MULTIPLICATIVE INEQUALITIES FOR WEIGHTED GEOMETRIC MEAN IN HERMITIAN UNITAL BANACH *-ALGEBRAS

S. S. DRAGOMIR^{1,2}

ABSTRACT. Consider the quadratic weighted geometric mean

$$x \otimes_{\nu} y := \left| \left| y x^{-1} \right|^{\nu} x \right|^2$$

for invertible elements x, y in a Hermitian unital Banach *-algebra and real number ν . In this paper, by utilizing some results of Tominaga, Furuichi, Liao-Wu-Zhao, Zuo-Shi-Fujii and the author, we obtain various upper and lower bounds for the positive element $(1 - \nu) |x|^2 + \nu |y|^2$ in terms of $x \bigotimes_{\nu} y$, where $\nu \in [0, 1]$, under various assumptions for the elements x, y involved. Applications for the classical weighted geometric mean

$$a \sharp_{\nu} b := a^{1/2} \left(a^{-1/2} b a^{-1/2} \right)^{\upsilon} a^{1/2}$$

of positive elements a, b that satisfy the condition $0 < ka \le b \le Ka$ for certain numbers 0 < k < K, are also given.

1. INTRODUCTION

Let A be a unital Banach *-algebra with unit 1. An element $a \in A$ is called *selfadjoint* if $a^* = a$. A is called *Hermitian* if every selfadjoint element a in A has real spectrum $\sigma(a)$, namely $\sigma(a) \subset \mathbb{R}$.

In what follows we assume that A is a Hermitian unital Banach *-algebra.

We say that an element a is *nonnegative* and write this as $a \ge 0$ if $a^* = a$ and $\sigma(a) \subset [0, \infty)$. We say that a is *positive* and write a > 0 if $a \ge 0$ and $0 \notin \sigma(a)$. Thus a > 0 implies that its inverse a^{-1} exists. Denote the set of all invertible elements of A by Inv (A). If $a, b \in \text{Inv}(A)$, then $ab \in \text{Inv}(A)$ and $(ab)^{-1} = b^{-1}a^{-1}$. Also, saying that $a \ge b$ means that $a - b \ge 0$ and, similarly a > b means that a - b > 0.

The Shirali-Ford theorem asserts that [19] (see also [2, Theorem 41.5])

(SF)
$$a^*a \ge 0$$
 for every $a \in A$.

Based on this fact, Okayasu [16], Tanahashi and Uchiyama [21] proved the following fundamental properties (see also [12]):

(i) If $a, b \in A$, then $a \ge 0, b \ge 0$ imply $a + b \ge 0$ and $\alpha \ge 0$ implies $\alpha a \ge 0$;

- (ii) If $a, b \in A$, then $a > 0, b \ge 0$ imply a + b > 0;
- (iii) If $a, b \in A$, then either $a \ge b > 0$ or $a > b \ge 0$ imply a > 0;
- (iv) If a > 0, then $a^{-1} > 0$;
- (v) If c > 0, then 0 < b < a if and only if cbc < cac, also $0 < b \le a$ if and only if $cbc \le cac$;

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A30, 15A60, 26D15, 26D10.

Key words and phrases. Weighted geometric mean, Young's inequality, Operator modulus, Arithmetic mean-geometric mean inequality, Hermitian unital Banach *-algebra.

(vi) If 0 < a < 1, then $1 < a^{-1}$;

(vii) If 0 < b < a, then $0 < a^{-1} < b^{-1}$, also if 0 < b < a, then $0 < a^{-1} < b^{-1}$.

Okayasu [16] showed that the Löwner-Heinz inequality remains valid in a Hermitian unital Banach *-algebra with continuous involution, namely if $a, b \in A$ and $p \in [0, 1]$ then a > b (a > b) implies that $a^p > b^p$ $(a^p > b^p)$.

In order to introduce the real power of a positive element, we need the following facts [2, Theorem 41.5].

Let $a \in A$ and a > 0, then $0 \notin \sigma(a)$ and the fact that $\sigma(a)$ is a compact subset of \mathbb{C} implies that $\inf\{z: z \in \sigma(a)\} > 0$ and $\sup\{z: z \in \sigma(a)\} < \infty$. Choose γ to be close rectifiable curve in $\{\operatorname{Re} z > 0\}$, the right half open plane of the complex plane, such that $\sigma(a) \subset \operatorname{ins}(\gamma)$, the inside of γ . Let G be an open subset of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic, we define an element f(a) in A by

$$f(a) := \frac{1}{2\pi i} \int_{\gamma} f(z) (z-a)^{-1} dz$$

It is well known (see for instance [4, pp. 201-204]) that f(a) does not depend on the choice of γ and the Spectral Mapping Theorem (SMT)

$$\sigma\left(f\left(a\right)\right) = f\left(\sigma\left(a\right)\right)$$

holds.

For any $\alpha \in \mathbb{R}$ we define for $a \in A$ and a > 0, the real power

$$a^{\alpha} := \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} \left(z - a \right)^{-1} dz,$$

where z^{α} is the principal α -power of z. Since A is a Banach *-algebra, then $a^{\alpha} \in A$. Moreover, since z^{α} is analytic in $\{\operatorname{Re} z > 0\}$, then by (SMT) we have

$$\sigma(a^{\alpha}) = (\sigma(a))^{\alpha} = \{z^{\alpha} : z \in \sigma(a)\} \subset (0, \infty).$$

Following [12], we list below some important properties of real powers:

- (viii) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $a^{\alpha} \in A$ with $a^{\alpha} > 0$ and $(a^2)^{1/2} = a$, [21, Lemma 6];

 - (ix) If $0 < a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^{\alpha}a^{\beta} = a^{\alpha+\beta}$; (x) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $(a^{\alpha})^{-1} = (a^{-1})^{\alpha} = a^{-\alpha}$;
 - (xi) If $0 < a, b \in A, \alpha, \beta \in \mathbb{R}$ and ab = ba, then $a^{\alpha}b^{\beta} = b^{\beta}a^{\alpha}$.

We define the following means for $\nu \in [0, 1]$, see also [12] for different notations:

(A)
$$a\nabla_{\nu}b := (1-\nu)a + \nu b, \ a, \ b \in A$$

the weighted arithmetic mean of (a, b),

(H)
$$a!_{\nu}b := ((1-\nu)a^{-1}+\nu b^{-1})^{-1}, a, b > 0$$

the weighted harmonic mean of positive elements (a, b) and

(G)
$$a \sharp_{\nu} b := a^{1/2} \left(a^{-1/2} b a^{-1/2} \right)^{\nu} a^{1/2}$$

the weighted geometric mean of positive elements (a, b). Our notations above are motivated by the classical notations used in operator theory. For simplicity, if $\nu = \frac{1}{2}$, we use the simpler notations $a\nabla b$, all and $a \sharp b$. The definition of weighted geometric mean can be extended for any real ν .

In [12], B. Q. Feng proved the following properties of these means in A a Hermitian unital Banach *-algebra:

 $\mathbf{2}$

(xii) If $0 < a, b \in A$, then a!b = b!a and a # b = b # a;

(xiii) If $0 < a, b \in A$ and $c \in Inv(A)$, then

$$c^{*}(a|b) c = (c^{*}ac)! (c^{*}bc) \text{ and } c^{*}(a|b) c = (c^{*}ac) \sharp (c^{*}bc);$$

(xiv) If $0 < a, b \in A$ and $\nu \in [0, 1]$, then

$$(a!_{\nu}b)^{-1} = (a^{-1}) \nabla_{\nu} (b^{-1}) \text{ and } (a^{-1}) \sharp_{\nu} (b^{-1}) = (a\sharp_{\nu}b)^{-1}.$$

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real numbers, B. Q. Feng obtained in [10] the following inequality between the weighted means introduced above:

(HGA)
$$a\nabla_{\nu}b \ge a\sharp_{\nu}b \ge a!_{\nu}b$$

for any $0 < a, b \in A$ and $\nu \in [0, 1]$.

In [21], Tanahashi and Uchiyama obtained the following identity of interest:

Lemma 1. If 0 < c, d and λ is a real number, then

(1.1)
$$(dcd)^{\lambda} = dc^{1/2} \left(c^{1/2} d^2 c^{1/2} \right)^{\lambda - 1} c^{1/2} d.$$

Using this equality we proved the following fact [8]:

Proposition 1. For any $0 < a, b \in A$ we have

$$b\sharp_{1-\nu}a = a\sharp_{\nu}b$$

for any real number ν .

In [8] we introduced the quadratic weighted mean of (x, y) with $x, y \in \text{Inv}(A)$ and the real weight $\nu \in \mathbb{R}$, as the positive element denoted by $x \bigotimes_{\nu} y$ and defined by

(S)
$$x \bigotimes_{\nu} y := x^* \left((x^*)^{-1} y^* y x^{-1} \right)^{\nu} x = x^* \left| y x^{-1} \right|^{2\nu} x = \left| \left| y x^{-1} \right|^{\nu} x \right|^2.$$

When $\nu = 1/2$, we denote $x \otimes_{1/2} y$ by $x \otimes y$ and we have

$$x \circledast y = x^* \left((x^*)^{-1} y^* y x^{-1} \right)^{1/2} x = x^* \left| y x^{-1} \right| x = \left| \left| y x^{-1} \right|^{1/2} x \right|^2.$$

We can also introduce the 1/2-quadratic weighted mean of (x, y) with $x, y \in$ Inv (A) and the real weight $\nu \in \mathbb{R}$ by

(1/2-S)
$$x \bigotimes_{\nu}^{1/2} y := (x \bigotimes_{\nu} y)^{1/2} = \left| \left| y x^{-1} \right|^{\nu} x \right|.$$

Correspondingly, when $\nu = 1/2$ we denote $x \mathbb{S}^{1/2} y$ and we have

$$x \circledast^{1/2} y = \left| \left| y x^{-1} \right|^{1/2} x \right|.$$

The following equalities hold [8]:

Proposition 2. For any $x, y \in \text{Inv}(A)$ and $\nu \in \mathbb{R}$ we have

$$(x \otimes_{\nu} y)^{-1} = (x^*)^{-1} \otimes_{\nu} (y^*)^{-1}$$

and

$$(x^{-1}) \, \mathbb{S}_{\nu} (y^{-1}) = (x^* \, \mathbb{S}_{\nu} y^*)^{-1}.$$

If we take in (S) $x = a^{1/2}$ and $y = b^{1/2}$ with a, b > 0 then we get

$$a^{1/2}$$
 (S) _{ν} $b^{1/2} = a \sharp_{\nu} b$

for any $\nu \in \mathbb{R}$ that shows that the quadratic weighted mean can be seen as an extension of the weighted geometric mean for positive elements considered in the introduction.

Let $x, y \in \text{Inv}(A)$. If we take in the definition of " \sharp_{ν} " the elements $a = |x|^2 > 0$ and $b = |y|^2 > 0$ we also have for real ν

$$|x|^{2} \sharp_{\nu} |y|^{2} = |x| \left(|x|^{-1} |y|^{2} |x|^{-1} \right)^{\nu} |x| = |x| \left| |y| |x|^{-1} \right|^{2\nu} |x| = \left| \left| |y| |x|^{-1} \right|^{\nu} |x| \right|^{2}.$$

It is then natural to ask how the positive elements $x \otimes_{\nu} y$ and $|x|^2 \sharp_{\nu} |y|^2$ do compare, when $x, y \in \text{Inv}(A)$ and $\nu \in \mathbb{R}$?

In [8] we proved the following lemma that provides a slight generalization of Lemma 1.

Lemma 2. If $0 < c, d \in Inv(A)$ and λ is a real number, then

$$(dcd^*)^{\lambda} = dc^{1/2} \left(c^{1/2} |d|^2 c^{1/2} \right)^{\lambda-1} c^{1/2} d^*.$$

Remark 1. The identity (2.18) was proved by. T. Furuta in [11] for positive operator c and invertible operator d in the Banach algebra of all bonded linear operators on a Hilbert space by using the polar decomposition of the invertible operator $dc^{1/2}$.

The following fundamental fact that connects the quadratic weighted geometric mean \mathcal{S}_{ν} to the weighted geometric mean \sharp_{ν} holds [8]:

Theorem 1. If $x, y \in \text{Inv}(A)$ and λ is a real number, then

$$x \circledast_{\nu} y = \left| x \right|^2 \sharp_{\nu} \left| y \right|^2$$

Now, assume that f(z) is analytic in the right half open plane {Re z > 0} and for the interval $I \subset (0, \infty)$ assume that $f(z) \ge 0$ for any $z \in I$. If $u \in A$ such that $\sigma(u) \subset I$, then by (SMT) we have

$$\sigma(f(u)) = f(\sigma(u)) \subset f(I) \subset [0,\infty)$$

meaning that $f(u) \ge 0$ in the order of A.

Therefore, we can state the following fact that will be used to establish various inequalities in A.

Lemma 3. Let f(z) and g(z) be analytic in the right half open plane $\{\operatorname{Re} z > 0\}$ and for the interval $I \subset (0, \infty)$ assume that $f(z) \ge g(z)$ for any $z \in I$. Then for any $u \in A$ with $\sigma(u) \subset I$ we have $f(u) \ge g(u)$ in the order of A.

We have the following inequalities between means [8]:

Theorem 2. For any $x, y \in \text{Inv}(A)$ and $\nu \in [0, 1]$ we have

(1.2)
$$|x|^2 \nabla_{\nu} |y|^2 \ge x \widehat{\mathbb{S}}_{\nu} y \ge |x|^2 |_{\nu} |y|^2.$$

In particular,

(1.3)
$$|x|^2 \nabla |y|^2 \ge x \Im y \ge |x|^2 |y|^2$$

We can define the weighted means for $\nu \in [0, 1]$ and the elements $x, y \in \text{Inv}(A)$ and $\nu \in [0, 1]$ by

$$x\nabla_{\nu}^{1/2}y := \left(|x|^2 \nabla_{\nu} |y|^2 \right)^{1/2} = \left((1-\nu) |x|^2 + \nu |y|^2 \right)^{1/2}$$

and

$$x!_{\nu}^{1/2}y := \left(|x|^{2}!_{\nu} |y|^{2} \right)^{1/2} = \left((1-\nu) |x|^{-2} + \nu |y|^{-2} \right)^{-1/2}.$$

For $\nu = 1/2$ we consider

$$x\nabla^{1/2}y := \left(|x|^2 \nabla |y|^2\right)^{1/2} = \frac{\sqrt{2}}{2} \left(|x|^2 + |y|^2\right)^{1/2}$$

and

$$x!^{1/2}y := \left(|x|^2! |y|^2\right)^{1/2} = \sqrt{2} \left(|x|^{-2} + |y|^{-2}\right)^{-1/2}$$

We have [8]:

Corollary 1. Let A be a Hermitian unital Banach *-algebra with continuous involution. Then for any $x, y \in \text{Inv}(A)$ and $\nu \in [0, 1]$ we have

(1.4)
$$x\nabla_{\nu}^{1/2}y \ge x \mathbb{S}_{\nu}^{1/2}y \ge x!_{\nu}^{1/2}y.$$

In particular, we have

(1.5)
$$x\nabla^{1/2}y \ge x\mathbb{S}^{1/2}y \ge x!^{1/2}y.$$

Recall that a C^* -algebra A is a Banach *-algebra such that the norm satisfies the condition

$$|a^*a|| = ||a||^2$$
 for any $a \in A$

If a C^* -algebra A has a unit 1, then automatically ||1|| = 1.

It is well know that, if A is a C^* -algebra, then (see for instance [15, 2.2.5 Theorem])

 $b \ge a \ge 0$ implies that $||b|| \ge ||a||$.

Corollary 2. Let A be a unital C^{*}-algebra. Then for any $x, y \in \text{Inv}(A)$ and $\nu \in [0,1]$ we have

(1.6)
$$(1-\nu) \|x\|^2 + \nu \|y\|^2 \ge \left\| (1-\nu) |x|^2 + \nu |y|^2 \right\| \ge \left\| \left| yx^{-1} \right|^{\nu} x \right\|^2.$$

In particular,

(1.7)
$$\frac{1}{2} \left(\left\| x \right\|^2 + \left\| y \right\|^2 \right) \ge \frac{1}{2} \left\| \left| x \right|^2 + \left| y \right|^2 \right\| \ge \left\| \left| y x^{-1} \right|^{1/2} x \right\|^2$$

Motivated by the above facts, in this paper we obtain various upper and lower bounds for the positive element $(1 - \nu) |x|^2 + \nu |y|^2$ in terms of the quadratic mean $x \bigotimes_{\nu} y$, namely, inequalities of the form

$$\delta x \mathfrak{S}_{\nu} y \le (1-\nu) \left| x \right|^2 + \nu \left| y \right|^2 \le \Delta x \mathfrak{S}_{\nu} y,$$

where $\nu \in [0,1]$ and the numbers $1 \leq \delta < \Delta < \infty$, under various assumptions for the elements involved. Applications for the classical geometric mean $a \sharp_{\nu} b :=$ $a^{1/2} \left(a^{-1/2}ba^{-1/2}\right)^{\upsilon} a^{1/2}$ of positive elements a, b that satisfy the condition $0 < ka \leq b \leq Ka$ for certain numbers 0 < k < K, are also given.

S. S. DRAGOMIR^{1,2}

2. Some Preliminary Facts

Jensen's inequality for convex function is one of the most known and extensively used inequality in various filed of Modern Mathematics. It is a source of many classical inequalities including the generalized triangle inequality, the arithmetic mean-geometric mean-harmonic mean inequality, the positivity of *relative entropy* in Information Theory, Schannon's inequality, Ky Fan's inequality, Levinson's inequality and other results. For classical and contemporary developments related to the Jensen inequality, see [3], [14], [18] and [9] where further references are provided.

To be more specific, we recall that, if X is a linear space and $C \subseteq X$ a convex subset in X, then for any convex function $f: C \to \mathbb{R}$ and any $z_i \in C$, $r_i \geq 0$ for $i \in \{1, ..., k\}$, $k \geq 2$ with $\sum_{i=1}^{k} r_i = R_k > 0$ one has the weighted Jensen's inequality:

(J)
$$\frac{1}{R_k} \sum_{i=1}^k r_i f(z_i) \ge f\left(\frac{1}{R_k} \sum_{i=1}^k r_i z_i\right).$$

If $f: C \to \mathbb{R}$ is strictly convex and $r_i > 0$ for $i \in \{1, ..., k\}$ then the equality case holds in (J) if and only if $z_1 = ... = z_n$.

By \mathcal{P}_n we denote the set of all nonnegative *n*-tuples $(p_1, ..., p_n)$ with the property that $\sum_{i=1}^n p_i = 1$. Consider the normalised Jensen functional

$$\mathcal{J}_n\left(f, \mathbf{x}, \mathbf{p}\right) = \sum_{i=1}^n p_i f\left(x_i\right) - f\left(\sum_{i=1}^n p_i x_i\right) \ge 0,$$

where $f: C \to \mathbb{R}$ is a convex function on the convex set C and $\mathbf{x} = (x_1, ..., x_n) \in C^n$ and $\mathbf{p} \in \mathcal{P}_n$.

The following result holds [5]:

Lemma 4. If $\mathbf{p}, \mathbf{q} \in \mathcal{P}_n, q_i > 0$ for each $i \in \{1, ..., n\}$ then

(2.1)
$$(0 \leq) \min_{1 \leq i \leq n} \left\{ \frac{p_i}{q_i} \right\} \mathcal{J}_n \left(f, \mathbf{x}, \mathbf{q} \right) \leq \mathcal{J}_n \left(f, \mathbf{x}, \mathbf{p} \right) \leq \max_{1 \leq i \leq n} \left\{ \frac{p_i}{q_i} \right\} \mathcal{J}_n \left(f, \mathbf{x}, \mathbf{q} \right).$$

In the case n = 2, if we put $p_1 = 1 - p$, $p_2 = p$, $q_1 = 1 - q$ and $q_2 = q$ with $p \in [0, 1]$ and $q \in (0, 1)$ then by (2.1) we get

(2.2)
$$\min\left\{\frac{p}{q}, \frac{1-p}{1-q}\right\} \left[(1-q) f(x) + qf(y) - f((1-q)x + qy) \right]$$
$$\leq (1-p) f(x) + pf(y) - f((1-p)x + py)$$
$$\leq \max\left\{\frac{p}{q}, \frac{1-p}{1-q}\right\} \left[(1-q) f(x) + qf(y) - f((1-q)x + qy) \right]$$

for any $x, y \in C$.

If we take $q = \frac{1}{2}$ in (2.2), then we get

(2.3)
$$2\min\{t, 1-t\} \left[\frac{f(x) + f(y)}{2} - f\left(\frac{x+y}{2}\right) \right] \\ \leq (1-t) f(x) + tf(y) - f((1-t)x + ty) \\ \leq 2\max\{t, 1-t\} \left[\frac{f(x) + f(y)}{2} - f\left(\frac{x+y}{2}\right) \right]$$

for any $x, y \in C$ and $t \in [0, 1]$.

If we take in (2.2) $f(x) = -\ln x$, then we get

$$(2.4) \qquad \left(\frac{A_q\left(\alpha,\beta\right)}{G_q\left(\alpha,\beta\right)}\right)^{\min\left\{\frac{p}{q},\frac{1-p}{1-q}\right\}} \le \frac{A_p\left(\alpha,\beta\right)}{G_p\left(\alpha,\beta\right)} \le \left(\frac{A_q\left(\alpha,\beta\right)}{G_q\left(\alpha,\beta\right)}\right)^{\max\left\{\frac{p}{q},\frac{1-p}{1-q}\right\}}$$

for any α , $\beta > 0$ and for any $p \in [0, 1]$, $q \in (0, 1)$.

This inequality is a particular case for n = 2 of the inequality (4.2) from [5]. For $q = \frac{1}{2}$ we have by (2.4) that

(2.5)
$$\left(\frac{A(\alpha,\beta)}{G(\alpha,\beta)}\right)^{2\min\{p,1-p\}} \le \frac{A_p(\alpha,\beta)}{G_p(\alpha,\beta)} \le \left(\frac{A(\alpha,\beta)}{G(\alpha,\beta)}\right)^{2\max\{p,1-p\}}$$

for any α , $\beta > 0$ and for any $p \in [0, 1]$.

Recall that Kantorovich's constant \mathcal{K} is defined by

(K)
$$\mathcal{K}(h) := \frac{(h+1)^2}{4h}, \ h > 0$$

It is well known that \mathcal{K} is *decreasing* on (0, 1) and *increasing* on $[1, \infty)$, $\mathcal{K}(h) \ge 1$ for any h > 0 and $\mathcal{K}(h) = \mathcal{K}\left(\frac{1}{h}\right)$ for any h > 0.

The inequality (2.5) can be thus written as

(ZL)
$$\mathcal{K}^{\min\{p,1-p\}}\left(\frac{\alpha}{\beta}\right) \leq \frac{A_p\left(\alpha,\beta\right)}{G_p\left(\alpha,\beta\right)} \leq \mathcal{K}^{\max\{p,1-p\}}\left(\frac{\alpha}{\beta}\right).$$

The first inequality in (ZL) was obtained by Zou et al. in [23] while the second by Liao et al. [13].

For $q \in (0, 1)$ we consider the function $f_q: (0, \infty) \to (0, \infty)$ defined by

$$f_q(h) := \frac{A_q(1,h)}{G_q(1,h)} = \frac{1-q+qh}{h^q} = (1-q)h^{-q} + qh^{1-q}.$$

The function f_q is differentiable and

$$f'_{q}(h) = (1-q) q h^{-q-1} (h-1),$$

which shows that the function f_q is decreasing on (0, 1) and increasing on $[1, \infty)$. We have $f_q(1) = 1$, $\lim_{h\to 0+} f_q(h) = +\infty$, $\lim_{h\to\infty} f_q(h) = +\infty$ and $f_q(\frac{1}{h}) = f_{1-q}(h)$ for any h > 0 and $q \in (0, 1)$.

Therefore, by considering the 3 possible situations for the location of the interval $[\ell, L] \subset (0, \infty)$ and the number 1 we get

(2.6)
$$\max_{h \in [\ell, L]} f_q(h) = \begin{cases} f_q(\ell) \text{ if } L < 1, \\ \max\{f_q(\ell), f_q(L)\} \text{ if } \ell \le 1 \le L, \\ f_q(L) \text{ if } 1 < \ell, \end{cases}$$
$$= \begin{cases} \frac{A_q(1, \ell)}{G_q(1, \ell)} \text{ if } L < 1, \\ \max\{\frac{A_q(1, \ell)}{G_q(1, \ell)}, \frac{A_q(1, L)}{G_q(1, L)}\} \text{ if } \ell \le 1 \le L, \\ \frac{A_q(1, L)}{G_q(1, L)} \text{ if } 1 < \ell \end{cases}$$

and

(2.7)
$$\min_{h \in [\ell, L]} f_q(h) = \begin{cases} f_q(L) \text{ if } L < 1, \\ 1 \text{ if } \ell \le 1 \le L \\ f_q(\ell) \text{ if } 1 < \ell, \end{cases} = \begin{cases} \frac{A_q(1, L)}{G_q(1, L)} \text{ if } L < 1, \\ 1 \text{ if } \ell \le 1 \le L, \\ \frac{A_q(1, \ell)}{G_q(1, \ell)} \text{ if } 1 < \ell. \end{cases}$$

We then have the following fact:

Lemma 5. For any $p \in [0,1]$, $q \in (0,1)$ and $h \in [\ell, L] \subset (0,\infty)$ we have the bounds $\gamma_{p,q}(\ell, L) \leq \frac{A_p(1,h)}{G_p(1,h)} \leq \Gamma_{p,q}(\ell, L)$

where

(2.8)
$$\Gamma_{p,q}\left(\ell,L\right) := \begin{cases} \left(\frac{A_q(1,\ell)}{G_q(1,\ell)}\right)^{\max\left\{\frac{p}{q},\frac{1-p}{1-q}\right\}} & \text{if } L < 1, \\ \max\left\{\left(\frac{A_q(1,\ell)}{G_q(1,\ell)}\right)^{\max\left\{\frac{p}{q},\frac{1-p}{1-q}\right\}}, \left(\frac{A_q(1,L)}{G_q(1,L)}\right)^{\max\left\{\frac{p}{q},\frac{1-p}{1-q}\right\}} \\ & \text{if } \ell \le 1 \le L, \\ \left(\frac{A_q(1,L)}{G_q(1,L)}\right)^{\max\left\{\frac{p}{q},\frac{1-p}{1-q}\right\}} & \text{if } 1 < \ell \end{cases}$$

and

(2.9)
$$\gamma_{p,q}(\ell,L) := \begin{cases} \left(\frac{A_q(1,L)}{G_q(1,L)}\right)^{\min\left\{\frac{p}{q},\frac{1-p}{1-q}\right\}} & \text{if } L < 1, \\ 1 & \text{if } \ell \le 1 \le L, \end{cases}$$

$$\left(\frac{A_q(1,\ell)}{G_q(1,\ell)}\right)^{\min\left\{\frac{1}{q},\frac{1-q}{1-q}\right\}} \quad if \ 1 < \ell.$$

We observe that for q = 1/2, we get, see also (ZL), that

(2.10)
$$\gamma_{p,1/2}(\ell,L) \le \frac{A_p(1,h)}{G_p(1,h)} \le \Gamma_{p,1/2}(\ell,L),$$

for $p \in [0, 1]$ and $h \in [\ell, L]$, where

(2.11)
$$\Gamma_{p,1/2}(\ell,L) = \begin{cases} \mathcal{K}^{\max\{p,1-p\}}(\ell) & \text{if } L < 1, \\ \max\left\{\mathcal{K}^{\max\{p,1-p\}}(\ell), \mathcal{K}^{\max\{p,1-p\}}(L)\right\} \\ \text{if } \ell \le 1 \le L, \\ \mathcal{K}^{\max\{p,1-p\}}(L) & \text{if } 1 < \ell \end{cases}$$

and

$$\mathcal{K}^{\min\{p,1-p\}}(L) \text{ if } L < 1,$$

(2.12)
$$\gamma_{p,1/2}(\ell, L) := \begin{cases} 1 \text{ if } \ell \le 1 \le L, \\ \mathcal{K}^{\min\{p, 1-p\}}(\ell) \text{ if } 1 < \ell, \end{cases}$$

where \mathcal{K} is Kantorovich's constant.

By taking $q = p \in (0, 1)$ in Lemma 5 we get

(2.13)
$$\gamma_p\left(\ell,L\right) \le \frac{A_p\left(1,h\right)}{G_p\left(1,h\right)} \le \Gamma_p\left(\ell,L\right)$$

where

$$\left(\begin{array}{c}
\frac{A_p(1,\ell)}{G_p(1,\ell)} \text{ if } L < 1, \\
C + C + C + C + C
\end{array}\right)$$

(2.14)
$$\Gamma_p(\ell, L) := \begin{cases} \max\left\{\frac{A_p(1,\ell)}{G_p(1,\ell)}, \frac{A_p(1,L)}{G_p(1,L)}\right\} \\ \text{if } \ell \le 1 \le L, \\ \frac{A_p(1,L)}{G_p(1,L)} \text{ if } 1 < \ell \end{cases}$$

and

(2.15)
$$\gamma_{p}(\ell, L) := \begin{cases} \frac{A_{p}(1,L)}{G_{p}(1,L)} \text{ if } L < 1, \\ 1 \text{ if } \ell \leq 1 \leq L, \\ \frac{A_{p}(1,\ell)}{G_{p}(1,\ell)} \text{ if } 1 < \ell. \end{cases}$$

We recall that *Specht's ratio* is defined by

(2.16)
$$S(h) := \begin{cases} \frac{h^{\frac{h}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty) \\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} \mathcal{S}(h) = 1$, $\mathcal{S}(h) = \mathcal{S}(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is strictly decreasing on (0, 1) and strictly increasing on $(1, \infty)$.

The following inequality provides a refinement and a multiplicative reverse for Young's

(2.17)
$$\mathcal{S}\left(\left(\frac{\alpha}{\beta}\right)^r\right)\alpha^{1-\nu}\beta^{\nu} \le (1-\nu)\alpha + \nu\beta \le \mathcal{S}\left(\frac{\alpha}{\beta}\right)\alpha^{1-\nu}\beta^{\nu},$$

where $\alpha, \beta > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}.$

The second inequality in (2.17) is due to Tominaga [22] while the first one is due to Furuichi [12].

We then have the inequalities

(2.18)
$$\mathcal{S}(h^r) h^{\nu} \le 1 - \nu + \nu h \le \mathcal{S}(h) h^{\nu},$$

for any h > 0 and $\nu \in [0, 1]$, where $r = \min\{1 - \nu, \nu\}$.

In [23] the authors also showed that

$$\mathcal{K}^{r}(h) \geq \mathcal{S}(h^{r}) \text{ for } h > 0 \text{ and } r \in \left[0, \frac{1}{2}\right]$$

implying that the lower bound in (ZL) is better than the lower bound from (2.17).

Using the properties of the function \mathcal{S} we can conclude that

(2.19)
$$\sigma_p(\ell, L) \le \frac{A_p(1, h)}{G_p(1, h)} \le \Sigma(\ell, L)$$

for $p \in [0, 1]$ and $h \in [\ell, L]$, where

$$\Sigma(\ell, L) := \max_{h \in [\ell, L]} \mathcal{S}(h) = \begin{cases} \mathcal{S}(\ell) & \text{if } L < 1, \\ \max \left\{ \mathcal{S}(\ell), \mathcal{S}(L) \right\} & \text{if } \ell \le 1 \le L, \\ \mathcal{S}(L) & \text{if } 1 < \ell \end{cases}$$

and

$$\sigma_p\left(\ell,L\right) := \min_{h \in [\ell,L]} \mathcal{S}\left(h\right) = \begin{cases} \mathcal{S}\left(L^{\min\{p,1-p\}}\right) & \text{if } L < 1, \\ 1 & \text{if } \ell \le 1 \le L, \\ \mathcal{S}\left(\ell^{\min\{p,1-p\}}\right) & \text{if } 1 < \ell. \end{cases}$$

In [6] we obtained the following exponential upper bound

(2.20)
$$(1 \le) \frac{(1-\nu)\alpha + \nu\beta}{\alpha^{1-\nu}\beta^{\nu}} \le \exp\left[4\nu(1-\nu)\left(\mathcal{K}\left(\frac{\alpha}{\beta}\right) - 1\right)\right],$$

giving the inequality

(2.21)
$$\frac{A_p(1,h)}{G_p(1,h)} \le \Psi_p(\ell,L)$$

where

(2.22)
$$\Psi_{p}(\ell,L) := \max_{h \in [\ell,L]} \left\{ \exp \left[4p \left(1 - p \right) \left(\mathcal{K}(h) - 1 \right) \right] \right\}$$

$$= \begin{cases} \exp \left[4p \left(1-p\right) \left(\mathcal{K} \left(\ell\right)-1\right)\right] \text{ if } L < 1, \\ \exp \left[4p \left(1-p\right) \left(\max \left\{\mathcal{K} \left(\ell\right), \mathcal{K} \left(L\right)\right\}-1\right)\right] \\ \text{ if } \ell \le 1 \le L, \\ \exp \left[4p \left(1-p\right) \left(\mathcal{K} \left(L\right)-1\right)\right] \text{ if } 1 < \ell. \end{cases}$$

For $p\in[0,1]$ and the interval $[\ell,L]\subset(0,\infty)\,,$ we define the following composite coefficients

(2.23)
$$\Theta_{p}\left(\ell,L\right) := \min\left\{\Gamma_{p,1/2}\left(\ell,L\right), \Gamma_{p}\left(\ell,L\right), \Sigma\left(\ell,L\right), \Psi_{p}\left(\ell,L\right)\right\}$$
and

(2.24)
$$\theta_p(\ell, L) := \max\left\{\gamma_{p,1/2}(\ell, L), \gamma_p(\ell, L), \sigma_p(\ell, L)\right\}$$

Then from (2.10), (2.13), (2.19) and (2.21) we have the double inequality (2.25) $\theta_p(\ell, L) h^p \leq 1 - p + ph \leq \Theta_p(\ell, L) h^p$

for any $p \in [0,1]$ and $h \in [\ell,L] \subset (0,\infty)$.

3. Multiplicative Inequalities for the Quadratic Geometric Mean

Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that

$$(3.1) M \ge \left| yx^{-1} \right| \ge m.$$

The inequality (3.1) is equivalent to

(3.2)
$$M^{2} \ge |yx^{-1}|^{2} = (x^{*})^{-1} |y|^{2} x^{-1} \ge m^{2}$$

If we multiply at left with x^* and at right with x we get the equivalent relation

(3.3)
$$M^2 |x|^2 \ge |y|^2 \ge m^2 |x|^2.$$

We have:

Theorem 3. Let A be a Hermitian unital Banach *-algebra. Assume that $x, y \in$ Inv (A) and the constants M > m > 0 are such that (3.1) is true. Then we have the inequalities

(3.4)
$$\theta_{\nu} \left(m^{2}, M^{2} \right) x \widehat{\mathbb{S}}_{\nu} y \leq |x|^{2} \nabla_{\nu} |y|^{2} \leq \Theta_{\nu} \left(m^{2}, M^{2} \right) x \widehat{\mathbb{S}}_{\nu} y$$

for any $\nu \in [0,1]$.

Proof. Using the inequality (2.25) we have

(3.5)
$$\theta_{\nu}(k,K) z^{\nu} \leq 1 - \nu + \nu z \leq \Theta_{\nu}(k,K) z^{\nu}$$

for any real $z \in [k, K] \subset (0, \infty)$ and for any $\nu \in [0, 1]$, where the coefficients $\theta_{\nu}(k, K)$ and $\Theta_{\nu}(k, K)$ are defined by (2.24) and (2.23).

Let $u \in A$ with spectrum $\sigma(u) \subset [k, K] \subset (0, \infty)$. Then by applying Lemma 3 for the corresponding analytic functions in the right half open plane {Re z > 0} involved in the inequality (3.5) we conclude that we have in the order of A that

(3.6)
$$\theta_{\nu}(k,K) u^{\nu} \leq 1 - \nu + \nu u \leq \Theta_{\nu}(k,K) u^{\nu}.$$

If $x, y \in \text{Inv}(A)$ satisfy the condition (3.1) then, by (3.2), the element $u = |yx^{-1}|^2 \in \text{Inv}(A)$ and $\sigma(u) \subset [m^2, M^2] \subset (0, \infty)$.

By (3.6) we then have

(3.7)
$$\theta_{\nu} \left(m^{2}, M^{2} \right) \left(\left| yx^{-1} \right|^{2} \right)^{\nu} \leq 1 - \nu + \nu \left| yx^{-1} \right|^{2} \\ \leq \Theta_{\nu} \left(m^{2}, M^{2} \right) \left(\left| yx^{-1} \right|^{2} \right)^{\nu} ,$$

for any $\nu \in [0, 1]$.

If we multiply this inequality at left with x^* and at right with x we get

(3.8)
$$\theta_{\nu} (m^{2}, M^{2}) x^{*} (|yx^{-1}|^{2})^{\nu} x \leq (1-\nu) |x|^{2} + \nu x^{*} |yx^{-1}|^{2} x$$
$$\leq \Theta_{\nu} (m^{2}, M^{2}) x^{*} (|yx^{-1}|^{2})^{\nu} x,$$

for any $\nu \in [0,1]$.

Since

$$x^* |yx^{-1}|^2 x = x^* ((x^*)^{-1} y^* yx^{-1}) x = y^* y = |y|^2,$$

and

$$x^* \left(\left| yx^{-1} \right|^2 \right)^{\nu} x = x \mathfrak{S}_{\nu} y$$

for $x, y \in \text{Inv}(A)$, then by (3.8) we get the desired result (3.4).

Remark 2. For $\nu = 1/2$, let us consider

$$\begin{split} \Theta\left(m^{2}, M^{2}\right) &:= \Theta_{1/2}\left(m^{2}, M^{2}\right) \\ &= \min\left\{\Gamma_{1/2, 1/2}\left(m^{2}, M^{2}\right), \Gamma_{1/2}\left(m^{2}, M^{2}\right), \Sigma\left(m^{2}, M^{2}\right), \Psi_{1/2}\left(m^{2}, M^{2}\right)\right\} \end{split}$$

where

$$\Gamma_{1/2,1/2}(m^{2}, M^{2}) = \begin{cases} \mathcal{K}^{1/2}(m^{2}) & \text{if } M < 1, \\ \max \left\{ \mathcal{K}^{1/2}(m^{2}), \mathcal{K}^{1/2}(M^{2}) \right\} \\ \text{if } m \le 1 \le M, \\ \mathcal{K}^{1/2}(M^{2}) & \text{if } 1 < m \end{cases}$$
$$= \Gamma_{1/2}(m^{2}, M^{2}), \\ \Sigma(m^{2}, M^{2}) = \begin{cases} \mathcal{S}(m^{2}) & \text{if } M < 1, \\ \max \left\{ \mathcal{S}(m^{2}), \mathcal{S}(M^{2}) \right\} & \text{if } m \le 1 \le M, \\ \mathcal{S}(M^{2}) & \text{if } 1 < m \end{cases}$$

and

$$\Psi_{1/2}\left(m^{2}, M^{2}\right) = \begin{cases} \exp\left[\mathcal{K}\left(m^{2}\right) - 1\right] & \text{if } M < 1, \\ \exp\left[\max\left\{\mathcal{K}\left(m^{2}\right), \mathcal{K}\left(M^{2}\right)\right\} - 1\right] \\ \text{if } m \leq 1 \leq M, \\ \exp\left[\mathcal{K}\left(M^{2}\right) - 1\right] & \text{if } 1 < m. \end{cases}$$

Also, let us put

$$\theta(m^2, M^2) := \theta_{1/2}(m^2, M^2)$$

= min { $\gamma_{1/2, 1/2}(m^2, M^2), \gamma_{1/2}(m^2, M^2), \sigma_{1/2}(m^2, M^2)$ }

where

$$\gamma_{1/2,1/2} \left(m^2, M^2 \right) = \begin{cases} \mathcal{K}^{1/2} \left(M^2 \right) & \text{if } M < 1, \\ 1 & \text{if } m \le 1 \le M, \\ \mathcal{K}^{1/2} \left(m^2 \right) & \text{if } 1 < m, \end{cases}$$
$$= \gamma_{1/2} \left(m^2, M^2 \right),$$

and

$$\sigma_{1/2}(m^2, M^2) = \begin{cases} S(M) & \text{if } M < 1, \\ 1 & \text{if } m \le 1 \le M, \\ S(m) & \text{if } 1 < m. \end{cases}$$

Then by (3.4) written by $\nu = 1/2$ we get the simple inequality

(3.9)
$$\theta\left(m^{2}, M^{2}\right) x \otimes y \leq |x|^{2} \nabla |y|^{2} \leq \Theta\left(m^{2}, M^{2}\right) x \otimes y$$

provided that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (3.1) is true.

With the notations $x \nabla_{\nu}^{1/2} y$, $x \nabla^{1/2} y$, $x \mathbb{S}_{\nu}^{1/2} y$ and $x \mathbb{S}^{1/2} y$ from the introduction, we can state:

Corollary 3. Let A be a Hermitian unital Banach *-algebra with continuous involution. Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (3.1) is true. Then we have the inequalities

(3.10)
$$\theta_{\nu}^{1/2}(m^2, M^2) x \mathbb{S}_{\nu}^{1/2} y \le x \nabla_{\nu}^{1/2} y \le \Theta_{\nu}(m^2, M^2) x \mathbb{S}_{\nu}^{1/2} y$$

for any $\nu \in [0,1]$.

In particular,

(3.11)
$$\theta^{1/2} \left(m^2, M^2 \right) x \mathbb{S}^{1/2} y \le x \nabla^{1/2} y \le \Theta \left(m^2, M^2 \right) x \mathbb{S}^{1/2} y.$$

The proof follows by Okayasu's theorem from the introduction and the inequality (3.4) in which we take the square root.

Corollary 4. Let A be a unital C^* -algebra. Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (3.1) is true. Then we have the inequalities

(3.12)
$$\theta_{\nu} \left(m^{2}, M^{2} \right) \left\| \left| yx^{-1} \right|^{\nu} x \right\|^{2} \leq \left\| (1-\nu) \left| x \right|^{2} + \nu \left| y \right|^{2} \right\|$$
$$\leq \Theta_{\nu} \left(m^{2}, M^{2} \right) \left\| \left| yx^{-1} \right|^{\nu} x \right\|^{2},$$

for any $\nu \in [0,1]$.

In particular, we have

(3.13)
$$\theta(m^{2}, M^{2}) \left\| \left| yx^{-1} \right|^{1/2} x \right\|^{2} \leq \frac{1}{2} \left\| |x|^{2} + |y|^{2} \right\|$$
$$\leq \Theta(m^{2}, M^{2}) \left\| \left| yx^{-1} \right|^{1/2} x \right\|^{2}.$$

We also have the following result for positive elements:

Corollary 5. Let A be a Hermitian unital Banach *-algebra. If $0 < a, b \in A$ and 0 < k < K are such that

$$(3.14) ka \le b \le Ka,$$

then

(3.15)
$$\theta_{\nu}(k,K) a \sharp_{\nu} b \le a \nabla_{\nu} b \le \Theta_{\nu}(k,K) a \sharp_{\nu} b$$

for any $\nu \in [0,1]$, where $\theta_{\nu}(k,K)$ and $\Theta_{\nu}(k,K)$ are given by (2.24) and (2.23). In particular, we have

(3.16)
$$\theta(k, K) a \sharp b \le a \nabla b \le \Theta(k, K) a \sharp b$$

where $\theta\left(k,K\right) = \theta_{1/2}\left(k,K\right)$ and $\Theta\left(k,K\right) = \Theta_{1/2}\left(k,K\right)$.

The proof follows by Theorem 3 applied for $x = a^{1/2}, y = b^{1/2}, M = \sqrt{K}$ and $m = \sqrt{k}$.

4. Related Exponential Bounds

Further on, we also have the exponential inequalities:

Lemma 6. For any α , $\beta > 0$ and $\nu \in [0, 1]$ we have

(4.1)
$$\exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(1-\frac{\min\left\{\alpha,\beta\right\}}{\max\left\{\alpha,\beta\right\}}\right)^{2}\right]$$
$$\leq \frac{\left(1-\nu\right)\alpha+\nu\beta}{\alpha^{1-\nu}\beta^{\nu}}$$
$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{\max\left\{\alpha,\beta\right\}}{\min\left\{\alpha,\beta\right\}}-1\right)^{2}\right].$$

These inequalities were obtained in current form in [7] and for $\alpha < \beta$, via a different technique, in [1].

We have:

Theorem 4. Let A be a Hermitian unital Banach *-algebra. Assume that $x, y \in$ Inv (A) and the constants M > m > 0 are such that (3.1) is true. Then we have the inequalities

(4.2)
$$\exp\left[\frac{1}{2}\nu(1-\nu)\left(1-\frac{\min\{1,M^2\}}{\max\{1,m^2\}}\right)^2\right]x \otimes_{\nu} y$$
$$\leq |x|^2 \nabla_{\nu} |y|^2$$
$$\leq \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{\max\{1,M^2\}}{\min\{1,m^2\}}-1\right)^2\right]x \otimes_{\nu} y$$

any $\nu \in [0,1]$.

In particular, we have

(4.3)
$$\exp\left[\frac{1}{8}\left(1 - \frac{\min\{1, M^2\}}{\max\{1, m^2\}}\right)^2\right] x \otimes y$$
$$\leq |x|^2 \nabla |y|^2$$
$$\leq \exp\left[\frac{1}{8}\left(\frac{\max\{1, M^2\}}{\min\{1, m^2\}} - 1\right)^2\right] x \otimes y.$$

Proof. From the inequality (4.1) we have

(4.4)
$$\exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(1-\frac{\min\left\{1,z\right\}}{\max\left\{1,z\right\}}\right)^{2}\right]z^{\nu}$$
$$\leq 1-\nu+\nu z$$
$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{\max\left\{1,z\right\}}{\min\left\{1,z\right\}}-1\right)^{2}\right]z^{\nu}$$
for any $z \geq 0$ and any $\nu \in [0,1]$

 $\begin{array}{l} \text{for any } z>0 \text{ and any } \nu \in \left[0,1\right].\\ \text{If } z\in \left[m^2,M^2\right]\subset (0,\infty) \text{ then} \end{array}$

$$0 \le \frac{\max\{1, z\}}{\min\{1, z\}} - 1 \le \frac{\max\{1, M^2\}}{\min\{1, m^2\}} - 1$$

and

$$0 \le 1 - \frac{\min\left\{1, M^2\right\}}{\max\left\{1, m^2\right\}} \le 1 - \frac{\min\left\{1, z\right\}}{\max\left\{1, z\right\}},$$

which implies that

$$\exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{\max\{1,z\}}{\min\{1,z\}}-1\right)^{2}\right] \\ \leq \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{\max\{1,M^{2}\}}{\min\{1,m^{2}\}}-1\right)^{2}\right]$$

and

$$\exp\left[\frac{1}{2}\nu(1-\nu)\left(1-\frac{\min\{1,M^2\}}{\max\{1,m^2\}}\right)^2\right] \le \exp\left[\frac{1}{2}\nu(1-\nu)\left(1-\frac{\min\{1,z\}}{\max\{1,z\}}\right)^2\right].$$

By (4.4) we then have

(4.5)
$$\exp\left[\frac{1}{2}\nu(1-\nu)\left(1-\frac{\min\{1,M^2\}}{\max\{1,m^2\}}\right)^2\right]z^{\nu} \le 1-\nu+\nu z \le \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{\max\{1,M^2\}}{\min\{1,m^2\}}-1\right)^2\right]z^{\nu}$$

for any $z \in [m^2, M^2]$ and any $\nu \in [0, 1]$. Let $u \in A$ with spectrum $\sigma(u) \subset [m^2, M^2] \subset (0, \infty)$. Then by applying Lemma 3 for the corresponding analytic functions in the right half open plane $\{\operatorname{Re} z > 0\}$ involved in the inequality (4.5) we conclude that we have in the order of A that

_

(4.6)
$$\exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(1-\frac{\min\left\{1,M^{2}\right\}}{\max\left\{1,m^{2}\right\}}\right)^{2}\right]u^{\nu}$$
$$\leq 1-\nu+\nu u$$
$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{\max\left\{1,M^{2}\right\}}{\min\left\{1,m^{2}\right\}}-1\right)^{2}\right]u^{\nu}$$

for any $\nu \in [0,1]$.

Now, on making use of a similar argument to the one in the proof of Theorem 3 we deduce the desired result (4.2). We omit the details.

Corollary 6. Let A be a Hermitian unital Banach *-algebra with continuous involution. Assume that x, $y \in Inv(A)$ and the constants M > m > 0 are such that (3.1) is true. Then we have the inequalities

(4.7)
$$\exp\left[\frac{1}{4}\nu(1-\nu)\left(1-\frac{\min\{1,M^2\}}{\max\{1,m^2\}}\right)^2\right]x\mathbb{S}_{\nu}^{1/2}y$$
$$\leq x\nabla_{\nu}^{1/2}y$$
$$\leq \exp\left[\frac{1}{4}\nu(1-\nu)\left(\frac{\max\{1,M^2\}}{\min\{1,m^2\}}-1\right)^2\right]x\mathbb{S}_{\nu}^{1/2}y$$

for any $\nu \in [0,1]$.

In particular, we have

(4.8)
$$\exp\left[\frac{1}{16}\left(1 - \frac{\min\{1, M^2\}}{\max\{1, m^2\}}\right)^2\right] x \mathbb{S}^{1/2} y$$
$$\leq x \nabla^{1/2} y$$
$$\leq \exp\left[\frac{1}{16}\left(\frac{\max\{1, M^2\}}{\min\{1, m^2\}} - 1\right)^2\right] x \mathbb{S}^{1/2} y.$$

We have the norm inequalities:

Corollary 7. Let A be a unital C^{*}-algebra. Assume that $x, y \in \text{Inv}(A)$ and the constants M > m > 0 are such that (3.1) is true. Then we have the inequalities

$$(4.9) \exp\left[\frac{1}{2}\nu(1-\nu)\left(1-\frac{\min\{1,M^2\}}{\max\{1,m^2\}}\right)^2\right] \left\| |yx^{-1}|^{\nu}x\|^2 \le \left\| (1-\nu)|x|^2+\nu|y|^2 \right\| \le \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{\max\{1,M^2\}}{\min\{1,m^2\}}-1\right)^2\right] \left\| |yx^{-1}|^{\nu}x\|^2,\right.$$

for any $\nu \in [0,1]$.

In particular, we have

$$(4.10) \quad \exp\left[\frac{1}{8}\left(1 - \frac{\min\{1, M^2\}}{\max\{1, m^2\}}\right)^2\right] \left\| |yx^{-1}|^{1/2} x\|^2 \le \frac{1}{2} \left\| |x|^2 + |y|^2 \right\| \\ \le \exp\left[\frac{1}{8}\left(\frac{\max\{1, M^2\}}{\min\{1, m^2\}} - 1\right)^2\right] \left\| |yx^{-1}|^{1/2} x\|^2 \right].$$

We also have the following result for positive elements:

Corollary 8. Let A be a Hermitian unital Banach *-algebra. If $0 < a, b \in A$ and 0 < k < K are such that the condition (3.14) is valid, then

(4.11)
$$\exp\left[\frac{1}{2}\nu(1-\nu)\left(1-\frac{\min\{1,K\}}{\max\{1,k\}}\right)^{2}\right]a\sharp_{\nu}b \leq a\nabla_{\nu}b$$
$$\leq \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{\max\{1,K\}}{\min\{1,k\}}-1\right)^{2}\right]a\sharp_{\nu}b$$

for any $\nu \in [0,1]$.

In particular, we have

(4.12)
$$\exp\left[\frac{1}{8}\left(1 - \frac{\min\{1, K\}}{\max\{1, k\}}\right)^{2}\right]a\sharp b \le a\nabla b$$
$$\le \exp\left[\frac{1}{8}\left(\frac{\max\{1, K\}}{\min\{1, k\}} - 1\right)^{2}\right]a\sharp b.$$

References

- H. Alzer, C. M. da Fonseca and A. Kovačec, Young-type inequalities and their matrix analogues, *Linear and Multilinear Algebra*, 63 (2015), Issue 3, 622-635.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, 1973.
- [3] P. S. Bullen, Handbook of Mean and Their Inequalities, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
- [4] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [5] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 417-478.
- [6] S. S. Dragomir, A note on Young's inequality, RACSAM (to appear), DOI 10.1007/s13398-016-0300-8, Preprint, RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [Online http://rgmia.org/papers/v18/v18a126.pdf].
- S. S. Dragomir, A Note on new refinements and reverses of Young's inequality, *Transylv. J. Math. Mech.* 8 (2016), no. 1, 45-49. Preprint, *RGMIA Res. Rep. Coll.* 18 (2015), Art. 131.
 [Online http://rgmia.org/papers/v18/v18a131.pdf].
- [8] S. S. Dragomir, Quadratic weighted geometric mean in Hermitian unital Banach *-algebras, RGMIA Res. Rep. Coll. 19 (2016), Art.
- S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.vu.edu.au/monographs/).
- [10] B. Q. Feng, The geometric means in Banach *-algebra, J. Operator Theory 57 (2007), No. 2, 243-250.
- [11] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization. Linear Algebra Appl. 219 (1995), 139–155.
- [12] S. Furuichi, Refined Young inequalities with Specht's ratio, Journal of the Egyptian Mathematical Society 20(2012), 46–49.
- [13] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* **19** (2015), No. 2, pp. 467-479.
- [14] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- [15] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
- [16] T. Okayasu, The Löwner-Heinz inequality in Banach *-algebra, Glasgow Math. J. 42 (2000), 243-246.
- [17] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond-Pečarić method in operator inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space. Monographs in Inequalities, 1. Element, Zagreb, 2005. xiv+262 pp.+loose errata. ISBN: 953-197-572-8
- [18] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, 1992.
- [19] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras, II. Duke Math. J. 37 (1970), 275-280.
- [20] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), pp. 91-98.
- [21] K. Tanahashi and A. Uchiyama, The Furuta inequality in Banach *-algebras, Proc. Amer. Math. Soc. 128 (2000), 1691-1695.
- [22] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.H.
- [23] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA