx^{-1}|^{2} - 1)^{2} x$$

$$\leq (1-\nu) |x|^{2} + \nu x^{*} |yx^{-1}|^{2} x - x^{*} (|yx^{-1}|^{2})^{\nu} x$$

$$\leq \frac{1}{2} \frac{\nu (1-\nu)}{\min \{m^{2}, 1\}} x^{*} (|yx^{-1}|^{2} - 1)^{2} x$$

$$\leq \frac{1}{2}\nu (1-\nu) C (m^{2}, M^{2}) |x|^{2}$$

for any $\nu \in [0,1]$.

Since

$$x^* |yx^{-1}|^2 x = x^* ((x^*)^{-1} y^* y x^{-1}) x = y^* y = |y|^2,$$

$$x^* (|yx^{-1}|^2)^{\nu} x = x \Im_{\nu} y$$

and

$$x^* (|yx^{-1}|^2 - 1)^2 x = |(|yx^{-1}|^2 - 1) x|^2$$

for $x, y \in \text{Inv}(A)$, then by (2.14) we get the desired result (2.7).

Corollary 3. Let A be a unital C^* -algebra. Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (2.2) holds, then we have

$$(2.15) \qquad \frac{1}{2}\nu\left(1-\nu\right)c\left(m^{2},M^{2}\right)\left\|x\right\|^{2} \leq \frac{1}{2}\frac{\nu\left(1-\nu\right)}{\max\left\{M^{2},1\right\}}\left\|\left(\left|yx^{-1}\right|^{2}-1\right)x\right\|^{2}$$

$$\leq \left\|\left|x\right|^{2}\nabla_{\nu}\left|y\right|^{2}-x\widehat{\otimes}_{\nu}y\right\|$$

$$\leq \frac{1}{2}\frac{\nu\left(1-\nu\right)}{\min\left\{m^{2},1\right\}}\left\|\left(\left|yx^{-1}\right|^{2}-1\right)x\right\|^{2}$$

$$\leq \frac{1}{2}\nu\left(1-\nu\right)C\left(m^{2},M^{2}\right)\left\|x\right\|^{2}$$

for any $\nu \in [0,1]$. In particular,

$$(2.16) \qquad \frac{1}{8}c\left(m^{2}, M^{2}\right)\left\|x\right\|^{2} \leq \frac{1}{8}\frac{1}{\max\left\{M^{2}, 1\right\}}\left\|\left(\left|yx^{-1}\right|^{2} - 1\right)x\right\|^{2}$$

$$\leq \left\|\left|x\right|^{2}\nabla\left|y\right|^{2} - x\$y\right\|$$

$$\leq \frac{1}{8}\frac{1}{\min\left\{m^{2}, 1\right\}}\left\|\left(\left|yx^{-1}\right|^{2} - 1\right)x\right\|^{2}$$

$$\leq \frac{1}{8}C\left(m^{2}, M^{2}\right)\left\|x\right\|^{2}.$$

Remark 2. Using the triangle inequality we have

$$0 \le \left\| |x|^2 \nabla_{\nu} |y|^2 \right\| - \|x \otimes_{\nu} y\| \le \left\| |x|^2 \nabla_{\nu} |y|^2 - x \otimes_{\nu} y \right\|$$

and by (2.15) we get the following reverse of the second inequality in (1.9)

(2.17)
$$\left\| (1 - \nu) |x|^2 + \nu |y|^2 \right\|$$

$$\leq \left\| |yx^{-1}|^{\nu} x \right\|^2 + \frac{1}{2} \frac{\nu (1 - \nu)}{\min \{m^2, 1\}} \left\| \left(|yx^{-1}|^2 - 1 \right) x \right\|^2$$

$$\leq \left\| |yx^{-1}|^{\nu} x \right\|^2 + \frac{1}{2} \nu (1 - \nu) C \left(m^2, M^2 \right) \|x\|^2$$

provided that x, y and ν are as in Corollary 3. In particular,

$$(2.18) \qquad \frac{1}{2} \left\| |x|^2 + |y|^2 \right\| \le \left\| |yx^{-1}|^{1/2} x \right\|^2 + \frac{1}{8} \frac{1}{\min \{m^2, 1\}} \left\| \left(|yx^{-1}|^2 - 1 \right) x \right\|^2$$

$$\le \left\| |yx^{-1}|^{1/2} x \right\|^2 + \frac{1}{8} C\left(m^2, M^2\right) \left\| x \right\|^2.$$

Corollary 4. If $0 < a, b \in A$ and 0 < k < K are such that

$$(2.19) ka < b < Ka,$$

then

$$(2.20) \qquad \frac{1}{2}\nu(1-\nu)c(k,K)a \leq \frac{1}{2}\frac{\nu(1-\nu)}{\max\{K,1\}} \left| \left(\left| b^{1/2}a^{-1/2} \right|^2 - 1 \right) a^{1/2} \right|^2$$

$$\leq a\nabla_{\nu}b - a\sharp_{\nu}b$$

$$\leq \frac{1}{2}\frac{\nu(1-\nu)}{\min\{k,1\}} \left| \left(\left| b^{1/2}a^{-1/2} \right|^2 - 1 \right) a^{1/2} \right|^2$$

$$\leq \frac{1}{2}\nu(1-\nu)C(k,K)a$$

for any $\nu \in [0,1]$, where c(k,K) and C(k,K) are given by (2.5) and (2.6). In particular, we have

$$(2.21) \frac{1}{8}c(k,K) a \leq \frac{1}{8} \frac{1}{\max\{K,1\}} \left| \left(\left| b^{1/2} a^{-1/2} \right|^2 - 1 \right) a^{1/2} \right|^2 \\ \leq a \nabla b - a \sharp b \\ \leq \frac{1}{8} \frac{1}{\min\{k,1\}} \left| \left(\left| b^{1/2} a^{-1/2} \right|^2 - 1 \right) a^{1/2} \right|^2 \\ \leq \frac{1}{8}C(k,K) a.$$

The proof follows by Theorem 3 applied for $x=a^{1/2},\,y=b^{1/2},\,M=\sqrt{K}$ and $m=\sqrt{k}$.

3. Some Related Results

We observe that since

$$\max \{\alpha, \beta\} \min \{\alpha, \beta\} = \alpha\beta \text{ for } \alpha, \beta > 0,$$

then the inequality (2.1) can be written in an equivalent form as

(3.1)
$$\frac{1}{2}\nu(1-\nu)\min\left\{\alpha,\beta\right\}\frac{(\beta-\alpha)^2}{\alpha\beta} \le (1-\nu)\alpha + \nu\beta - \alpha^{1-\nu\beta\nu}$$
$$\le \frac{1}{2}\nu(1-\nu)\max\left\{\alpha,\beta\right\}\frac{(\beta-\alpha)^2}{\alpha\beta}$$

for any α , $\beta > 0$ and $\nu \in [0, 1]$.

We define the following coefficients associated with the interval $[k, K] \subset (0, \infty)$:

(3.2)
$$d(k,K) := \begin{cases} \frac{k(K-1)^2}{K} & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ \frac{(k-1)^2}{k} & \text{if } 1 < k \end{cases}$$

and

(3.3)
$$D(k,K) := \begin{cases} \frac{(k-1)^2}{k} & \text{if } K < 1, \\ \max\left\{\frac{K(k-1)^2}{k}, (K-1)^2\right\} & \text{if } k \le 1 \le K, \\ (K-1)^2 & \text{if } 1 < k. \end{cases}$$

Theorem 4. Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (2.2) is true. Then we have the inequalities

$$(3.4) \quad \frac{1}{2}\nu (1-\nu) d(m^{2}, M^{2}) |x|^{2} \leq \frac{1}{2}\nu (1-\nu) \min\{m^{2}, 1\} \left| |y|^{-1} \left(|y|^{2} - |x|^{2} \right) \right|^{2}$$

$$\leq |x|^{2} \nabla_{\nu} |y|^{2} - x \mathfrak{S}_{\nu} y$$

$$\leq \frac{1}{2}\nu (1-\nu) \max\{M^{2}, 1\} \left| |y|^{-1} \left(|y|^{2} - |x|^{2} \right) \right|^{2}$$

$$\leq \frac{1}{2}\nu (1-\nu) D(m^{2}, M^{2}) |x|^{2}.$$

for any $\nu \in [0,1]$, where the coefficients $d(\cdot,\cdot)$ and $D(\cdot,\cdot)$ are defined by (3.2) and (3.3).

In particular, we have

(3.5)
$$\frac{1}{8}d(m^{2}, M^{2})|x|^{2} \leq \frac{1}{8}\min\{m^{2}, 1\} \left| |y|^{-1} \left(|y|^{2} - |x|^{2} \right) \right|^{2}$$
$$\leq |x|^{2} \nabla |y|^{2} - x \otimes y$$
$$\leq \frac{1}{8}\max\{M^{2}, 1\} \left| |y|^{-1} \left(|y|^{2} - |x|^{2} \right) \right|^{2}$$
$$\leq \frac{1}{8}D(m^{2}, M^{2})|x|^{2}.$$

Proof. If we write the inequality (3.1) for $\alpha = 1$ and $\beta = \tau$ we get

(3.6)
$$\frac{1}{2}\nu(1-\nu)\min\{\tau,1\}\frac{(\tau-1)^2}{\tau} \le 1-\nu+\nu\tau-\tau^{\nu}$$
$$\le \frac{1}{2}\nu(1-\nu)\max\{\tau,1\}\frac{(\tau-1)^2}{\tau}$$

for any $\tau > 0$ and for any $\nu \in [0, 1]$.

If $\tau \in [k, K] \subset (0, \infty)$, then $\max \{\tau, 1\} \le \max \{K, 1\}$ and $\min \{k, 1\} \le \min \{\tau, 1\}$ and by (3.6) we get

(3.7)
$$\frac{1}{2}\nu (1-\nu) \min \{k,1\} \min_{\tau \in [k,K]} \frac{(\tau-1)^2}{\tau}$$

$$\leq \frac{1}{2}\nu (1-\nu) \min \{k,1\} \frac{(\tau-1)^2}{\tau}$$

$$\leq 1-\nu+\nu\tau-\tau^{\nu}$$

$$\leq \frac{1}{2}\nu (1-\nu) \max \{K,1\} \frac{(\tau-1)^2}{\tau}$$

$$\leq \frac{1}{2}\nu (1-\nu) \max \{K,1\} \max_{\tau \in [k,K]} \frac{(\tau-1)^2}{\tau}.$$

Consider the function $\delta:(0,\infty)\to(0,\infty)$, $\delta(\tau)=\frac{(\tau-1)^2}{\tau}$. Then

$$\delta'\left(\tau\right) = \frac{2\left(\tau - 1\right)\tau - \left(\tau - 1\right)^{2}}{\tau^{2}} = \frac{\left(\tau - 1\right)\left(\tau + 1\right)}{\tau^{2}}.$$

This shows that the function δ is strictly decreasing on (0,1), strictly increasing on $(1,\infty)$, $\delta(1)=0$ and

$$\lim_{\tau \to 0+} \delta\left(\tau\right) = \lim_{\tau \to \infty} \delta\left(\tau\right) = \infty.$$

By taking into account all possible locations of the interval [k, K] and the number 1 we have

$$\min_{\tau \in [k,K]} \delta\left(\tau\right) = \begin{cases} \frac{(K-1)^2}{K} & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ \frac{(k-1)^2}{k} & \text{if } 1 < k \end{cases}$$

and

$$\max_{\tau \in [k,K]} \delta(\tau) = \begin{cases} \frac{(k-1)^2}{k} & \text{if } K < 1, \\ \max \left\{ \frac{(k-1)^2}{k}, \frac{(K-1)^2}{K} \right\} & \text{if } k \le 1 \le K, \\ \frac{(K-1)^2}{K} & \text{if } 1 < k. \end{cases}$$

Since

$$\min\{k,1\} \min_{\tau \in [k,K]} \frac{(\tau - 1)^2}{\tau} = \begin{cases} \frac{\frac{k(K-1)^2}{K}}{K} & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ \frac{(k-1)^2}{k} & \text{if } 1 < k \end{cases}$$

and

$$\max\{K, 1\} \max_{\tau \in [k, K]} \frac{(\tau - 1)^2}{\tau} = \begin{cases} \frac{(k-1)^2}{k} & \text{if } K < 1, \\ \max\left\{\frac{K(k-1)^2}{k}, (K-1)^2\right\} & \text{if } k \le 1 \le K, \\ (K-1)^2 & \text{if } 1 < k, \end{cases}$$

then by (3.7) we have

(3.8)
$$\frac{1}{2}\nu(1-\nu)d(k,K) \leq \frac{1}{2}\nu(1-\nu)\min\{k,1\}\left(z+z^{-1}-2\right)$$
$$\leq 1-\nu+\nu z-z^{\nu}$$
$$\leq \frac{1}{2}\nu(1-\nu)\max\{K,1\}\left(z+z^{-1}-2\right)$$
$$\leq \frac{1}{2}\nu(1-\nu)D(k,K),$$

for any $z \in [k, K]$ and for any $\nu \in [0, 1]$.

Let $u \in A$ with spectrum $\sigma(u) \subset [k, K] \subset (0, \infty)$. Then by applying Lemma 3 for the corresponding analytic functions in the right half open plane $\{\text{Re } z > 0\}$ involved in the inequality (3.8) we conclude that we have in the order of A that

(3.9)
$$\frac{1}{2}\nu(1-\nu)d(k,K) \leq \frac{1}{2}\nu(1-\nu)\min\{k,1\}\left(u+u^{-1}-2\right)$$
$$\leq 1-\nu+\nu u-u^{\nu}$$
$$\leq \frac{1}{2}\nu(1-\nu)\max\{K,1\}\left(u+u^{-1}-2\right)$$
$$\leq \frac{1}{2}\nu(1-\nu)D(k,K),$$

for any $\nu \in [0,1]$.

If $x, y \in \text{Inv}(A)$ satisfy the condition (2.2) then, by (2.3), the element $u = \left|yx^{-1}\right|^2 \in \text{Inv}(A)$ and $\sigma(u) \subset \left[m^2, M^2\right] \subset (0, \infty)$.

By (3.9) we then have

$$(3.10) \qquad \frac{1}{2}\nu (1-\nu) d (m^{2}, M^{2})$$

$$\leq \frac{1}{2}\nu (1-\nu) \min \{m^{2}, 1\} \left(\left| yx^{-1} \right|^{2} + \left(\left| yx^{-1} \right|^{2} \right)^{-1} - 2 \right)$$

$$\leq 1 - \nu + \nu \left| yx^{-1} \right|^{2} - \left(\left| yx^{-1} \right|^{2} \right)^{\nu}$$

$$\leq \frac{1}{2}\nu (1-\nu) \max \{M^{2}, 1\} \left(\left| yx^{-1} \right|^{2} + \left(\left| yx^{-1} \right|^{2} \right)^{-1} - 2 \right)$$

$$\leq \frac{1}{2}\nu (1-\nu) D (m^{2}, M^{2}),$$

for any $\nu \in [0, 1]$.

If we multiply this inequality at left with x^* and at right with x we get

$$(3.11) \quad \frac{1}{2}\nu\left(1-\nu\right)d\left(m^{2},M^{2}\right)\left|x\right|^{2}$$

$$\leq \frac{1}{2}\nu\left(1-\nu\right)\min\left\{m^{2},1\right\}\left(x^{*}\left|yx^{-1}\right|^{2}x+x^{*}\left(\left|yx^{-1}\right|^{2}\right)^{-1}x-2\left|x\right|^{2}\right)$$

$$\leq (1-\nu)\left|x\right|^{2}+\nu x^{*}\left|yx^{-1}\right|^{2}x-x^{*}\left(\left|yx^{-1}\right|^{2}\right)^{\nu}x$$

$$\leq \frac{1}{2}\nu\left(1-\nu\right)\max\left\{M^{2},1\right\}\left(x^{*}\left|yx^{-1}\right|^{2}x+x^{*}\left(\left|yx^{-1}\right|^{2}\right)^{-1}x-2\left|x\right|^{2}\right)$$

$$\leq \frac{1}{2}\nu\left(1-\nu\right)D\left(m^{2},M^{2}\right)\left|x\right|^{2},$$

for any $\nu \in [0,1]$.

Since

$$x^* |yx^{-1}|^2 x = |y|^2, \ x^* (|yx^{-1}|^2)^{\nu} x = x \otimes_{\nu} y$$

and

$$x^* (|yx^{-1}|^2)^{-1} x = x^* ((x^*)^{-1} y^* y x^{-1})^{-1} x = x^* (xy^{-1} (y^*)^{-1} x^*) x$$
$$= x^* xy^{-1} (y^*)^{-1} x^* x = |x|^2 |y|^{-2} |x|^2,$$

then by (3.11) we get

$$(3.12) \qquad \frac{1}{2}\nu \left(1-\nu\right)d\left(m^{2},M^{2}\right)\left|x\right|^{2}$$

$$\leq \frac{1}{2}\nu \left(1-\nu\right)\min\left\{m^{2},1\right\}\left(\left|y\right|^{2}+\left|x\right|^{2}\left|y\right|^{-2}\left|x\right|^{2}-2\left|x\right|^{2}\right)$$

$$\leq \left|x\right|^{2}\nabla_{\nu}\left|y\right|^{2}-x\mathfrak{S}_{\nu}y$$

$$\leq \frac{1}{2}\nu \left(1-\nu\right)\max\left\{M^{2},1\right\}\left(\left|y\right|^{2}+\left|x\right|^{2}\left|y\right|^{-2}\left|x\right|^{2}-2\left|x\right|^{2}\right)$$

$$\leq \frac{1}{2}\nu \left(1-\nu\right)D\left(m^{2},M^{2}\right)\left|x\right|^{2}.$$

Observe that

$$|y|^{2} + |x|^{2} |y|^{-2} |x|^{2} - 2|x|^{2} = (|y|^{2} - |x|^{2}) (1 - |y|^{-2} |x|^{2})$$

$$= (|y|^{2} - |x|^{2}) |y|^{-2} (|y|^{2} - |x|^{2})$$

$$= |y|^{-1} (|y|^{2} - |x|^{2})|^{2}$$

and by (3.12) we get the desired result (3.4).

Corollary 5. Let A be a unital C^* -algebra. Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (2.2) holds, then we have

(3.13)
$$\frac{1}{2}\nu (1 - \nu) d (m^{2}, M^{2}) \|x\|^{2}$$

$$\leq \frac{1}{2}\nu (1 - \nu) \min \{m^{2}, 1\} \||y|^{-1} (|y|^{2} - |x|^{2})\|^{2}$$

$$\leq \||x|^{2} \nabla_{\nu} |y|^{2} - x \otimes_{\nu} y \|$$

$$\leq \frac{1}{2}\nu (1 - \nu) \max \{M^{2}, 1\} \||y|^{-1} (|y|^{2} - |x|^{2})\|^{2}$$

$$\leq \frac{1}{2}\nu (1 - \nu) D (m^{2}, M^{2}) \|x\|^{2}$$

for any $\nu \in [0,1]$.

In particular, we have

$$(3.14) \qquad \frac{1}{8}d\left(m^{2}, M^{2}\right) \left\|x\right\|^{2} \leq \frac{1}{8} \min\left\{m^{2}, 1\right\} \left\|\left|y\right|^{-1} \left(\left|y\right|^{2} - \left|x\right|^{2}\right)\right\|^{2}$$

$$\leq \left\|\left|x\right|^{2} \nabla \left|y\right|^{2} - x \Im y\right\|$$

$$\leq \frac{1}{8} \max\left\{M^{2}, 1\right\} \left\|\left|y\right|^{-1} \left(\left|y\right|^{2} - \left|x\right|^{2}\right)\right\|^{2}$$

$$\leq \frac{1}{8}D\left(m^{2}, M^{2}\right) \left\|x\right\|^{2}.$$

Remark 3. We also have the following reverse of the second inequality in (1.9)

(3.15)
$$\|(1-\nu)|x|^{2} + \nu|y|^{2} \|$$

$$\leq \||yx^{-1}|^{\nu}x\|^{2} + \frac{1}{2}\nu(1-\nu)\max\{M^{2},1\}\||y|^{-1}(|y|^{2} - |x|^{2})\|^{2}$$

$$\leq \||yx^{-1}|^{\nu}x\|^{2} + \frac{1}{2}\nu(1-\nu)D(m^{2},M^{2})\|x\|^{2}$$

provided that x, y and ν are as in Corollary 3. In particular,

$$(3.16) \quad \frac{1}{2} \left\| |x|^2 + |y|^2 \right\| \le \left\| |yx^{-1}|^{1/2} x \right\|^2 + \frac{1}{8} \max \left\{ M^2, 1 \right\} \left\| |y|^{-1} \left(|y|^2 - |x|^2 \right) \right\|^2$$

$$\le \left\| |yx^{-1}|^{1/2} x \right\|^2 + \frac{1}{8} D\left(m^2, M^2 \right) \left\| x \right\|^2.$$

Corollary 6. With the assumptions of Corollary 4 we have

$$(3.17) \qquad \frac{1}{2}\nu(1-\nu)d(k,K)a \leq \frac{1}{2}\nu(1-\nu)\min\{k,1\} \left| b^{-1/2}(b-a) \right|^{2} \\ \leq a\nabla_{\nu}b - a\sharp_{\nu}b \\ \leq \frac{1}{2}\nu(1-\nu)\max\{K,1\} \left| b^{-1/2}(b-a) \right|^{2} \\ \leq \frac{1}{2}\nu(1-\nu)D(k,K)a$$

for any $\nu \in [0,1]$, where d(k,K) and D(k,K) are given by (3.2) and (3.3). In particular,

(3.18)
$$\frac{1}{8}d(k,K) a \leq \frac{1}{8}\min\{k,1\} \left| b^{-1/2} (b-a) \right|^{2}$$
$$\leq a\nabla b - a\sharp b \leq \frac{1}{8}\max\{K,1\} \left| b^{-1/2} (b-a) \right|^{2}$$
$$\leq \frac{1}{8}D(k,K) a.$$

For an interval [k, K], define the coefficients

(3.19)
$$f(k,K) := \begin{cases} (K-1)^2 & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ \frac{(k-1)^2}{k} & \text{if } 1 < k \end{cases}$$

and

(3.20)
$$F(k,K) := \begin{cases} \frac{(k-1)^2}{k} & \text{if } K < 1, \\ \max\left\{\frac{(k-1)^2}{k}, (K-1)^2\right\} & \text{if } k \le 1 \le K, \\ (K-1)^2 & \text{if } 1 < k. \end{cases}$$

Theorem 5. Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (2.2) is true. Then we have the inequalities

(3.21)
$$\frac{1}{2}\nu(1-\nu)f(m^2,M^2)|x|^2 \le |x|^2\nabla_{\nu}|y|^2 - x\Im_{\nu}y$$
$$\le \frac{1}{2}\nu(1-\nu)F(m^2,M^2)|x|^2$$

for any $\nu \in [0,1]$, where $f(\cdot,\cdot)$ and $F(\cdot,\cdot)$ are defined in (3.19) and (3.20). In particular, we have

$$(3.22) \frac{1}{8} f(m^2, M^2) |x|^2 \le |x|^2 \nabla |y|^2 - x \Im y \le \frac{1}{8} F(m^2, M^2) |x|^2.$$

Proof. From (2.9) we get

(3.23)
$$\frac{1}{2}\nu(1-\nu)\psi(\tau) \le 1 - \nu + \nu\tau - \tau^{\nu} \le \frac{1}{2}\nu(1-\nu)\Psi(\tau)$$

for any $\tau > 0$ and for any $\nu \in [0,1]$, where $\psi(\tau) := \frac{(\tau-1)^2}{\max\{\tau,1\}}$ and $\Psi(\tau) := \frac{(\tau-1)^2}{\min\{\tau,1\}}$. Observe that

$$\psi(\tau) = \begin{cases} (\tau - 1)^2 & \text{if } \tau \in (0, 1), \\ \frac{(\tau - 1)^2}{2} & \text{if } \tau \in [1, \infty) \end{cases}$$

and

$$\Psi\left(\tau\right) = \begin{cases} \frac{(\tau-1)^2}{\tau} & \text{if } \tau \in (0,1), \\ (\tau-1)^2 & \text{if } \tau \in [1,\infty). \end{cases}$$

We observe that the functions ψ and Ψ are strictly decreasing on (0,1) and strictly increasing on $[1, \infty)$ with $\psi(1) = \Psi(1) = 0$.

If we consider all possible locations of the interval [k, K] and the number 1 then we get

$$\min_{\tau \in [k,K]} \psi\left(\tau\right) = \left\{ \begin{array}{l} \psi\left(K\right) \text{ if } K < 1, \\ 0 \text{ if } k \leq 1 \leq K, \\ \psi\left(k\right) \text{ if } 1 < k \end{array} \right. = f\left(k,K\right)$$

and

$$\max_{\tau \in [k,K]} \Psi\left(\tau\right) = \left\{ \begin{array}{l} \Psi\left(k\right) \text{ if } K < 1, \\ \max\left\{\Psi\left(k\right), \Psi\left(K\right)\right\} \text{ if } k \leq 1 \leq K, \\ \Psi\left(K\right) \text{ if } 1 < k \end{array} \right. = F\left(k,K\right),$$

then by (3.23) we get

$$(3.24) \frac{1}{2}\nu(1-\nu)f(k,K) \le 1-\nu+\nu\tau-\tau^{\nu} \le \frac{1}{2}\nu(1-\nu)F(k,K)$$

for any $\tau \in [k, K]$ and for any $\nu \in [0, 1]$.

By making use of a similar argument as in the proof of Theorem 4 we deduce the desired result (3.21).

Remark 4. For $0 < k \le 1 \le K$ we have from (2.6), (3.3) and (3.20) that

$$C(k, K) = \frac{1}{k} \max \left\{ (k-1)^2, (K-1)^2 \right\},\,$$

$$D(k, K) = \max \left\{ \frac{K(k-1)^2}{k}, (K-1)^2 \right\}$$

and

$$F(k, K) = \max \left\{ \frac{(k-1)^2}{k}, (K-1)^2 \right\}.$$

We observe that

$$F(k,K) \le C(k,K), D(k,K)$$

for $0 < k \le 1 \le K$, which means that the upper bound for the difference $|x|^2 \nabla_{\nu} |y|^2$ $x(S)_{\nu}y$ provided by (3.21) is better than the corresponding upper bounds from (2.7) and (3.4).

Corollary 7. With the assumptions of Corollary 5 we have

(3.25)
$$\frac{1}{2}\nu(1-\nu) f(m^2, M^2) \|x\|^2 \le \||x|^2 \nabla_{\nu} |y|^2 - x \Im_{\nu} y\|$$
$$\le \frac{1}{2}\nu(1-\nu) F(m^2, M^2) \|x\|^2$$

for any $\nu \in [0,1]$.

In particular, we have

$$(3.26) \qquad \quad \frac{1}{8} f\left(m^2, M^2\right) \left\|x\right\|^2 \leq \left\|\left|x\right|^2 \nabla \left|y\right|^2 - x \circledS y\right\| \leq \frac{1}{8} F\left(m^2, M^2\right) \left\|x\right\|^2.$$

References

- H. Alzer, C. M. da Fonseca and A. Kovačec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63 (2015), Issue 3, 622-635.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, 1973.
- [3] D. I. Cartwright, M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
- [4] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [5] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 417-478.
- [6] S. S. Dragomir, Quadratic weighted geometric mean in Hermitian unital Banach *-algebras, RGMIA Res. Rep. Coll. 19 (2016), Art.
- [7] B. Q. Feng, The geometric means in Banach *-algebra, J. Operator Theory 57 (2007), No. 2, 243-250.
- [8] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization. Linear Algebra Appl. 219 (1995), 139–155.
- [9] F. Kittaneh, M. Krnić, N. Lovričević and J. Pečarić, Improved arithmetic-geometric and Heinz means inequalities for Hilbert space operators. *Publ. Math. Debrecen* 80 (2012), no. 3-4, 465–478.
- [10] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [11] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, *Linear Multilinear Algebra*, 59 (2011), 1031-1037.
- [12] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
- [13] T. Okayasu, The Löwner-Heinz inequality in Banach *-algebra, Glasgow Math. J. 42 (2000), 243-246.
- [14] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras, II. Duke Math. J. 37 (1970), 275-280.
- [15] K. Tanahashi and A. Uchiyama, The Furuta inequality in Banach *-algebras, Proc. Amer. Math. Soc. 128 (2000), 1691-1695.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa