
INEQUALITIES FOR WEIGHTED GEOMETRIC MEAN IN
HERMITIAN UNITAL BANACH �-ALGEBRAS VIA A RESULT

OF CARTWRIGHT AND FIELD

S. S. DRAGOMIR1;2

Abstract. Consider the quadratic weighted geometric mean

xs�y :=
����yx�1��� x��2

for invertible elements x; y in a Hermitian unital Banach �-algebra and real
number �. In this paper, by utilizing a result of Cartwright and Field, we
obtain various upper and lower bounds for the positive di¤erence

(1� �) jxj2 + � jyj2 � xs�y;

where � 2 [0; 1] ; under various assumptions for the elements involved. Appli-
cations for the classical weighted geometric mean

a]�b := a
1=2

�
a�1=2ba�1=2

��
a1=2

of positive elements a; b that satisfy the condition 0 < ka � b � Ka for certain
numbers 0 < k < K; are also given.

1. Introduction

Let A be a unital Banach �-algebra with unit 1. An element a 2 A is called
selfadjoint if a� = a: A is called Hermitian if every selfadjoint element a in A has
real spectrum � (a) ; namely � (a) � R.
In what follows we assume that A is a Hermitian unital Banach �-algebra.
We say that an element a is nonnegative and write this as a � 0 if a� = a and

� (a) � [0;1) : We say that a is positive and write a > 0 if a � 0 and 0 =2 � (a) :
Thus a > 0 implies that its inverse a�1 exists. Denote the set of all invertible
elements of A by Inv (A) : If a; b 2 Inv (A) ; then ab 2 Inv (A) and (ab)�1 = b�1a�1:
Also, saying that a � b means that a � b � 0 and, similarly a > b means that
a� b > 0:
The Shirali-Ford theorem asserts that [14] (see also [2, Theorem 41.5])

(SF) a�a � 0 for every a 2 A:
Based on this fact, Okayasu [13], Tanahashi and Uchiyama [15] proved the following
fundamental properties (see also [7]):

(i) If a; b 2 A; then a � 0; b � 0 imply a+ b � 0 and � � 0 implies �a � 0;
(ii) If a; b 2 A; then a > 0; b � 0 imply a+ b > 0;
(iii) If a; b 2 A; then either a � b > 0 or a > b � 0 imply a > 0;
(iv) If a > 0; then a�1 > 0;
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(v) If c > 0; then 0 < b < a if and only if cbc < cac; also 0 < b � a if and only
if cbc � cac;

(vi) If 0 < a < 1; then 1 < a�1;
(vii) If 0 < b < a; then 0 < a�1 < b�1; also if 0 < b � a; then 0 < a�1 � b�1:

Okayasu [13] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach �-algebra with continuous involution, namely if a; b 2 A and
p 2 [0; 1] then a > b (a � b) implies that ap > bp (ap � bp) :
In order to introduce the real power of a positive element, we need the following

facts [2, Theorem 41.5].
Let a 2 A and a > 0; then 0 =2 � (a) and the fact that � (a) is a compact subset

of C implies that inffz : z 2 � (a)g > 0 and supfz : z 2 � (a)g < 1: Choose 
 to
be close recti�able curve in fRe z > 0g; the right half open plane of the complex
plane, such that � (a) � ins (
) ; the inside of 
: Let G be an open subset of C with
� (a) � G: If f : G! C is analytic, we de�ne an element f (a) in A by

f (a) :=
1

2�i

Z



f (z) (z � a)�1 dz:

It is well known (see for instance [4, pp. 201-204]) that f (a) does not depend on
the choice of 
 and the Spectral Mapping Theorem (SMT)

� (f (a)) = f (� (a))

holds.
For any � 2 R we de�ne for a 2 A and a > 0; the real power

a� :=
1

2�i

Z



z� (z � a)�1 dz;

where z� is the principal �-power of z: Since A is a Banach �-algebra, then a� 2 A:
Moreover, since z� is analytic in fRe z > 0g; then by (SMT) we have

� (a�) = (� (a))
�
= fz� : z 2 � (a)g � (0;1) :

Following [7], we list below some important properties of real powers:

(viii) If 0 < a 2 A and � 2 R, then a� 2 A with a� > 0 and
�
a2
�1=2

= a; [15,
Lemma 6];

(ix) If 0 < a 2 A and �; � 2 R, then a�a� = a�+� ;

(x) If 0 < a 2 A and � 2 R, then (a�)�1 =
�
a�1

��
= a��;

(xi) If 0 < a; b 2 A, �; � 2 R and ab = ba; then a�b� = b�a�:

We de�ne the following means for � 2 [0; 1] ; see also [7] for di¤erent notations:
(A) ar�b := (1� �) a+ �b; a; b 2 A
the weighted arithmetic mean of (a; b) ;

(H) a!�b :=
�
(1� �) a�1 + �b�1

��1
; a; b > 0

the weighted harmonic mean of positive elements (a; b) and

(G) a]�b := a1=2
�
a�1=2ba�1=2

��
a1=2

the weighted geometric mean of positive elements (a; b) : Our notations above are
motivated by the classical notations used in operator theory. For simplicity, if
� = 1

2 ; we use the simpler notations arb; a!b and a]b: The de�nition of weighted
geometric mean can be extended for any real �:
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In [7], B. Q. Feng proved the following properties of these means in A a Hermitian
unital Banach �-algebra:
(xii) If 0 < a; b 2 A; then a!b = b!a and a]b = b]a;
(xiii) If 0 < a; b 2 A and c 2 Inv (A) ; then

c� (a!b) c = (c�ac)! (c�bc) and c� (a]b) c = (c�ac) ] (c�bc) ;

(xiv) If 0 < a; b 2 A and � 2 [0; 1], then

(a!�b)
�1
=
�
a�1

�
r�
�
b�1

�
and

�
a�1

�
]�
�
b�1

�
= (a]�b)

�1
:

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real
numbers, B. Q. Feng obtained in [7] the following inequality between the weighted
means introduced above:

(HGA) ar�b � a]�b � a!�b

for any 0 < a; b 2 A and � 2 [0; 1] :
In [15], Tanahashi and Uchiyama obtained the following identity of interest:

Lemma 1. If 0 < c; d and � is a real number, then

(1.1) (dcd)
�
= dc1=2

�
c1=2d2c1=2

���1
c1=2d:

Using this equality we can prove the following fact [6]:

Proposition 1. For any 0 < a; b 2 A we have

(1.2) b]1��a = a]�b

for any real number �:

In [6] we introduced the quadratic weighted mean of (x; y) with x; y 2 Inv (A)
and the real weight � 2 R, as the positive element denoted by xs�y and de�ned
by

(S) xs�y := x�
�
(x�)

�1
y�yx�1

��
x = x�

��yx�1��2� x = �����yx�1��� x���2 :
When � = 1=2; we denote xs1=2y by xsy and we have

xsy = x�
�
(x�)

�1
y�yx�1

�1=2
x = x�

��yx�1��x = �����yx�1��1=2 x���2 :
We can also introduce the 1=2-quadratic weighted mean of (x; y) with x; y 2

Inv (A) and the real weight � 2 R by

(1=2-S) xs1=2
� y := (xs�y)

1=2
=
�����yx�1��� x��� :

Correspondingly, when � = 1=2 we denote xs1=2y and we have

xs1=2y =
�����yx�1��1=2 x��� :

The following equalities hold [6]:

Proposition 2. For any x; y 2 Inv (A) and � 2 R we have

(xs�y)
�1
= (x�)

�1s� (y
�)
�1

and �
x�1

�
s�

�
y�1

�
= (x�s�y

�)
�1
:
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If we take in (S) x = a1=2 and y = b1=2 with a; b > 0 then we get

a1=2s�b
1=2 = a]�b

for any � 2 R that shows that the quadratic weighted mean can be seen as an
extension of the weighted geometric mean for positive elements considered in the
introduction.
Let x; y 2 Inv (A) : If we take in the de�nition of "]�" the elements a = jxj2 > 0

and b = jyj2 > 0 we also have for real �

jxj2 ]� jyj2 = jxj
�
jxj�1 jyj2 jxj�1

��
jxj = jxj

���jyj jxj�1���2� jxj = ������jyj jxj�1���� jxj���2 :
It is then natural to ask how the positive elements xs�y and jxj2 ]� jyj2 do

compare, when x; y 2 Inv (A) and � 2 R ?
In [6] we proved the following lemma that provides a slight generalization of

Lemma 1.

Lemma 2. If 0 < c; d 2 Inv (A) and � is a real number, then

(1.3) (dcd�)
�
= dc1=2

�
c1=2 jdj2 c1=2

���1
c1=2d�:

Remark 1. The identity (1.3) was proved by. T. Furuta in [8] for positive operator
c and invertible operator d in the Banach algebra of all bonded linear operators on
a Hilbert space by using the polar decomposition of the invertible operator dc1=2.

The following fundamental fact that connects the quadratic weighted geometric
mean s� to the weighted geometric mean ]� holds [6]:

Theorem 1. If x; y 2 Inv (A) and � is a real number, then

(1.4) xs�y = jxj2 ]� jyj2

Now, assume that f (z) is analytic in the right half open plane fRe z > 0g and
for the interval I � (0;1) assume that f (z) � 0 for any z 2 I: If u 2 A such that
� (u) � I; then by (SMT) we have

� (f (u)) = f (� (u)) � f (I) � [0;1)

meaning that f (u) � 0 in the order of A:
Therefore, we can state the following fact that will be used to establish various

inequalities in A:

Lemma 3. Let f (z) and g (z) be analytic in the right half open plane fRe z > 0g
and for the interval I � (0;1) assume that f (z) � g (z) for any z 2 I: Then for
any u 2 A with � (u) � I we have f (u) � g (u) in the order of A:

We have the following inequalities between means [6]:

Theorem 2. For any x; y 2 Inv (A) and � 2 [0; 1] we have

(1.5) jxj2r� jyj2 � xs�y � jxj2!� jyj2 :

In particular,

(1.6) jxj2r jyj2 � xsy � jxj2! jyj2 :
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We can de�ne the weighted means for � 2 [0; 1] and the elements x; y 2 Inv (A)
and � 2 [0; 1] by

xr1=2� y :=
�
jxj2r� jyj2

�1=2
=
�
(1� �) jxj2 + � jyj2

�1=2
and

x!1=2� y :=
�
jxj2!� jyj2

�1=2
=
�
(1� �) jxj�2 + � jyj�2

��1=2
:

For � = 1=2 we consider

xr1=2y :=
�
jxj2r jyj2

�1=2
=

p
2

2

�
jxj2 + jyj2

�1=2
and

x!1=2y :=
�
jxj2! jyj2

�1=2
=
p
2
�
jxj�2 + jyj�2

��1=2
:

Corollary 1. Let A be a Hermitian unital Banach �-algebra with continuous invo-
lution. Then for any x; y 2 Inv (A) and � 2 [0; 1] we have

(1.7) xr1=2� y � xs1=2
� y � x!1=2� y:

In particular, we have

(1.8) xr1=2y � xs1=2y � x!1=2y:

Recall that a C�-algebra A is a Banach �-algebra such that the norm satis�es
the condition

ka�ak = kak2 for any a 2 A:
If a C�-algebra A has a unit 1, then automatically k1k = 1:
It is well know that, if A is a C�-algebra, then (see for instance [12, 2.2.5 Theo-

rem])

b � a � 0 implies that kbk � kak :

Corollary 2. Let A be a unital C�-algebra. Then for any x; y 2 Inv (A) and
� 2 [0; 1] we have

(1.9) (1� �) kxk2 + � kyk2 �



(1� �) jxj2 + � jyj2


 � 


��yx�1��� x


2 :

In particular,

(1.10)
1

2

�
kxk2 + kyk2

�
� 1

2




jxj2 + jyj2


 � 


��yx�1��1=2 x


2 :
Motivated by the above facts, in this paper we obtain various upper and lower

bounds for the positive di¤erence

(1� �) jxj2 + � jyj2 � xs�y;

where � 2 [0; 1] ; under various assumptions for the elements involved. Applica-
tions for the classical geometric mean a]�b := a1=2

�
a�1=2ba�1=2

��
a1=2 of positive

elements a; b that satisfy the condition 0 < ka � b � Ka for certain numbers
0 < k < K; are also given.
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2. Refinements and Reverses

We have the following inequality that provides a re�nement and a reverse for the
celebrated scalar Young�s inequality

(2.1)
1

2
� (1� �) (� � �)2

max f�; �g � (1� �)�+ �� � �
1���� � 1

2
� (1� �) (� � �)

2

min f�; �g

for any �; � > 0 and � 2 [0; 1] :
This result was obtained in 1978 by Cartwright and Field [3] who established a

more general result for n variables and gave an application for a probability measure
supported on a �nite interval.
Assume that x; y 2 Inv (A) and the constants M > m > 0 are such that

(2.2) M �
��yx�1�� � m:

The inequality (2.2) is equivalent to

(2.3) M2 �
��yx�1��2 = (x�)�1 jyj2 x�1 � m2:

If we multiply at left with x� and at right with x we get the equivalent relation

(2.4) M2 jxj2 � jyj2 � m2 jxj2 :

For [k;K] � (0;1) we consider the coe¢ cients

(2.5) c (k;K) :=

8<:
(K � 1)2 if K < 1;
0 if k � 1 � K;
(k�1)2
K if 1 < k

and

(2.6) C (k;K) :=

8><>:
(k�1)2
k if K < 1;

1
k max

n
(k � 1)2 ; (K � 1)2

o
if k � 1 � K;

(K � 1)2 if 1 < k:

We have:

Theorem 3. Assume that x; y 2 Inv (A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

1

2
� (1� �) c

�
m2;M2

�
jxj2 � 1

2

� (1� �)
max fM2; 1g

������yx�1��2 � 1�x���2(2.7)

� jxj2r� jyj2 � xs�y

� 1

2

� (1� �)
min fm2; 1g

������yx�1��2 � 1�x���2
� 1

2
� (1� �)C

�
m2;M2

�
jxj2

for any � 2 [0; 1] :
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In particular, we have

1

8
c
�
m2;M2

�
jxj2 � 1

8

1

max fM2; 1g

������yx�1��2 � 1�x���2(2.8)

� jxj2r jyj2 � xsy

� 1

8

1

min fm2; 1g

������yx�1��2 � 1�x���2
� 1

8
C
�
m2;M2

�
jxj2 :

Proof. If we write the inequality (2.1) for � = 1 and � = � we get

(2.9)
1

2
� (1� �) (� � 1)2

max f� ; 1g � 1� � + �� � �
� � 1

2
� (1� �) (� � 1)

2

min f� ; 1g

for any � > 0 and for any � 2 [0; 1] :
If � 2 [k;K] � (0;1) ; thenmax f� ; 1g � max fK; 1g andmin fk; 1g � min f� ; 1g

and by (2.9) we get

1

2
� (1� �)

min�2[k;K] (� � 1)2

max fK; 1g � 1

2
� (1� �) (� � 1)2

max fK; 1g(2.10)

� 1� � + �� � ��

� 1

2
� (1� �) (� � 1)

2

min fk; 1g

� 1

2
� (1� �)

max�2[k;K] (� � 1)2

min fk; 1g

for any � 2 [k;K] and for any � 2 [0; 1] :
Observe that

min
�2[k;K]

(� � 1)2 =

8<: (K � 1)2 if K < 1;
0 if k � 1 � K;

(k � 1)2 if 1 < k

and

max
�2[k;K]

(� � 1)2 =

8><>:
(k � 1)2 if K < 1;

max
n
(k � 1)2 ; (K � 1)2

o
if k � 1 � K;

(K � 1)2 if 1 < k:

Then

min�2[k;K] (� � 1)2

max fK; 1g = c (k;K)

and

max�2[k;K] (� � 1)2

min fk; 1g = C (k;K)

as de�ned by (2.5) and (2.6).
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Using the inequality (2.10) we have

1

2
� (1� �) c (k;M) � 1

2
� (1� �) (z � 1)2

max fM; 1g(2.11)

� 1� � + �z � z�

� 1

2
� (1� �) (z � 1)

2

min fk; 1g

� 1

2
� (1� �)C (k;M)

for any real z 2 [k;K] � (0;1) and for any � 2 [0; 1] :
Let u 2 A with spectrum � (u) � [k;K] � (0;1) : Then by applying Lemma

3 for the corresponding analytic functions in the right half open plane fRe z > 0g
involved in the inequality (2.11) we conclude that we have in the order of A that

1

2
� (1� �) c (k;K) � 1

2

� (1� �)
max fK; 1g (u� 1)

2(2.12)

� 1� � + �u� u�

� 1

2

� (1� �)
min fk; 1g (u� 1)

2

� 1

2
� (1� �)C (k;K)

for any � 2 [0; 1] :
If x; y 2 Inv (A) satisfy the condition (2.2) then, by (2.3), the element u =��yx�1��2 2 Inv (A) and � (u) � �m2;M2

�
� (0;1) :

By (2.12) we then have

1

2
� (1� �) c

�
m2;M2

�
� 1

2

� (1� �)
max fM2; 1g

���yx�1��2 � 1�2(2.13)

� 1� � + �
��yx�1��2 � ���yx�1��2��

� 1

2

� (1� �)
min fm2; 1g

���yx�1��2 � 1�2
� 1

2
� (1� �)C

�
m2;M2

�
for any � 2 [0; 1] :
If we multiply this inequality at left with x� and at right with x we get

1

2
� (1� �) c

�
m2;M2

�
jxj2(2.14)

� 1

2

� (1� �)
max fM2; 1gx

�
���yx�1��2 � 1�2 x

� (1� �) jxj2 + �x�
��yx�1��2 x� x� ���yx�1��2�� x

� 1

2

� (1� �)
min fm2; 1gx

�
���yx�1��2 � 1�2 x

� 1

2
� (1� �)C

�
m2;M2

�
jxj2

for any � 2 [0; 1] :
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Since
x�
��yx�1��2 x = x�

�
(x�)

�1
y�yx�1

�
x = y�y = jyj2 ;

x�
���yx�1��2�� x = xs�y

and

x�
���yx�1��2 � 1�2 x = ������yx�1��2 � 1�x���2

for x; y 2 Inv (A) ; then by (2.14) we get the desired result (2.7). �

Corollary 3. Let A be a unital C�-algebra. Assume that x; y 2 Inv (A) and the
constants M > m > 0 are such that (2.2) holds, then we have

1

2
� (1� �) c

�
m2;M2

�
kxk2 � 1

2

� (1� �)
max fM2; 1g




���yx�1��2 � 1�x


2(2.15)

�



jxj2r� jyj2 � xs�y





� 1

2

� (1� �)
min fm2; 1g




���yx�1��2 � 1�x


2
� 1

2
� (1� �)C

�
m2;M2

�
kxk2

for any � 2 [0; 1] :
In particular,

1

8
c
�
m2;M2

�
kxk2 � 1

8

1

max fM2; 1g




���yx�1��2 � 1�x


2(2.16)

�



jxj2r jyj2 � xsy




� 1

8

1

min fm2; 1g




���yx�1��2 � 1�x


2
� 1

8
C
�
m2;M2

�
kxk2 :

Remark 2. Using the triangle inequality we have

0 �



jxj2r� jyj2


� kxs�yk �




jxj2r� jyj2 � xs�y





and by (2.15) we get the following reverse of the second inequality in (1.9)


(1� �) jxj2 + � jyj2


(2.17)

�



��yx�1��� x


2 + 1

2

� (1� �)
min fm2; 1g




���yx�1��2 � 1�x


2
�



��yx�1��� x


2 + 1

2
� (1� �)C

�
m2;M2

�
kxk2

provided that x; y and � are as in Corollary 3.
In particular,

1

2




jxj2 + jyj2


 � 


��yx�1��1=2 x


2 + 1
8

1

min fm2; 1g




���yx�1��2 � 1�x


2(2.18)

�



��yx�1��1=2 x


2 + 1

8
C
�
m2;M2

�
kxk2 :
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Corollary 4. If 0 < a; b 2 A and 0 < k < K are such that

(2.19) ka � b � Ka;

then

1

2
� (1� �) c (k;K) a � 1

2

� (1� �)
max fK; 1g

��������b1=2a�1=2���2 � 1� a1=2����2(2.20)

� ar�b� a]�b

� 1

2

� (1� �)
min fk; 1g

��������b1=2a�1=2���2 � 1� a1=2����2
� 1

2
� (1� �)C (k;K) a

for any � 2 [0; 1] ; where c (k;K) and C (k;K) are given by (2.5) and (2.6).
In particular, we have

1

8
c (k;K) a � 1

8

1

max fK; 1g

��������b1=2a�1=2���2 � 1� a1=2����2(2.21)

� arb� a]b

� 1

8

1

min fk; 1g

��������b1=2a�1=2���2 � 1� a1=2����2
� 1

8
C (k;K) a:

The proof follows by Theorem 3 applied for x = a1=2; y = b1=2; M =
p
K and

m =
p
k:

3. Some Related Results

We observe that since

max f�; �gmin f�; �g = �� for �; � > 0;

then the inequality (2.1) can be written in an equivalent form as

1

2
� (1� �)min f�; �g (� � �)

2

��
� (1� �)�+ �� � �1����(3.1)

� 1

2
� (1� �)max f�; �g (� � �)

2

��

for any �; � > 0 and � 2 [0; 1] :
We de�ne the following coe¢ cients associated with the interval [k;K] � (0;1) :

(3.2) d (k;K) :=

8><>:
k(K�1)2

K if K < 1;
0 if k � 1 � K;
(k�1)2
k if 1 < k

and

(3.3) D (k;K) :=

8><>:
(k�1)2
k if K < 1;

max
n
K(k�1)2

k ; (K � 1)2
o
if k � 1 � K;

(K � 1)2 if 1 < k:
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Theorem 4. Assume that x; y 2 Inv (A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

1

2
� (1� �) d

�
m2;M2

�
jxj2 � 1

2
� (1� �)min

�
m2; 1

	 ���jyj�1 �jyj2 � jxj2����2(3.4)

� jxj2r� jyj2 � xs�y

� 1

2
� (1� �)max

�
M2; 1

	 ���jyj�1 �jyj2 � jxj2����2
� 1

2
� (1� �)D

�
m2;M2

�
jxj2 :

for any � 2 [0; 1] ; where the coe¢ cients d (�; �) and D (�; �) are de�ned by (3.2) and
(3.3).
In particular, we have

1

8
d
�
m2;M2

�
jxj2 � 1

8
min

�
m2; 1

	 ���jyj�1 �jyj2 � jxj2����2(3.5)

� jxj2r jyj2 � xsy

� 1

8
max

�
M2; 1

	 ���jyj�1 �jyj2 � jxj2����2
� 1

8
D
�
m2;M2

�
jxj2 :

Proof. If we write the inequality (3.1) for � = 1 and � = � we get

1

2
� (1� �)min f� ; 1g (� � 1)

2

�
� 1� � + �� � ��(3.6)

� 1

2
� (1� �)max f� ; 1g (� � 1)

2

�

for any � > 0 and for any � 2 [0; 1] :
If � 2 [k;K] � (0;1) ; thenmax f� ; 1g � max fK; 1g andmin fk; 1g � min f� ; 1g

and by (3.6) we get

1

2
� (1� �)min fk; 1g min

�2[k;K]

(� � 1)2

�
(3.7)

� 1

2
� (1� �)min fk; 1g (� � 1)

2

�
� 1� � + �� � ��

� 1

2
� (1� �)max fK; 1g (� � 1)

2

�

� 1

2
� (1� �)max fK; 1g max

�2[k;K]

(� � 1)2

�
:

Consider the function � : (0;1)! (0;1) ; � (�) = (��1)2
� : Then

�0 (�) =
2 (� � 1) � � (� � 1)2

�2
=
(� � 1) (� + 1)

�2
:

This shows that the function � is strictly decreasing on (0; 1) ; strictly increasing
on (1;1), � (1) = 0 and

lim
�!0+

� (�) = lim
�!1

� (�) =1:
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By taking into account all possible locations of the interval [k;K] and the number
1 we have

min
�2[k;K]

� (�) =

8><>:
(K�1)2
K if K < 1;

0 if k � 1 � K;
(k�1)2
k if 1 < k

and

max
�2[k;K]

� (�) =

8>><>>:
(k�1)2
k if K < 1;

max
n
(k�1)2
k ; (K�1)

2

K

o
if k � 1 � K;

(K�1)2
K if 1 < k:

Since

min fk; 1g min
�2[k;K]

(� � 1)2

�
=

8><>:
k(K�1)2

K if K < 1;
0 if k � 1 � K;
(k�1)2
k if 1 < k

and

max fK; 1g max
�2[k;K]

(� � 1)2

�
=

8><>:
(k�1)2
k if K < 1;

max
n
K(k�1)2

k ; (K � 1)2
o
if k � 1 � K;

(K � 1)2 if 1 < k;

then by (3.7) we have

1

2
� (1� �) d (k;K) � 1

2
� (1� �)min fk; 1g

�
z + z�1 � 2

�
(3.8)

� 1� � + �z � z�

� 1

2
� (1� �)max fK; 1g

�
z + z�1 � 2

�
� 1

2
� (1� �)D (k;K) ;

for any z 2 [k;K] and for any � 2 [0; 1] :
Let u 2 A with spectrum � (u) � [k;K] � (0;1) : Then by applying Lemma

3 for the corresponding analytic functions in the right half open plane fRe z > 0g
involved in the inequality (3.8) we conclude that we have in the order of A that

1

2
� (1� �) d (k;K) � 1

2
� (1� �)min fk; 1g

�
u+ u�1 � 2

�
(3.9)

� 1� � + �u� u�

� 1

2
� (1� �)max fK; 1g

�
u+ u�1 � 2

�
� 1

2
� (1� �)D (k;K) ;

for any � 2 [0; 1] :
If x; y 2 Inv (A) satisfy the condition (2.2) then, by (2.3), the element u =��yx�1��2 2 Inv (A) and � (u) � �m2;M2

�
� (0;1) :
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By (3.9) we then have

1

2
� (1� �) d

�
m2;M2

�
(3.10)

� 1

2
� (1� �)min

�
m2; 1

	���yx�1��2 + ���yx�1��2��1 � 2�
� 1� � + �

��yx�1��2 � ���yx�1��2��
� 1

2
� (1� �)max

�
M2; 1

	���yx�1��2 + ���yx�1��2��1 � 2�
� 1

2
� (1� �)D

�
m2;M2

�
;

for any � 2 [0; 1] :
If we multiply this inequality at left with x� and at right with x we get

1

2
� (1� �) d

�
m2;M2

�
jxj2(3.11)

� 1

2
� (1� �)min

�
m2; 1

	�
x�
��yx�1��2 x+ x� ���yx�1��2��1 x� 2 jxj2�

� (1� �) jxj2 + �x�
��yx�1��2 x� x� ���yx�1��2�� x

� 1

2
� (1� �)max

�
M2; 1

	�
x�
��yx�1��2 x+ x� ���yx�1��2��1 x� 2 jxj2�

� 1

2
� (1� �)D

�
m2;M2

�
jxj2 ;

for any � 2 [0; 1] :
Since

x�
��yx�1��2 x = jyj2 ; x� ���yx�1��2�� x = xs�y

and

x�
���yx�1��2��1 x = x�

�
(x�)

�1
y�yx�1

��1
x = x�

�
xy�1 (y�)

�1
x�
�
x

= x�xy�1 (y�)
�1
x�x = jxj2 jyj�2 jxj2 ;

then by (3.11) we get

1

2
� (1� �) d

�
m2;M2

�
jxj2(3.12)

� 1

2
� (1� �)min

�
m2; 1

	�
jyj2 + jxj2 jyj�2 jxj2 � 2 jxj2

�
� jxj2r� jyj2 � xs�y

� 1

2
� (1� �)max

�
M2; 1

	�
jyj2 + jxj2 jyj�2 jxj2 � 2 jxj2

�
� 1

2
� (1� �)D

�
m2;M2

�
jxj2 :
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Observe that

jyj2 + jxj2 jyj�2 jxj2 � 2 jxj2 =
�
jyj2 � jxj2

��
1� jyj�2 jxj2

�
=
�
jyj2 � jxj2

�
jyj�2

�
jyj2 � jxj2

�
=
���jyj�1 �jyj2 � jxj2����2

and by (3.12) we get the desired result (3.4). �

Corollary 5. Let A be a unital C�-algebra. Assume that x; y 2 Inv (A) and the
constants M > m > 0 are such that (2.2) holds, then we have

1

2
� (1� �) d

�
m2;M2

�
kxk2(3.13)

� 1

2
� (1� �)min

�
m2; 1

	


jyj�1 �jyj2 � jxj2�


2
�



jxj2r� jyj2 � xs�y





� 1

2
� (1� �)max

�
M2; 1

	


jyj�1 �jyj2 � jxj2�


2
� 1

2
� (1� �)D

�
m2;M2

�
kxk2

for any � 2 [0; 1] :
In particular, we have

1

8
d
�
m2;M2

�
kxk2 � 1

8
min

�
m2; 1

	


jyj�1 �jyj2 � jxj2�


2(3.14)

�



jxj2r jyj2 � xsy




� 1

8
max

�
M2; 1

	


jyj�1 �jyj2 � jxj2�


2
� 1

8
D
�
m2;M2

�
kxk2 :

Remark 3. We also have the following reverse of the second inequality in (1.9)


(1� �) jxj2 + � jyj2


(3.15)

�



��yx�1��� x


2 + 1

2
� (1� �)max

�
M2; 1

	


jyj�1 �jyj2 � jxj2�


2
�



��yx�1��� x


2 + 1

2
� (1� �)D

�
m2;M2

�
kxk2

provided that x; y and � are as in Corollary 3.
In particular,

1

2




jxj2 + jyj2


 � 


��yx�1��1=2 x


2 + 1
8
max

�
M2; 1

	


jyj�1 �jyj2 � jxj2�


2(3.16)

�



��yx�1��1=2 x


2 + 1

8
D
�
m2;M2

�
kxk2 :



INEQUALITIES FOR WEIGHTED GEOMETRIC MEAN 15

Corollary 6. With the assumptions of Corollary 4 we have

1

2
� (1� �) d (k;K) a � 1

2
� (1� �)min fk; 1g

���b�1=2 (b� a)���2(3.17)

� ar�b� a]�b

� 1

2
� (1� �)max fK; 1g

���b�1=2 (b� a)���2
� 1

2
� (1� �)D (k;K) a

for any � 2 [0; 1] ; where d (k;K) and D (k;K) are given by (3.2) and (3.3).
In particular,

1

8
d (k;K) a � 1

8
min fk; 1g

���b�1=2 (b� a)���2(3.18)

� arb� a]b � 1

8
max fK; 1g

���b�1=2 (b� a)���2
� 1

8
D (k;K) a:

For an interval [k;K] ; de�ne the coe¢ cients

(3.19) f (k;K) :=

8<:
(K � 1)2 if K < 1;
0 if k � 1 � K;
(k�1)2
k if 1 < k

and

(3.20) F (k;K) :=

8><>:
(k�1)2
k if K < 1;

max
n
(k�1)2
k ; (K � 1)2

o
if k � 1 � K;

(K � 1)2 if 1 < k:

Theorem 5. Assume that x; y 2 Inv (A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

1

2
� (1� �) f

�
m2;M2

�
jxj2 � jxj2r� jyj2 � xs�y(3.21)

� 1

2
� (1� �)F

�
m2;M2

�
jxj2

for any � 2 [0; 1] ; where f (�; �) and F (�; �) are de�ned in (3.19) and (3.20).
In particular, we have

(3.22)
1

8
f
�
m2;M2

�
jxj2 � jxj2r jyj2 � xsy � 1

8
F
�
m2;M2

�
jxj2 :

Proof. From (2.9) we get

(3.23)
1

2
� (1� �) (�) � 1� � + �� � �� � 1

2
� (1� �)	 (�)

for any � > 0 and for any � 2 [0; 1] ; where  (�) := (��1)2
maxf�;1g and 	(�) :=

(��1)2
minf�;1g :

Observe that

 (�) =

8<:
(� � 1)2 if � 2 (0; 1) ;

(��1)2
� if � 2 [1;1)
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and

	(�) =

8<:
(��1)2
� if � 2 (0; 1) ;

(� � 1)2 if � 2 [1;1):
We observe that the functions  and 	 are strictly decreasing on (0; 1) and strictly
increasing on [1;1) with  (1) = 	 (1) = 0:
If we consider all possible locations of the interval [k;K] and the number 1 then

we get

min
�2[k;K]

 (�) =

8<:  (K) if K < 1;
0 if k � 1 � K;
 (k) if 1 < k

= f (k;K)

and

max
�2[k;K]

	(�) =

8<: 	(k) if K < 1;
max f	(k) ;	(K)g if k � 1 � K;
	(K) if 1 < k

= F (k;K) ;

then by (3.23) we get

(3.24)
1

2
� (1� �) f (k;K) � 1� � + �� � �� � 1

2
� (1� �)F (k;K)

for any � 2 [k;K] and for any � 2 [0; 1] :
By making use of a similar argument as in the proof of Theorem 4 we deduce

the desired result (3.21). �

Remark 4. For 0 < k � 1 � K we have from (2.6), (3.3) and (3.20) that

C (k;K) =
1

k
max

n
(k � 1)2 ; (K � 1)2

o
;

D (k;K) = max

(
K (k � 1)2

k
; (K � 1)2

)
and

F (k;K) = max

(
(k � 1)2

k
; (K � 1)2

)
:

We observe that
F (k;K) � C (k;K) ; D (k;K)

for 0 < k � 1 � K, which means that the upper bound for the di¤erence jxj2r� jyj2�
xs�y provided by (3.21) is better than the corresponding upper bounds from (2.7)
and (3.4).

Corollary 7. With the assumptions of Corollary 5 we have
1

2
� (1� �) f

�
m2;M2

�
kxk2 �




jxj2r� jyj2 � xs�y



(3.25)

� 1

2
� (1� �)F

�
m2;M2

�
kxk2

for any � 2 [0; 1] :
In particular, we have

(3.26)
1

8
f
�
m2;M2

�
kxk2 �




jxj2r jyj2 � xsy


 � 1

8
F
�
m2;M2

�
kxk2 :
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