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INEQUALITIES FOR WEIGHTED GEOMETRIC MEAN IN
HERMITIAN UNITAL BANACH x-ALGEBRAS VIA A RESULT
OF CARTWRIGHT AND FIELD

S. S. DRAGOMIR!:2

ABSTRACT. Counsider the quadratic weighted geometric mean

@y = ||yac_1|uac|2
for invertible elements z, y in a Hermitian unital Banach *-algebra and real
number v. In this paper, by utilizing a result of Cartwright and Field, we
obtain various upper and lower bounds for the positive difference
A =v)|al* + vyl — 2®uy,
where v € [0,1], under various assumptions for the elements involved. Appli-
cations for the classical weighted geometric mean

affyb = al/? <a71/2ba’1/2>v al/?

of positive elements a, b that satisfy the condition 0 < ka < b < Ka for certain
numbers 0 < k < K, are also given.

1. INTRODUCTION

Let A be a unital Banach x-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

In what follows we assume that A is a Hermitian unital Banach x-algebra.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0,00). We say that a is positive and write a > 0 if a > 0 and 0 ¢ o (a).
Thus ¢ > 0 implies that its inverse a~! exists. Denote the set of all invertible
elements of A by Inv (A). If a,b € Inv (A), then ab € Inv (4) and (ab)~' = b~ 1a1.
Also, saying that a > b means that ¢« — b > 0 and, similarly ¢ > b means that

a—0b>0.
The Shirali-Ford theorem asserts that [14] (see also [2, Theorem 41.5])
(SF) a*a > 0 for every a € A.

Based on this fact, Okayasu [13], Tanahashi and Uchiyama [15] proved the following
fundamental properties (see also [7]):
(i) Ifa, b€ A, then a > 0, b > 0 imply a+ b > 0 and & > 0 implies aa > 0;
(ii) If a, b € A, then a > 0, b > 0 imply a + b > 0;
(iii) If a, b € A, then either a > b >0 or a > b > 0 imply a > 0;
(iv) If @ > 0, then a=! > 0;
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(v) If ¢ > 0, then 0 < b < a if and only if cbe < cac, also 0 < b < a if and only
if cbe < cac;

(vi) f0 < a <1, then 1 <a™}

(vii) f0<b<a,then0<a ! <b ! alsoif 0<b<a,then0<a ! <b L

Okayasu [13] showed that the Lowner-Heinz inequality remains valid in a Her-
mitian unital Banach #-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (a? > bP).

In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].

Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € 0 (a)} > 0 and sup{z: z € o (a)} < co. Choose 7 to
be close rectifiable curve in {Rez > 0}, the right half open plane of the complex
plane, such that o (a) C ins (), the inside of 4. Let G be an open subset of C with
o(a) CG. If f: G — C is analytic, we define an element f (a) in A by

f(a) = - / f(2)(z—a) .

T 2m
It is well known (see for instance [4, pp. 201-204]) that f (a) does not depend on
the choice of v and the Spectral Mapping Theorem (SMT)

o (f(a)) = f(o(a))
holds.
For any o € R we define for ¢ € A and a > 0, the real power
1 _
a® = 5 Wza(z—a) ' dz,
where z¢ is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z® is analytic in {Rez > 0}, then by (SMT) we have
o(a®)=(o(a)*={2*:2€0(a)} C(0,00).
Following [7], we list below some important properties of real powers:
(viii) If 0 < @ € A and a € R, then a®* € A with a® > 0 and (a2)1/2 = a, [15,
Lemma 6];
(ix) If 0 < a € A and @, B € R, then a®a® = a®*5;
(x) f0<ae Aand o €R, then (a®) " = (ail)a =a" %
(xi) If0 < a,b€ A, a, B€R and ab = ba, then a*b® = b7a®.
We define the following means for v € [0, 1], see also [7] for different notations:
(A) aV,b:=(1—-v)a+wvb, a, be A
the weighted arithmetic mean of (a,b),
(H) alb:=(1-v)a '+ l/lfl)_l ,a, b>0

the weighted harmonic mean of positive elements (a,b) and
(G) aflyb = a'/? (a_l/Qba_l/Z)v all?

the weighted geometric mean of positive elements (a,b). Our notations above are
motivated by the classical notations used in operator theory. For simplicity, if
%, we use the simpler notations aVb, a!b and affb. The definition of weighted
geometric mean can be extended for any real v.

vV =
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In [7], B. Q. Feng proved the following properties of these means in A a Hermitian
unital Banach x-algebra:

(xii) If 0 < a, b € A, then alb = bla and affb = bfa;
(xiii) If 0 < a, b€ A and ¢ € Inv (A), then

c* (alb) ¢ = (c*ac)! (¢*be) and ¢* (afb) ¢ = (c*ac) f (¢*be) ;
(xiv) If 0 < a, b€ A and v € [0, 1], then
(al,b) ™! = (@) V, (b7") and (a7 '), (b71) = (at,b)~".
Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real

numbers, B. Q. Feng obtained in [7] the following inequality between the weighted
means introduced above:

(HGA) aV,b > afl,b > al,b

forany 0 <a,b€ A and v € [0,1].
In [15], Tanahashi and Uchiyama obtained the following identity of interest:

Lemma 1. If0 < ¢, d and X is a real number, then
A—1
(1.1) (ded)™ = dct/? (01/2d201/2> 2.
Using this equality we can prove the following fact [6]:
Proposition 1. For any 0 < a, b € A we have
(1.2) bf1_,a = af,b
for any real number v.

In [6] we introduced the quadratic weighted mean of (x,y) with z, y € Inv (A4)
and the real weight v € R, as the positive element denoted by z(®,y and defined
by

* s —1 v * —1|2v —1|v 2

(S) @y = ((x ) T ytyx ) r=z |yx | T = “ym | :r‘ .
When v = 1/2, we denote 2®); /2y by 2@y and we have

1/2 2

2Qy = x* ((m*)fl y*yx_l) r=z* |yx_1|x: “yx_1|1/2x‘ .

We can also introduce the 1/2-quadratic weighted mean of (x,y) with z, y €
Inv (A) and the real weight v € R by

(1/2-5) 1@y = (@@u)? = |ly= | .
Correspondingly, when v = 1/2 we denote 2®'/?y and we have
x®1/2y _ “yxﬂ‘m x‘ '
The following equalities hold [6]:
Proposition 2. For any x, y € Inv (A) and v € R we have
(@2®uy) " = (") © (v)

and

(e (v ) = @Gy .
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If we take in (S) z = a'/? and y = b'/? with a, b > 0 then we get
a1/2®yb1/2 — aﬂyb

for any v € R that shows that the quadratic weighted mean can be seen as an
extension of the weighted geometric mean for positive elements considered in the
introduction.

Let 2, y € Inv (A) . If we take in the definition of "#," the elements a = |z|*> > 0
and b = |y|2 > 0 we also have for real v

2 2 1 2,-1\" e TN
2l 80 1yP* = Jo| (J21 ™" 1y 217) " Jo| = lal [lyllol ™| Jal = ||lgl =] 12|

It is then natural to ask how the positive elements 2®,y and |z|*#, |y|> do
compare, when z, y € Inv (A) and v € R ?

In [6] we proved the following lemma that provides a slight generalization of
Lemma 1.

Lemma 2. If0 < ¢, d € Inv(A) and X is a real number, then
A-1
(1.3 (ded) = det 2 (/2 aP 112) et

Remark 1. The identity (1.8) was proved by. T. Furuta in [8] for positive operator
c and invertible operator d in the Banach algebra of all bonded linear operators on
a Hilbert space by using the polar decomposition of the invertible operator dc'/2.

The following fundamental fact that connects the quadratic weighted geometric
mean @), to the weighted geometric mean f, holds [6]:

Theorem 1. If z, y € Inv (4) and X is a real number, then
(1.4) @,y = ‘xlg £ ‘y|2

Now, assume that f (z) is analytic in the right half open plane {Rez > 0} and
for the interval T C (0,00) assume that f(z) > 0 for any 2z € I. If u € A such that
o (u) C I, then by (SMT) we have

o (f(u) = f(o(w)c f)cC0,00)

meaning that f (u) > 0 in the order of A.
Therefore, we can state the following fact that will be used to establish various
inequalities in A.

Lemma 3. Let f(z) and g (2) be analytic in the right half open plane {Rez > 0}
and for the interval I C (0,00) assume that f(z) > g(z) for any z € 1. Then for
any u € A with o (u) C I we have f (u) > g (u) in the order of A.

We have the following inequalities between means [6]:
Theorem 2. For any x, y € Inv (A) and v € [0, 1] we have
(15) j* Vo lyl® 2 2@uy 2 |l [yl
In particular,

(1.6) 12>V |y > 2@y > || |y|*.
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We can define the weighted means for v € [0, 1] and the elements z, y € Inv (A)
and v € [0,1] by

1/2 1/2
oV 2y = (] Vo lyl?) = (=) 2 + v [yP)

and
1/2 B o\ —1/2
a2y = (I ) = (=) fal 2+ vy )

For v = 1/2 we consider

/2 /2 1/2
2V 2y = (kP Y P) =5 (e +1v?)
and

1/2 B o\ —1/2
a2y = (lePrl) = V2 (e + 1yl %)

Corollary 1. Let A be a Hermitian unital Banach x-algebra with continuous invo-
lution. Then for any x, y € Inv (A) and v € [0, 1] we have

(1.7) VY2 > 2@/ 2y > 211/%y.
In particular, we have
(1.8) eV 2y > 2@y > 2!V

Recall that a C*-algebra A is a Banach *-algebra such that the norm satisfies
the condition
la*al| = |la||® for any a € A.
If a C*-algebra A has a unit 1, then automatically ||1|| = 1.

It is well know that, if A is a C*-algebra, then (see for instance [12, 2.2.5 Theo-
rem))

b > a > 0 implies that [|b]| > ||all .

Corollary 2. Let A be a unital C*-algebra. Then for any x, y € Inv(A) and
v € [0,1] we have

v 2
L9 (A=v)lal* + vyl = [ =) el + v lyP|| > ||y
In particular,
1 1 2
(1.10) 5 (I2l? + Iyl*) = 5 ||laf* + 1P| = [l

Motivated by the above facts, in this paper we obtain various upper and lower
bounds for the positive difference

(L =v)lal® +vly* - 2®uy,

where v € [0,1], under various assumptions for the elements involved. Applica-
tions for the classical geometric mean af,b := a'/? (a_l/Qba_l/Q)v a'/? of positive
elements a, b that satisfy the condition 0 < ka < b < Ka for certain numbers
0 < k < K, are also given.
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2. REFINEMENTS AND REVERSES

We have the following inequality that provides a refinement and a reverse for the
celebrated scalar Young’s inequality

(/6 B a)2 1—vBv
Fax{a’ﬁ}g(lfy)aJruﬁfa <

for any «, 8 > 0 and v € [0,1].

This result was obtained in 1978 by Cartwright and Field [3] who established a
more general result for n variables and gave an application for a probability measure
supported on a finite interval.

Assume that z, y € Inv (4) and the constants M > m > 0 are such that

(2.1) %I/(l*l/) v(l—v)—————

1
2

(2.2) M > ‘yx_l‘ > m.
The inequality (2.2) is equivalent to

(2.3) M2 > |yet)

= @) e 2
If we multiply at left with z* and at right with x we get the equivalent relation
(24) M2 |2* > Jy|* = m? o]

For [k, K] C (0,00) we consider the coefficients

(K—-1)?2ifK <1,
(2.5) ch,K):={ 0ifk<1<K

B-1)® 49

w— if 1<k

and
=D ¢ | <1,
(2.6) C(k K) = %mu{w—1f4K—1f}ﬁkg1gK,
(K—1)°if1 <k
‘We have:

Theorem 3. Assume that z, y € Inv (A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

1 1 v(1-v) 12 2
I N T e M (R E
|$|2 VU |y‘2 - x@uy
1 v(1-v) (!yx_1!2—1)x‘2

2 min {m?2,1}

%V (1—v)C (m* M?) |z|?

IN

IN

IN

for any v € [0,1].
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In particular, we have

1 2 ps2 2 _ 1 1 12 2
< |z V[y* — 2@y
1 1 12 2
= 8 min {m?2,1} ‘(’yw ’ B 1) x‘
géc(%Mﬁuﬁ

Proof. If we write the inequality (2.1) for « =1 and 8 = 7 we get

—1)?
7(7 ) <l-v4+vr—7"<
max {7,1}

(r—1)°

v(l=v) min {7,1}

N

(2.9) %1/ (1-v)

for any 7 > 0 and for any v € [0,1].
Ifr € [k, K] C (0,00), then max {7,1} < max {K,1} and min {k, 1} < min{7,1}
and by (2.9) we get

. 2 2
1 min ¢k (17— 1) 1 (r—1)
2.10 Sl - ! <v(l-v)——L
(2.10) = kg =2 T ik
<l—-v+4+vr—71"
1 (r—1)°
<v(l-v)——
e L Sy Ty
<L oy 2 )
2 min {k, 1}

for any 7 € [k, K] and for any v € [0,1].
Observe that
(K -1 if K <1,
min (r—-1)>={ 0ifk<1<K,

rel Kl (k=172 if 1 <k
and
k-1 if K <1,
2 _ 2 21 .
max (7—1)" = max{(k:—l),(K—l)}lfkglgf(7
T€k,K] )
(K —1)% if1 <k
Then
. 2
min, ¢, g (7 — 1)
=c(k,K
max {K, 1} o (k. K)
and
maxreps) (T =17 _ ¢ gy

min {k, 1}
as defined by (2.5) and (2.6).
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Using the inequality (2.10) we have

_ 2
(2.11) %1/(1 — Ve (kM) < %ua —) m(:r{l\?l}
<l-v+4+wvz—2"
1 (z—1)
= 51/(1 —v) min {k, 1}

< %u(l—u)C(k,M)

for any real z € [k, K] C (0,00) and for any v € [0,1].

Let u € A with spectrum o (u) C [k, K] C (0,00). Then by applying Lemma
3 for the corresponding analytic functions in the right half open plane {Rez > 0}
involved in the inequality (2.11) we conclude that we have in the order of A that

1 1 v(1-v)

2.12 —v(l— K< —-————=—
(212) gv (1= mehK) < 5 o ®
<l—-v+4+rvu—u”
<11/(1—1/)
~ 2min{k, 1}

(u—1)*

(u—1)*

IN

1
for any v € [0,1].

If 2, y € Inv(A) satisfy the condition (2.2) then, by (2.3), the element u =
|ym*1|2 € Inv(A) and o (u) C [m?, M?] C (0,00).

By (2.12) we then have

(2.13) ;V(l_y)c(ma,Mz)gianyx1|2_1)2

<l-v+4v ’yx_l|2 — (!ya:_1’2>u

<1 v(l—v) (}ym71|271)2

= 2min {m?2,1}

IN

%1/ (1-v)C (mz,M2)

for any v € [0,1].
If we multiply this inequality at left with z* and at right with = we get

1

(2.14) v (1 —v)c(m? M?) |z

v(l—v) o (|yx71|2 B 1)2z

1
2 max {M2,1}
<(1—v)|z]? + va* yx_1|2x — " (|yx_1|2) T

1 v(l-v) 3 2
S§m1n{m2,1}x (’ym | _1> v

Lo 2 2 72) (12
§§V(1 v)C (m? M?) |z|

for any v € [0,1].
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Since
* —1|2 * *\— * — *
e e = (@) gy ) @ =gty =yl
#* (lya ") @ =2®uy
and
* —112 2 —12 2
T (|yx | —1) x:‘(|yaz | —1):0‘
for z, y € Inv (A), then by (2.14) we get the desired result (2.7). O

Corollary 3. Let A be a unital C*-algebra. Assume that x, y € Inv (A) and the
constants M >m > 0 are such that (2.2) holds, then we have

(2.15) %yu —v)e (m2, M) ||z]? < ;ma&]\}gl} H (|ym - 1) xH2

(R
S (et - 1)

2 min {m?,1}

IN

< gv(L=v)C (m* M%) |z
for any v € [0,1].
In particular,
(2.16) e M) a2t — L H(]ym - 1) xH2
’ 8 ’ ~ 8max {M?,1}
< |lof 9 Iyl — 2|

Sz (GRRVE
~ 8 min{m?2,1} 4
1 2
< £ (2 M%)
Remark 2. Using the triangle inequality we have

0 < 12 Vo lol?|| - le®uyl < [|1al* V. 191 - 20|

and by (2.15) we get the following reverse of the second inequality in (1.9)

A

(2.17) |a=v)la? +1/|y|2H

AT 2
= H|yx | xH + 2 min {m2 1} H( )xH
< H|yx—1|”xH2 + 5u(1 — 1) C (m2, M) |z|?

provided that x, y and v are as in Corollary 3.
In particular,

1 2 2 _p1/2 201 1 12 2
@18) g il + ] < oo™+ 5 oy [ (e 1)

< H\yx—l\”szz + éc (m2, M?) ||z]?.
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Corollary 4. If0<a, b€ A and 0 < k < K are such that

(2.19) ka <b< Ka,
then
1 1 l/(l—l/) / / 2 / 2
2.2 “v(1- K)a< - 2"V ‘1242‘—1 1/2
(2.20) 2V( v)c(k, )G_Qmax{K,l}Kb a a
<aV,b—af,b
1 v(l-v) 1/2 —1/2‘2 1/2 ?
A —1
= 2nﬁn{k,1}’(k “ “

IN

1
iy(l—y)C(k,K)a
for any v € [0,1], where ¢ (k, K) and C (k, K) are given by (2.5) and (2.6).

In particular, we have

1 11 2
221 SebKla< - Vﬁ2ﬂﬂ‘f1 1/2
( ) 8C( ’ )a_SmaX{K,l}‘( “ “
< aVb— afb

< 1# ‘bl/Qa’l/Q‘Q ~1) a2
8 min {k, 1}

gécmQ@

2

2

The proof follows by Theorem 3 applied for z = a'/2, y = b"/2, M = /K and
m = Vk.
3. SOME RELATED RESULTS
We observe that since
max {«, 8} min{«, 8} = af for «, 8 > 0,
then the inequality (2.1) can be written in an equivalent form as

(3.1) %l/(lfz/)min{a,ﬂ}M <(1-v)a+vf—al™vP

af
(8- a)?
ap

IA

1
¥ (1 —v)max{«, 5}

for any o, 8 >0 and v € [0,1].
We define the following coefficients associated with the interval [k, K] C (0,00) :

Mif}(<17

(3.2) A K) = 0ifk<1<K
E-D% 461 <
and
E=D ¢ K < 1,
(3.3) D (k,K) = mM{E%;ﬁJK—lf}ﬁkgng,

(K—-1)%if1 <k
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Theorem 4. Assume that x, y € Inv (A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

(3.4) %yu —v)d (m?, M?) |zf* < %1/(1 — v)min {m?,1} }|yr1 (|y|2 _ W) ]2

< |2I* V. [yl* — 2@y
1 B 2
< iy(l—y)maX{MQ,l} ‘\y| ! (|y|2— |m|2)‘
1 2 2 r2Y (02
§§1/(1—V)D(m,M)|x| .

for any v € [0,1], where the coefficients d(-,-) and D (-,+) are defined by (3.2) and

In particular, we have
(3.5) éd (m?, M?) |z]* < émin {m? 1} ‘|y|71 (|y\2 — \x|2) ‘2
j2* V |y|* - 2®y
s max (02,1} ™ (of? — lof?)[

éD (m?, M?) |z|? .

IN A

IN

Proof. If we write the inequality (3.1) for « =1 and § = 7 we get

(r—1)”

1
(3.6) §y(1—y) min {7,1} <l-v+vr—71"

(r—1)°

< -v(1—-v)max{r,1}

N |

for any 7 > 0 and for any v € [0,1].
Ifr € [k, K] C (0,00), then max {7,1} < max{K, 1} and min{k, 1} < min {7,1}
and by (3.6) we get

(3.7) L= vy min (1) min T
. —U — UV )min min
2 T ek K] T

2
v(l—v) min{k,l}@

IN

IN

—v+uvr—T1"

(r— 1)2

IN

v(l—v)max{K,1}

N~ N~ N

v(1—v)max {K,1} max ﬂ
T kK] T

IN

Consider the function ¢ : (0,00) — (0,00), 0 (1) = @ Then

20 -7 - (-1 _(r-1(+1
2 2 :

§ (1) =

This shows that the function ¢ is strictly decreasing on (0, 1), strictly increasing
on (1,00), 6 (1) =0 and

T T

lim §(r) = lim §(7) = 0.

T—04 T—00
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By taking into account all possible locations of the interval [k, K] and the number
1 we have

D ¢ | < 1,

min J(7)=4¢ 0if k<1< K,
T€[k,K] (k=1) 1) 1<k
and
E=V 5 K < 1,
_ (k=1 (K-1)
Trer[lli)lc{]é(r)— max § ", }fk<1<K
(Kil) if1 <k
Since
k(K1)
(7_71)2 w— if K <1,
min {k,1} min =< 0ifk<1<K,
T€k,K] T (k=1)2 1) 1<k
and

G- K <1,

2
max {K,1} max D = max{M,(Kfl)Z} itk <1<K,
T€[k,K] T 5 ’
(K —1)" if 1 <k,
then by (3.7) we have
3.8 Eul—ydk,K §1y1—ymin k1Y (24271 =2
2 2
<l-v+4vz-2"
< %1/(1 —v)max{K,1} (2 4+ 27" - 2)
<sv(1-v)D(k K),

for any z € [k, K| and for any v € [0, 1].

Let w € A with spectrum o (u) C [k, K] C (0,00). Then by applying Lemma
3 for the corresponding analytic functions in the right half open plane {Re z > 0}
involved in the inequality (3.8) we conclude that we have in the order of A that

(3.9 %u (1-v)d(k,K)< %V(l —v)min {k, 1} (u+u_1 —2)
<l—-v+4vu—u”

< %V(l—l/)max{K,l} (u+u'—2)

—v(1-v)D(k,K),

A
—_

for any v € [0,1].
If z, y € Inv(A) satisfy the condition (2.2) then, by (2.3), the element u =
|y:E*1|2 € Inv(A) and o (u) C [m?, M?] C (0,00).
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By (3.9) we then have

(3.10)

1—v)d (m? M?)

v (1 ) min {m?,1} <|yw1|2 + (|yz*1|2)_1 - 2>
| (\yf”*lf)u

v (1= v)max { M2, 1) (\yx—1|2 + (|yac‘1|2)_1 - 2)

v(l —V)D(m27M2)7

N
NN IA DL
N =

IN
N~ N~

for any v € [0,1].
If we multiply this inequality at left with z* and at right with = we get

(3.11) %y(l—y)d(mZ,M2) |z|?

1 : 2 * —12 * 12\t 2
giu(l—l/)mm{m,l} (x lyz ™' 2+ = (}yx }) x—2|x|>
<(1-v)|z]* + va* |yx*1|2m —z* (|yx*1’2)um

1 2 x|, —1]2 * 12\ 7! 2
§§V(1—1/)max{M 1} <x yr |z +a (|yw |) x—2x|>
< %y (1—v)D (m? M?) |lz|?

for any v € [0,1].
Since
vy e =y, o (|yw*1|2)ysc =20y
and
* 712_1 _ * *\—1 % 71_1 % —1 *\—1 %

then by (3.11) we get

(3.12)

IN

— 2
v (1= vymax {M21} (lyl* + 1ol |yl 2l - 2]af*)

IN
DN = N =

v(1—v)D (m? M?) |lz|” .

13
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Observe that
[yl + 2 Iyl 72 fof? = 2o = (g = Jo*) (1= Iyl Jal*)
2 2 —2 2 2
= (1v* = 1) 117> (o = 1aI*)
1) 2 2\ |
]
and by (3.12) we get the desired result (3.4). O

Corollary 5. Let A be a unital C*-algebra. Assume that x, y € Inv (A) and the
constants M >m > 0 are such that (2.2) holds, then we have

1
(3.13) v (L=w)d (m? %) o]

1 . -1 2 2\ ||
< §y(1 — v)min {m? 1} H|y| (\y| — |z )H
< |12 9. lyP? - 20

1 _ 2
< gr = vymax (02,1} 1™ (Iof? ~ lof?) |
< gv(1—v) D (m?, M) o]

for any v € [0,1].
In particular, we have

1 1 _ 2
(3.14)  cd(m?, M) al* < 2 min {m?, 1} {[ly (v — =) |
< |[lof ¥ Iy — 2|
1 _ 2
< gmax {321} Iy ™ (1ol - o)

IN

1 2
éD (m?, M?) ||lz||” .
Remark 3. We also have the following reverse of the second inequality in (1.9)
2 2
(315)  |ja= vl vyl
EETIAN E 2 1 (2 2\ ||
<[l o+ 50— vymax (a2, 1) ol (1~ 1o
v |12 1
< H|ym’1| xH + 51/(1 —v) D (m?, M?) ||z|?

provided that x, y and v are as in Corollary 3.
In particular,

1 a2 1201 _ 2
(3:16) 5 [l + || < [lwa 2|+ 5 max {022,131yl (1nf? = 1) |

2
< H‘yx_1|1/2mH + %D (mQ,MQ) ||m||2
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Corollary 6. With the assumptions of Corollary 4 we have
1 1 2
(3.17) §yu_yyuhkﬁaggyu_yﬁman}pﬂﬂw—aﬂ
<aV,b—af,b

1 2
51/(1 —v)max {K, 1} ‘b_l/z (b— a)‘

%ll(l—l/)D(k,K)a

IN

IN

for any v € [0,1], where d (k, K) and D (k,K) are given by (3.2) and (3.3).
In particular,

1 2
(3.18) d(k,K)a < < min{k,1}[5"/2 (b a)

1
8

1 2
SGVb—«mbgggnwx{k;l}p—ﬂzw-@

1

For an interval [k, K], define the coefficients

(K —1)% if K <1,

(3.19) Fle,K):={ 0ifk<1<K,
2

GB=U7f 1 < k

and
-V 3¢ g <1,

(3.20) F(k K) = nmx{“—Ui(K—lf}ifkglgzg

k
(K -1 if 1<k

Theorem 5. Assume that x, y € Inv (A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

1
(3.21) 3V (=) f (m* M2) af” < |2* Vo |y ~ 2@y
1 2
< Qu(l —v) F (m*, M?) |z|

for any v € [0,1], where f (-,-) and F (-,+) are defined in (3.19) and (3.20).
In particular, we have

1 1
(322)  of (m* M?) [a* < Jaf V |y — 2@y < SF (m?, M) o]
Proof. From (2.9) we get
1 1
(3.23) 5V(1—V)¢(T)§1—V+VT—TV§§V(1—V)\I/(T)
(1 and W (1) := (r—1)*

for any 7 > 0 and for any v € [0, 1], where ¢ (1) :=
Observe that

max{7,1} min{r,1}"

(r—1%if 7 €(0,1),
V(1) =

@ if 7e€[l,00)
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and

D% 57 € (0,1),

V(r) =

(r —1)% if 7 € [1,00).
We observe that the functions ¢» and ¥ are strictly decreasing on (0, 1) and strictly
increasing on [1, 00) with ¢ (1) = ¥ (1) = 0.

If we consider all possible locations of the interval [k, K] and the number 1 then

we get

b (K) if K <1,
min ¢Y(r)=< 0ifk<1<K, =f(kK)
Tk K] o (k) if 1<k
and
U (k) if K < 1,
max U (r)=< max{¥(k), ¥ (K)} fk<1<K, =F(kK),
Telk.K] U(K)ifl<k
then by (3.23) we get
1
(3.24) %V(l—v)f(k,K)Sl—V—i—VT—TVS§V(1—V)F(k'7K)

for any 7 € [k, K] and for any v € [0, 1].
By making use of a similar argument as in the proof of Theorem 4 we deduce
the desired result (3.21). O

Remark 4. For 0 < k <1< K we have from (2.6), (3.3) and (3.20) that

C(k,K) = %max{(k—l)Q,(K—l)Q},

D (k,K) :max{K(kk_l)Q,(K— 1)2}

and
2
F(k,K)= max{(k_kl),(K— 1)2}.
We observe that
F(k,K) < C(k,K), D(kK)

for0 < k <1< K, which means that the upper bound for the difference |x\2 V. |y|2—
2@,y provided by (3.21) is better than the corresponding upper bounds from (2.7)
and (3.4).

Corollary 7. With the assumptions of Corollary 5 we have

1
(325)  v(-v)f (m2 M) ol < |2 V. |y~ 2®uy

|

1
< S (=) F (m? 1) [
for any v € [0,1].

In particular, we have

1 1
(32600 5F (% M%) |l2)* < ||laf* V Iy — 2@y| < 5F (m?, M?) Ja]*.
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