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MULTIPLICATIVE INEQUALITIES FOR WEIGHTED
GEOMETRIC MEAN IN HERMITIAN UNITAL BANACH
*~ALGEBRAS

S. S. DRAGOMIR!:2

ABSTRACT. Counsider the quadratic weighted geometric mean

@y = ||yac_1|yac|2
for invertible elements z, y in a Hermitian unital Banach *-algebra and real
number v. In this paper, by utilizing some results of Tominaga, Furuichi,
Liao-Wu-Zhao, Zuo-Shi-Fujii and the author, we obtain various upper and
lower bounds for the positive element (1 —v)|z|? 4+ v |y|? in terms of z®,y,
where v € [0,1], under various assumptions for the elements z, y involved.
Applications for the classical weighted geometric mean

affyb = al’? <a71/2ba’1/2>v al/?

of positive elements a, b that satisfy the condition 0 < ka < b < Ka for certain
numbers 0 < k < K, are also given.

1. INTRODUCTION

Let A be a unital Banach *-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

In what follows we assume that A is a Hermitian unital Banach x-algebra.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0, 00) . We say that a is positive and write a > 0ifa > 0 and 0 ¢ o (a) . Thus
a > 0 implies that its inverse a~! exists. Denote the set of all invertible elements
of A by Inv (A). If a, b € Inv (A), then ab € Inv (A) and (ab)™" = b~1a~1. Also,
saying that a > b means that a — b > 0 and, similarly a > b means that a — b > 0.

The Shirali-Ford theorem asserts that [19] (see also [2, Theorem 41.5])

(SF) a*a > 0 for every a € A.

Based on this fact, Okayasu [16], Tanahashi and Uchiyama [21] proved the following
fundamental properties (see also [12]):
(i) If a, b€ A, then ¢ > 0, b > 0 imply a + b > 0 and « > 0 implies aa > 0;

i) Ifa, be A, then a >0, b> 0 imply a + b > 0;

) If a, b € A, then either a >b>0or a > b >0 imply a > 0;
iv) If @ > 0, then a=! > 0;

) If ¢ >0, then 0 < b < a if and only if ¢be < cac, also 0 < b < a if and only
if cbe < cac;
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(vi) If0<a <1, then 1 <a™}

(vii) f0 < b <a,then0<a ' <b ! alsoif 0 <b<a,then0<a ! <b L

Okayasu [16] showed that the Lowner-Heinz inequality remains valid in a Her-
mitian unital Banach #-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (aP > bP).

In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].

Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € 0 (a)} > 0 and sup{z : z € 0 (a)} < co. Choose v to
be close rectifiable curve in {Rez > 0}, the right half open plane of the complex
plane, such that o (a) C ins(7), the inside of 4. Let G be an open subset of C with
o(a) CG. If f: G — C is analytic, we define an element f (a) in A by

f@) =5 [ 1) -0 d

T 2mi
It is well known (see for instance [4, pp. 201-204]) that f (a) does not depend on
the choice of v and the Spectral Mapping Theorem (SMT)

o(f(a)) = f(o(a))
holds.
For any o € R we define for ¢ € A and a > 0, the real power
1 _
a® = 5 Wza(z—a) "z,
where 2z is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z* is analytic in {Re z > 0}, then by (SMT) we have
g(a)=(o(a)*={2%:2€0(a)} C(0,0).
Following [12], we list below some important properties of real powers:

(viii) If 0 < a € A and « € R, then a® € A with a® > 0 and (a2)1/2 =a, [21,
Lemma 6];
(ix) If0 < a € A and o, B € R, then a®a® = a**+7;
(x) f0<a€ Aand a €R, then (a*)”" = (a1 =a™
(xi) If0 < a, b€ A, a, B€R and ab = ba, then a®b® = b7a.
We define the following means for v € [0, 1], see also [12] for different notations:
(A) aVyb:=(1—-v)a+vb, a, be A
the weighted arithmetic mean of (a,b),
(H) alb:=(1-v)a '+ Vb_1)71 ,a, b>0

the weighted harmonic mean of positive elements (a,b) and
(G) af,b = al/? (ail/chfl/z)U al’?

the weighted geometric mean of positive elements (a,b). Our notations above are

motivated by the classical notations used in operator theory. For simplicity, if
v = %, we use the simpler notations aVb, a!b and afb. The definition of weighted

geometric mean can be extended for any real v.
In [12], B. Q. Feng proved the following properties of these means in A a Her-
mitian unital Banach x-algebra:
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(xii) If 0 < a, b € A, then a!b = bla and aflb = bia;
(xiii) If 0 < a, b€ A and ¢ € Inv (A), then
c* (alb) ¢ = (c*ac)! (¢*be) and ¢* (afb) ¢ = (c*ac)f (c*be) ;
(xiv) If 0 < a, b€ A and v € [0, 1], then
(al,b) ™" = (@) V, (b7") and (') g, (b71) = (at,b) "

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real
numbers, B. Q. Feng obtained in [10] the following inequality between the weighted
means introduced above:

(HGA) aV,b > afl,b > al,b

for any 0 < a, b€ Aand v €0,1].
In [21], Tanahashi and Uchiyama obtained the following identity of interest:

Lemma 1. If0 < ¢, d and X is a real number, then
A-1
(L.1) (ded)™ = dc'/? (01/2d201/2> 2.
Using this equality we proved the following fact [8]:
Proposition 1. For any 0 < a, b € A we have
bf1_,a = af,b
for any real number v.

In [8] we introduced the quadratic weighted mean of (x,y) with z, y € Inv (4)
and the real weight v € R, as the positive element denoted by z(©,y and defined
by

(S) 2@y = x* ((9&*)_1 y*yx_l)u x ="

When v = 1/2, we denote 2®); /2y by 2@y and we have

_1‘2 ‘2

1% _11/
yx xz‘yx ‘x

2@y = z* ((:c*)fl y*yafl)l/2 =z |ym’1| x = “y:c’1|1/2 m‘z.

We can also introduce the 1/2-quadratic weighted mean of (x,y) with z, y €
Inv (A) and the real weight v € R by

(1/2:9) 1@y = @®uy)"? = |ly= | .
Correspondingly, when v = 1/2 we denote z®'/?y and we have
2©®"/2y = “yx_1|l/2x‘ -
The following equalities hold [8]:
Proposition 2. For any z, y € Inv (4) and v € R we have
(@®.y) " = (") @ (y")

and

(e (v = @Gy .
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If we take in (S) z = a'/? and y = b'/? with a, b > 0 then we get
a1/2®yb1/2 — aﬂyb

for any v € R that shows that the quadratic weighted mean can be seen as an
extension of the weighted geometric mean for positive elements considered in the
introduction.

Let 2, y € Inv (A) . If we take in the definition of "#," the elements a = |z|*> > 0
and b = |y|2 > 0 we also have for real v

2 2 1 2,-1\" e TN
2l 80 1yP* = Jo| (J21 ™" 1y 217) " Jo| = lal [lyllol ™| Jal = ||lgl =] 12|

It is then natural to ask how the positive elements 2®,y and |z|*#, |y|> do
compare, when z, y € Inv (A) and v € R ?

In [8] we proved the following lemma that provides a slight generalization of
Lemma 1.

Lemma 2. If0 < ¢, d € Inv(A) and X is a real number, then
A1
(dcd*))‘ — del/? (Cl/2 \d|2 C1/2) L2

Remark 1. The identity (2.18) was proved by. T. Furuta in [11] for positive oper-
ator ¢ and invertible operator d in the Banach algebra of all bonded linear operators
on a Hilbert space by using the polar decomposition of the invertible operator dc*/?.

The following fundamental fact that connects the quadratic weighted geometric
mean @), to the weighted geometric mean f, holds [8]:

Theorem 1. If z, y € Inv (4) and X is a real number, then
x@uy = ‘xlg ﬁl/ ‘y|2

Now, assume that f (z) is analytic in the right half open plane {Rez > 0} and
for the interval T C (0,00) assume that f(z) > 0 for any z € I. If u € A such that
o (u) C I, then by (SMT) we have

o (f(u) = f(o(w)c f)cC0,00)

meaning that f (u) > 0 in the order of A.
Therefore, we can state the following fact that will be used to establish various
inequalities in A.

Lemma 3. Let f(z) and g (2) be analytic in the right half open plane {Rez > 0}
and for the interval I C (0,00) assume that f(z) > g(z) for any z € 1. Then for
any u € A with o (u) C I we have f (u) > g (u) in the order of A.

We have the following inequalities between means [8]:
Theorem 2. For any x, y € Inv (A) and v € [0, 1] we have
(1.2) |x‘2vu |y|2 > 1@y > |1'|2!1/ |y‘2
In particular,

(1.3) 12>V |y > 2@y > |z |y[*.
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We can define the weighted means for v € [0, 1] and the elements z, y € Inv (A)
and v € [0,1] by

1/2 1/2
w2y = (| Vo lyl?) = (=) 2 + v [yP)
and

x!,l/Zy = (|x‘2yy |y|2)1/2 _ ((1 _ ) |x‘_2 e |y|_2)71/2_

For v = 1/2 we consider

/2 /2 1/2
2V 2y = (kP VP) =5 (e +1y?)
and
1/2 _ o\ —1/2
a2y = (lePryP) = V2 (o7 + 1yl %)
We have [8]:

Corollary 1. Let A be a Hermitian unital Banach x-algebra with continuous invo-
lution. Then for any x, y € Inv (A) and v € [0,1] we have

(1.4) 2V,/y > 2@y > 21}/?y.
In particular, we have
(1.5) eV 2y > 2@y > 2!y

Recall that a C*-algebra A is a Banach x-algebra such that the norm satisfies
the condition

la*a| = ||a]|® for any a € A.
If a C*-algebra A has a unit 1, then automatically ||1|| = 1.

It is well know that, if A is a C*-algebra, then (see for instance [15, 2.2.5 Theo-
rem])

b > a > 0 implies that [|b]| > ||a] .
Corollary 2. Let A be a unital C*-algebra. Then for any x, y € Inv(A4) and
v € [0,1] we have
L2
16 (=)l + vyl = [ =) ol + v lyP|| > ||y
In particular,

1 2 2 1 2 2 112 |12
(1.7) 5 (I2l? + 1yl?) = 5 [|lal® + 1P| = lwe [

Motivated by the above facts, in this paper we obtain various upper and lower
bounds for the positive element (1 — v) |z|*> + v |y|* in terms of the quadratic mean
x®),y, namely, inequalities of the form

52®,y < (1—v) |z|* + v|y|* < Az®,y,

where v € [0,1] and the numbers 1 < § < A < oo, under various assumptions
for the elements involved. Applications for the classical geometric mean af, b :=
al/? (ail/Qba’l/Q)U a'/? of positive elements a, b that satisfy the condition 0 <
ka < b < Ka for certain numbers 0 < k < K, are also given.
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2. SOME PRELIMINARY FACTS

Jensen’s inequality for convex function is one of the most known and extensively
used inequality in various filed of Modern Mathematics. It is a source of many
classical inequalities including the generalized triangle inequality, the arithmetic
mean-geometric mean-harmonic mean inequality, the positivity of relative entropy
in Information Theory, Schannon’s inequality, Ky Fan’s inequality, Levinson’s in-
equality and other results. For classical and contemporary developments related to
the Jensen inequality, see [3], [14], [18] and [9] where further references are provided.

To be more specific, we recall that, if X is a linear space and C' C X a convex
subset in X, then for any convex function f : C — R and any z; € C, r; > 0
for i € {1,...,k}, k > 2 with Zf:l r; = R > 0 one has the weighted Jensen’s
inequality:

k k
1 1
If f:C — R is strictly convex and r; > 0 for ¢ € {1,...,k} then the equality case
holds in (J) if and only if z; = ... = z,.

By P,, we denote the set of all nonnegative n-tuples (p1, ..., p,) with the property
that Z _1 pi = 1. Consider the normalised Jensen functional

k7n f,X p sz 231 <szx1> > 0

where f : C — R is a convex function on the convex set C' and x = (x1, ..., x,) € C"
and p €P,,.
The following result holds [5]:

Lemma 4. Ifp, q €Py,, q¢; > 0 for each i € {1,...,n} then

en 09 i {217, (7x0 <7 Goxp) < max {

1<i<n

ql}Jn (%)

In the case n = 2, if we put py =1 —p, po = p, g1 =1 — ¢ and g2 = ¢ with
p €[0,1] and ¢ € (0,1) then by (2.1) we get

@2 win{Z 3200 £ @) +af ) - S0 - 0w+ a)
<A =p)f(x)+pf(y)— f((1—p)z+py)
SmaX{z 17”}[(1q>f<:u>+qf<y>f<<1q>ac+qy>1

for any x, y € C.
If we take ¢ = % in (2.2), then we get

(2.3) 2min {t,1 — t}{ ()+f() f<$+y)}
S(1—t)f(3:)+tf(y)—f((1—t)g;+ty)
ggmax{t,lt}[f@)ﬂ(y)f<x+y>}

2
for any z, y € C and ¢ € [0,1].
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If we take in (2.2) f(x) = —Inx, then we get

2.4 (Aq (a,m)mm{?“} _Ay(B) _ <Aq <a,ﬁ>)m“{’57*—q}
. Gy (o, B) T Gp(a,B) T \Gq (o, B)

for any o, 8 > 0 and for any p € [0,1], ¢ € (0,1).
This inequality is a particular case for n = 2 of the inequality (4.2) from [5].
For ¢ = 1 we have by (2.4) that

(A(a,5)>2min{p,1p} - Ap (Olyﬂ) - (A(a7ﬁ)>2max{p,1p}
G (o, B) T Gy, f) T \G(a,B)
for any «, 8 > 0 and for any p € [0, 1].

Recall that Kantorovich’s constant K is defined by

(h+1)?
4h

It is well known that K is decreasing on (0,1) and increasing on [1,00), K (h) > 1
for any h > 0 and K (k) = K (3) for any h > 0.
The inequality (2.5) can be thus written as

(ZL) Kmin{p,l—p} (g) < EZ gg Icmax{p,l P} (B) .

The first inequality in (ZL) was obtained by Zou et al. in [23] while the second by
Liao et al. [13].
For ¢ € (0,1) we consider the function f, : (0,00) — (0, 00) defined by
A, (1, h) l—q+qh _
h) =
The function f, is dlfferentlable and

fa(h)=(1—q)gh™ " (h 1),
which shows that the function f, is decreasing on (0, 1) and increasing on [1, 00) . We
have fq (1) = 1, limp—o4 fy (h) = +00, limj oo fg (h) = +o00 and f, (1) = fi—q ()
for any h > 0 and q € (0,1).
Therefore, by considering the 3 possible situations for the location of the interval
[¢, L] C (0,00) and the number 1 we get

f,(0) i L <1,

(2.5)

(K) K (h) = . h>0.

—q)h™ 7+ gh' 4.

(2.6) max fq(h) =4 max{f,(¢), f, (L)} f ¢ <1< L,

f, (L) if 1<,

Aq(1,0) if L <1,

G, (1,0)
= maX{Ggig,églm}lf€<l<L
ALL) 1 < g

Gq(1,L)
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and
f, (L) if L < 1, S B it L <1,
2.7 min f,(h)={ 1iff<1<L ={ 1if(<1<I,
nele,r)”?
€l
fa (@) i1 <, GAE 1< L

We then have the following fact:
Lemma 5. Foranyp € [0,1], ¢ € (0,1) and h € [¢, L] C (0,00) we have the bounds

o (¢,L) < ——-—<~<T {, L
7,07(1( ’ )— Gp(l,h) — p,Q( ’ )
where
max E,%
()™ s oy
I (Aq(1,z)>max{§’i%ﬁ’ (AQ(LL))““"X{%’%
(2.8)  Tpy(0,L) = u(10) \ @@
ife<1<TI,
IR et =
(#5:8) f1<t
and
mn{ 342}
(ggg;;gg) ifL<1,
(2.9) Yoo (L) =4 1if0<1<1I,
inf 422}
Aq(1,0) .
(844) if1<t.
We observe that for ¢ = 1/2, we get, see also (ZL), that
Ap (1, 1)
(2.10) Ypay2 (L) < m <Tpa (4 L),

for p € [0,1] and h € [¢, L], where
Jemaxtp=p} (0) if [ < 1,

max {]Cmax{p,lfp} (f) JCmaX{P,l*P} (L)}

(2.11) Poap(GL) =9 &t <1<L,
’CrrlaX{p71_P} (L) if 1 < /
and
jemindpl=p} (L) if L < 1,
(2.12) Vpajz (L) =9 1if£<1<L,

Icmin{p,l—P} (f) ifl1 < 6,
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where K is Kantorovich’s constant.
By taking ¢ = p € (0,1) in Lemma 5 we get
A, (1, h)

2.13 0,0 < 2 2 <1 (0, L
( ) FYp(? )_Gp(l,h)_ P(? )
where
Ay (1,0) .
EMEN) if L <1,
maX{Ap(M) Ap(l,L)}
(2.14) I, L) := Gp(1,0)? Gp(1,L)
ife<1<1L,
A,(1,L) .
G D) ifl</
and
A,(1,L) .
oD if L <1,
(2.15) Yp (¢, L) := 1if¢<1<L,

Ap(1,0) .
oD if 1< /.

We recall that Specht’s ratio is defined by

BT e (0,1)U (1, o)
(216) S (h) — eln (h h—1 )

1if h=1.

It is well known that lim,—, S (h) =1, S(h) = S (+) > 1 for h > 0, h # 1. The
function is strictly decreasing on (0,1) and strictly increasing on (1,00).

The following inequality provides a refinement and a multiplicative reverse for
Young’s

1) s ((g)) o< (1-)atvB<S <g) oA g,

where a, 8> 0, v € [0,1], r = min {1 — v, v}.

The second inequality in (2.17) is due to Tominaga [22] while the first one is due
to Furuichi [12].

We then have the inequalities
(2.18) S(h")h <1—-v+4+vh <S(h)h",

for any h > 0 and v € [0, 1], where r = min {1 — v, v}.
In [23] the authors also showed that
. . 1
K" (h) >S(h") for h >0 and r € {0, 2]

implying that the lower bound in (ZL) is better than the lower bound from (2.17).
Using the properties of the function & we can conclude that

M<E(&L)

(2.19) oy (6,L) < o <
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for p € [0,1] and h € [¢, L], where

S() if L <1,
Y L):= max S(h) =4 max{S¥),S(L)} f ¢ <1< L,
heltL] S(L)if1<?

and

op(¢,L) := min S(h)=

1if¢<1<1L,
hele,L)

S (emin{p1=p}) §f 1 < ¢,
In [6] we obtained the following exponential upper bound

(2.20) (1<) (1;1”2—?6“:”5 < exp {41/(1 — ) <IC (g) - 1)} ,

{ S (Lmine1-ph) i I < 1,

giving the inequality

(2.21) m < W, (L)
where
(222) W, (LL)= max {explip(1—p) (K (h) = D]}

exp[dp(1—p) (K () —1)] if L <1,

exp [4p (1 — p) (max {X (¢) , K (L)} — 1)]
ife<1<1IL,
exp[dp (1 —p)(K(L)-1)] if 1 < 2.

For p € [0, 1] and the interval [¢, L] C (0,00), we define the following composite
coefficients

(2.23) ©, (¢, L) := min {Fp$1/2 (¢,L),T,(¢, L), 2 (L, L),%, (¢, L)}

and

(224) 917 (& L) = max {7p,1/2 (& L) 7’717 (67 L) »Op (£7 L)} .
Then from (2.10), (2.13), (2.19) and (2.21) we have the double inequality
(2.25) 0,(¢,LYR? <1—p+ph <O, L)RH"

for any p € [0,1] and h € [¢, L] C (0,00).
3. MULTIPLICATIVE INEQUALITIES FOR THE QUADRATIC GEOMETRIC MEAN
Assume that z, y € Inv (4) and the constants M > m > 0 are such that
(3.1) M > |yz~ ' > m.
The inequality (3.1) is equivalent to
(3.2) M2 > |ya* = @)y et > m?
If we multiply at left with 2* and at right with x we get the equivalent relation
(3.3) M2 |zl > |yl = m?|a]®.
We have:
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Theorem 3. Let A be a Hermitian unital Banach x-algebra. Assume that x, y €
Inv (A) and the constants M > m > 0 are such that (3.1) is true. Then we have
the inequalities

(3.4) 0, (m?, M?) 2@,y < |2[° V,, [y* < ©, (m?, M?) 2@,y
for any v € [0,1].

Proof. Using the inequality (2.25) we have

(3.5) 0, (k,K)z' <l—v+vz<0,(k K)z"

for any real z € [k, K] C (0,00) and for any v € [0,1], where the coefficients
0, (k, K) and O, (k, K) are defined by (2.24) and (2.23).

Let u € A with spectrum o (u) C [k, K] C (0,00). Then by applying Lemma
3 for the corresponding analytic functions in the right half open plane {Rez > 0}
involved in the inequality (3.5) we conclude that we have in the order of A that

(3.6) 0, (k,K)u" <1l—v+rvu<0,k K)u".
If x, y € Inv (A) satisfy the condition (3.1) then, by (3.2), the element v = }ym‘l }2
Inv (A) and o (u) C [m? M?] C (0,00).

By (3.6) we then have

S

(3.7) 0, (m?, M?) <|y:c’1|2)y <l-v+v |y:1:’1|2

< 0y (m?21%) (|ua ™)

for any v € [0,1].
If we multiply this inequality at left with z* and at right with  we get

(3.8) 0, (m? M?) z* <|yx_1|2)yx <(1=v)|z]*+va* |ym_1|2x
<o, (mQ,MQ) = (‘y$_1‘2>yx’

for any v € [0,1].
Since
12 . 1 N 2
lyr = ((x*) Yy 1)x:yy=|y|,
and
* —1|2 v
x (‘yw ‘ ) z=xQ,y

for z, y € Inv (A), then by (3.8) we get the desired result (3.4). O

Remark 2. Forv =1/2, let us consider

© (m?, M?) := ©4 5 (m? M?)
= min {F1/2,1/2 (mzaMZ) ’F1/2 (mz,Mz) y 2 (mZ,M2) 7‘1’1/2 (mz,Mz)}
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where
K12 (m?) if M <1,
K12 (m2) , KCV/2 (M2
1—‘1/2,1/2 (m27M2) = gfliil{{gl S(JZL?) ( )}
K2 (M?) if 1 <m
= 1—‘1/2 (m27M2)a
S (m2) if M <1,
E(m2,M2): max{S(mQ),S(MQ)} ifm<1<M,
S(M?) if1<m
and

exp [IC (mz) — 1} if M <1,

exp [max {IC (m2) K (M2)} - 1]

Vijz (m*, M) =3 1< M

exp [IC (MQ) — 1] if 1 <m.
Also, let us put
0 (m?, M?) := 0, )5 (m* M?)
= min {’71/2,1/2 (mQ,MQ) »V1/2 (mQ,MQ) y01/2 (WQ;MZ)}

where
K2 (M?) if M < 1,

Y1/2,1/2 (mQ,MQ) = 1ifm<1<M,

/2 (m2) if 1 <m,
=71/2 (mzyMQ) )
and
S(M) if M <1,
01/2(m27M2): 1ifm<1<M,
S(m) if 1 <m.
Then by (3.4) written by v = 1/2 we get the simple inequality
(3.9) 0 (m?*, M?) 20y < lz|> V |y|> < O (m?*, M?) 2@y

provided that x, y € Inv (A) and the constants M > m > 0 are such that (3.1) is
true.

With the notations £VY/%y, xV1/%y, 2@®>/ %y and 2®"2y from the introduction,
we can state:

Corollary 3. Let A be a Hermitian unital Banach x-algebra with continuous in-
volution. Assume that x, y € Inv (A) and the constants M > m > 0 are such that
(3.1) is true. Then we have the inequalities

(3.10) %/2 (m27 M2) x@imy < xVi/zy <0, (m27 M2) x@ipy
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for any v € [0,1].
In particular,

(3.11) 0'/% (m*, M?) 2®'*y < 2V'/%y < © (m?, M) 2®'/%y.

The proof follows by Okayasu’s theorem from the introduction and the inequality
(3.4) in which we take the square root.

Corollary 4. Let A be a unital C*-algebra. Assume that x, y € Inv (A) and the
constants M > m > 0 are such that (3.1) is true. Then we have the inequalities

01 o) o < 1o v

)

<O, (mQ,MQ) H‘yx_l‘yx’

for any v € [0,1].
In particular, we have

(3.13) 0 (m?, M?) H|yz71|1/2

2 1
o < 5[l +
2
<O (mQ,MQ) H’ym71’1/2xH .
We also have the following result for positive elements:

Corollary 5. Let A be a Hermitian unital Banach x-algebra. If 0 < a, b € A and
0 <k < K are such that

(3.14) ka <b< Ka,
then
(3.15) 0, (k,K)at,b <aV,b< 0, (k,K)af,b

for any v € [0,1], where 0, (k, K) and ©, (k, K) are given by (2.24) and (2.23).

In particular, we have
(3.16) 0 (k,K)ath <aVb< 0O (k,K)afb
where 0 (k, K) = 015 (k, K) and © (k, K) = 015 (k, K).

The proof follows by Theorem 3 applied for z = a'/?, y = b'/2, M = VK and
m = Vk.
4. RELATED EXPONENTIAL BOUNDS
Further on, we also have the exponential inequalities:

Lemma 6. For any o, 8> 0 and v € [0,1] we have

. 2
(4.1) exp [;y (1-v) (1 - m> ]
(1-v)a+vp
- alfuﬂ’/

< exp [;V(l’/) (WQZ]'
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These inequalities were obtained in current form in [7] and for @ < 3, via a
different technique, in [1].
We have:

Theorem 4. Let A be a Hermitian unital Banach x-algebra. Assume that x, y €
Inv (A) and the constants M > m > 0 are such that (3.1) is true. Then we have
the inequalities

. 2 2
(4.2) exp 11/ (1-v) (1 - mln{l,]W}> z®uy

2 max {1, m?}

2 2
<z Vo Jyl

1 max{l M2} ’
< exp i (1-v) (7 - 1) z®yy

min {1, m?}

any v € [0,1].
In particular, we have
2
1 min {1, M2}
4.3 —(1- —
(43) P < max {1, m?} *Sy

< |z[*V]y?

2
2
e 1<rrm<{1M} 1) .

8 \ min{l,m?}

Proof. From the inequality (4.1) we have

. 2
(4.4) exp [;V(l —v) (1 - m> 1 z¥
<l—-v+4vz
< exp |él/(1—1/) <m—l> ]z”

for any z > 0 and any v € [0,1].
If z € [m?, M?] C (0,00) then

max {1,z} L < max {1, M?}

i Sl
~ min{l,z} ~ min {1, m?}
and )
1M :
Ogl_mln{’ }Sl_mln{]‘7z},
max {1, m?} max {1, z}

which implies that

exp l;'/(l —v) (m - 1)21

2
1, M2
< exp ;V(l_y)<max{v}_1>

min {1, m?}
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and

exp %V(l —v) (1 - nml{l,]\42}>

max {1, m?}

< exp l;yu_y) (1_ mm{“}ﬂ .

max {1, z}

By (4.4) we then have

(4.5) exp %1/(1 —v) <1 - nnn{l,]\/[2}> id

max {1, m?}

for any z € [m? M?| and any v € [0,1].

Let u € A with spectrum o (u) C [mz, MQ] C (0,00) . Then by applying Lemma
3 for the corresponding analytic functions in the right half open plane {Re z > 0}
involved in the inequality (4.5) we conclude that we have in the order of A that

(4.6) exp %l/ (1-v) (1 - mm{lM) u”

max {1, m?}

<l—-v+4vu

1 max {1, M?} ?
< exp 51/(171/) —_— 1 u”

min {1,m2}

for any v € [0,1].
Now, on making use of a similar argument to the one in the proof of Theorem 3
we deduce the desired result (4.2). We omit the details. O

Corollary 6. Let A be a Hermitian unital Banach x-algebra with continuous in-
volution. Assume that z, y € Inv (A) and the constants M > m > 0 are such that
(3.1) is true. Then we have the inequalities

min {1, M2}
 max {1,m?}

2
(4.7) exp il/ (1-v) (1 ) @Y%y

max {1, M2}
min {1, m?}

2
< exp iv (1-v) ( - 1) 2®,/%y

for any v € [0,1].
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In particular, we have

1 min {1 M2} ? /2
— S A 1
(48) P16 ! max {1, m?} w©y

< a2V

1 max{l M2} :
<exp | —= [ ———= -1 x@l/Qy.

min {1, m?}

We have the norm inequalities:

Corollary 7. Let A be a unital C*-algebra. Assume that x, y € Inv (A) and the
constants M > m > 0 are such that (3.1) is true. Then we have the inequalities

1 min{l M2} ’ 2
(4.9) exp 51/(1—1/) (1—’) H’yx_lll/xH

max {1, m?}

< |a=v) kel +viy?|

) 2
< exp %V(l—u) (me{l’zw}l> H|yx71|ysc'

min {1, m?}

2

)

for any v € [0,1].
In particular, we have

2
1 min{l,MQ} 2 12 1 2 2
110) exp | (1= S0y ) | et el 5 el )
(110) exp 8( ey ) | ] < 5 e

1 max{l,MQ} ? 1172 |2
< exp 8 \ ‘min {1, m?} -1 H|y$ | x” '

We also have the following result for positive elements:

Corollary 8. Let A be a Hermitian unital Banach x-algebra. If 0 < a, b € A and
0 < k < K are such that the condition (3.14) is valid, then

(4.11) exp l;y (1-v) <1 - m) af,b < aV,b
< exp l;y (1-v) (HM - 1) ] af,b

for any v € [0,1].
In particular, we have

(4.12) exp [1 <1 - mm{l,K})T atb < aVb

8 max {1, k}
1 (max {1, K} 2
< exp |ﬁ§ <min{1, A — 1> ] afb.
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