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REFINEMENTS AND REVERSES FOR THE RELATIVE
OPERATOR ENTROPY S (A|B) WHEN B > A

S.S. DRAGOMIR2 AND C. BUSE3

ABSTRACT. In this paper we obtain new refinements and reverse inequalities
for the relative operator entropy S (A|B) of two positive invertible operators
when B > A. Applications for the operator entropy n (C) in the case of positive
contractions C are also given.

1. INTRODUCTION

Kamei and Fujii [6], [7] defined the relative operator entropy S (A|B) , for positive
invertible operators A and B, by

(1.1) S(41B) = A} (m (a~tBA~H)) Al

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[15].

For the entropy function n(t) = —tInt, the operator entropy has the following
expression:

N(A)=—-AlnA=S(A|ly) >0

for positive contraction A. This shows that the relative operator entropy (1.1) is a
relative version of the operator entropy

In [18], A. Uhlmann has shown that the relative operator entropy S (A|B) can
be represented as the strong limit

Af,B— A

(1.2) S(A|B) = s-lim ﬁtf,

t—0
where .
Aty B = AV/? (A*l/QBA*W) AV2 e [0,1]

is the weighted geometric mean of positive invertible operators A and B. For v = %
we denote AfB.

This definition of the weighted geometric mean can be extended for any real
number v with v # 0.

Following [11, p. 149-p. 155], we recall some important properties of relative
operator entropy for A and B positive invertible operators:
(i) We have the equalities:

(1.3) S(A|B) = —A? (1n A1/2B*1A1/2) A2 = Bl (3*1/2143*1/2) BY2,
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(ii) We have the inequalities
(1.4) S(A|B) < A(In||B|]| —InA) and S (4|B) < B — A4;
(iii) For any C, D positive invertible operators we have that
S(A+B|C+ D) > S(A|C)+ S(B|D);

(iv) If B < C then

S (A|B) < S (A|C);
(v) If B,, | B then

S(AlBy) | S(A|B);
(vi) For o > 0 we have

S (aAlaB) = aS (A|B);
(vii) For every operator T we have
T*S(A|B)T < S(T*AT|T*BT).
The relative operator entropy is jointly concave, namely, for any positive invert-
ible operators A, B, C, D we have
StA+(1-t)BltC+ (1—t)D)>tS(A|C)+ (1—1t)S(B|D)

for any t € [0,1].
For other results on the relative operator entropy see [3], [8], [12], [13], [14] and
[16].
For ¢t > 0 and the positive invertible operators A, B we define the Tsallis relative
operator entropy (see also [10]) by
Al B — A

We observe that, for the function

1 t-1
fa)=10-a) ="t >,

we have

AVEf (ATV2BATIR) AV2 = AT, (ATNBTY) A= T, (A|B) (A7) A

T, (A|B) (A4:B) " A

for any positive invertible operators A, B and t > 0.

The following result providing upper and lower bounds for relative operator
entropy in terms of T; (+|-) has been obtained in [6] for 0 < ¢ < 1. However, it hods
for any ¢t > 0.

Theorem 1. Let A, B be two positive invertible operators, then for any t > 0 we

have
(1.5) T, (A|B) (A, B) " A< S (A|B) < T; (A|B).
In particular, we have
(1.6) A—AB 'A< S(A|B)<B- Al
and
1 12 1 1
(1.7) 5A (L= (B74)°) < S(AIB) < 5 (BAT' B - 4).
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The case t = 1 is of interest as well, since in this case we get from (1.5) that
(1.8) 2 (1H —A(AﬁB)*)A < S(A|B) < 2(A$B — A) < B — A.

This inequality provides a refinement and a reverse for (1.4).
The following upper and lower bounds for the operator entropy also hold for any
positive invertible operator C' and any t > 0:

(L9) (-0 <n(0) < 10 (-0,

In particular, we have

(1.10) C(ly—C)<n(C)<1y—C,

(1.11) O -0 <n(0) <5 (07 -C)
and

(1.12) 20 (1H - 01/2) <7(C) < 202 (1H - 01/2) .

Motivated by the above results, in this paper we obtain new refinements and
reverse inequalities for the relative operator entropy S (A|B) of two positive invert-
ible operators when B > A. Applications for the operator entropy 7 (C) in the case
of positive contractions C' are also given.

2. SOME REFINEMENTS

We start with the following sequence of scalar inequalities:

Lemma 1. For any y > 1 we have the inequalities

(2.1) 0 < YL 2= oy, cud
Yy y+1 NG

—1 y2-1 2_1
y=1 .,y <Y <y

y+1 4y 2y

Proof. We prove only the third, fourth and fifth inequalities, the other ones are
obvious due to the fact that y > 1.
We use the first Hermite-Hadamard inequality for convez functions, namely [5]

2.2) (55 <5 [rwa

where f : [a,b] — R is a convex function.
If we take in (2.2) a =1 and b = y, then we get the third inequality in (2.1).
It is known that, if G (a,b) := Vab is the geometric mean of a, b > 0 and

lnll;:lana if b 7& a,
L(a,b) :=
aifb=a

is the logarithmic mean of a, b, then
(2.3) G (a,b) < L(a,b).
Now, if we take in (2.3) a = 1 and b = y, then we get the fourth inequality in (2.1).
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Further, consider the difference

1 y+1 1 1 1 y+1 1

y+1 4y N y+1 2y 4y 2\/y
2/y—(y+1) y+1-2/y
2(y+1)y 4y
vVo=1) Ay (y+1)

4
(Vv —1)
dy(y+1)’
for y > 0, which proves the fifth inequality in (2.1). |

The following result provides an improvement of (1.5) in the case that B > A.

Theorem 2. Let A, B be two positive invertible operators and B > A, then for
any t > 0 we have

(2.4) 0 < T, (AlB) (A4B) " A
< 2T, (A|B) (At,B+ A)~' A
< S(A[B) < T, (AB) (At,sB) " A
< T, (AB) (A, B+ A)"" A+ %T% (A|B) (Af;B)"" A
< Ty (A|B) (A, B) " A< T, (A|B).

Proof. Let x > 1 and t > 0, then by taking y = 2! in (2.1) we get

zt—1 _ 2(zt—1) xt—1

2.5 0< < 1 < —

(25) = otat T ot(at+1) BT St
- zt—1 e I L |

< <
t(a:t—|—1)+ dtxt —  2txt Tt

Using the functional calculus for the operator X > 1, then by (2.5) we get

Xt—1 Xt—1 _

(2.6) 0<— X_t§2(7)(Xt+1)1§lnX
Xt -1 (Xt —1) 1 1X% -1
< oxt2 M T (xtyg - t
=t = ¢ (Xt +1) Ty

2t t
X1, X1
2 t

IN
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If B > A, then by multiplying both sides by A~'/2 we get A~'/2BA~Y/2 > 1y

and if we write the inequality for X = A=Y/2BA~1/2 we get

_ _ t
(A I/ZBf‘i ) -1 (A—1/23A71/2> -

5 ((Al/zB,ail/?)t _ 1) <(A1/2BA1/2)t . 1>

< (A—1/2BA-1/2)

(2.7) 0<

-1

_ _ t
- (A 1/2B 4 1/2) 1 (A_l/QBA_l/Q)
- t

((A—l/QBA—l/Z)t _ 1)

) (o

—t/2

-1
<

1 (Ail/QBAilm)% -1 —1/2p 4—1/2 -t
3 2t (A BA )
_ _ 2t
< (A '/2BA 1/2) —1 (A_1/2BA_1/2>_t
- 2t
_(a7rBAT)

- t
Now, by multiplying both sides of (2.7) with A'/2, we get

_ 1ot
(A '/2BA 1/2) -1 (A—l/zBA—UQ)*t AL/2
t

((A1/2B/i1/2)t _ 1) ((A—l/QBA—l/Q)t . 1) -1 s

< Al (ln (A71/23A71/2)> AL/2

o (A71/QBA71/2)f -1

(2.8) 0< A2

S 2A1/2

<A

—1/2 4—1/2 —t/2 1/2
(A BA ) A

- t
A-12BA-1/2)" 1 -1
< AL/2 (( ) ) <(A1/QBA1/2)t+1> AL/2
- t
_ 1N 2t
+ 1A1/2 (A '/2BA 1/2) -1 (A’l/QBA’lm)_tAl/Q
2 2t
_ 1N 2t
< Al/2 (A '/2BA 1/2) —1 (A71/2BA71/2)_15A1/2
2t
_ _ t
SA1/2 (A I/QBi 1/2) _1A1/2_

Observe that

_ ot
(A '/2BA 1/2) -1 (A71/2BA71/2)4/ AL/2
t

=T} (A|B) (A"'4:B™") A = T, (A|B) (A4:B) " A,

A1/2
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A—l/QBA—1/2)t _
1/2 ((
A t

» ((A 12 A~ 1/2
=A

1) <(A—1/QBA—1/2)t+1>_1 AL/2

>A1/2A—1/2

t

-1
<A1/2 (Al/Z( -1/2g A 1/2) AL/2 +A> 1/2) AL/2

((A 12 4~ 1/2
:A1/2
t
-1
AL/2 <A1/2 (A’l/zBA’l/Q)tAl/Q JrA) AL/2 AL/2

1) A1/2A 1/2

=T, (A|B) (A, B + A)~" A,

_ _ t
(A 1/2BA 1/2) -1 (A71/2BA71/2) —t/2 41/2
t

_ e (A*1/2BA*1/2)t _

A1/2

t/2 A—1/2A1/2A1/2

1A1/2A—1/2 (AI/QB—lAl/Q)
— T} (A|B) (A '4,sB™") A = T, (A|B) (At,,B) " A

and

e (A71/QBA71/2)2‘5 _
2t
_ e (1471/231471/2)2’5
2t
= Ty, (A|B) (A, B) " A.

1 (A_1/2BA_1/2) -t AL/2

1A1/2A71/2 (Al/zB’lAl/Q)tA’1/2A1/2A1/2

By using the inequalities (2.8) we get the desired result (2.4). O

If we take in (2.4) t = 1, then we get the inequalities

(2.9) 0<2 (1H | (AﬁB)_l) A
< 4(AtB — A) (AtB + A

)~
< S(A[B) <2(AfB - A) (An1/4B) '
)™

A
< 2(AtB — A) (AtB + A (B — A) (A$B) ™

<(B—A)(AfB)"' A< Q(AjjBfA),

for any positive invertible operators with B > A. This provides a refinement of
(L.8).
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If we take in (2.4) t = 1, then we get
(2.10) 0<(B-—A)B'A<2(B—A)(B+A) "4
< S(A|B) < (B—A)(AtB)"' A
<(B-A)(B+A) 'A+ i (B—-AB'A)
1(B—AB—lA) <B- A,
2

IN

for any positive invertible operators with B > A. This provides a refinement of
(1.6).
If we take in (2.4) t = 2, then we get

(2.11) 0< % (BA™'B - A) (B~ 4)

<(BA'B—A)(BAT'B+A) "4

1

<S(AB)< < (BA'B-A)B'4
1

<3 (BATB-4)(BAT B+ A) A L ((BAT) - 4) (B a)?

1 3 2 1

“((BAY)? - A) BA)Y < (BAT'B- A

1 ((BA™) —4) (B714)" < 5 ( ).

for any positive invertible operators with B > A. This provides a refinement of
(L.7).

Corollary 1. Let C be a positive invertible operator and C < 1g, then for any
t > 0 we have

(2.12) 0<-C(1g —C"

IN

RS

< 20(ln —C") (1n + ch™!

<n(C) < % (1g — ") c?(1-3)
< %c 1z —C" (lg +C") ' + % (1g — C*) C'
<o (1n =0 < 0 (15— OY).
If we take in (2.12) t = 3, then we get
(2.13) 0<20 (1H - 01/2)
<4C (1n - C'2) (1 + C'2)

<20 (1n — ) (1w + 0"?) " 4 L (1n — ) O
< (1n - 0) €2 <2072 (17— €2

for any C be a positive invertible operator with C' < 1p, which is better than
(1.12).
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If we take in (2.12) ¢t = 1, then we get
(2.14) 0<C(g—-C)<20(1y-C)(1g+C)~*
<n(C) < (lg —C)C*?

1
SC(r-0)(Ar+0)" + 4 (1u - C%)
1
§§(1H—02) <lpw-C,

for any C be a positive invertible operator with C' < 1pg, which is better than
(1.10).
Finally, if we take in (2.12) ¢t = 2, then we get

1
(2.15) 0<5C (1g — C?)

<C(ly—-C*)(1g+c?)~"
1
<n(C) <5 (1n —C?)
5C (1n = %) (1 + €)™+ S 1y =t ¢!
1

ERR
Z(1H—C4)C 1§;C Y1y —C?),

for any C be a positive invertible operator with C' < 1p, which is better than
(1.11).

IN

IN

3. SOME REVERSES
‘We have:

Lemma 2. For any y > 1 we have the inequalities

2 3
y?—1 Ly—1"(y+1)
(3.1) Ogi—lnygfy—z
and
2y—1) _1(y—1°(y+1)
2 <lny— <z .
(32) 0<ny y+1 — 8 12

Proof. We use the following reverse of the second Hermite-Hadamard inequality
obtained in [2]:

(3.3) ogf(“);f(b)—bia/bf(t)dtg

(f2(b) = f1 (a)) (b—a).

| =

If we take in this inequality f (¢) = %, then we get

a+b Inb—Ina 1
3.4 0< — < =
(3-4) — 2ab b—a T8

(-0 (b+a)
a?b?

for any a, b > 0.
If in this inequality we take a =1 and b =y > 1, then we get the desired result
(3.1).
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Further, we use the following reverse of the first Hermite-Hadamard inequality
obtained in [1]:

b
(3.5) ogﬁ/a f(t)dt—f(a;rb> < S0~ 1 (@) (b a).

If we take in this inequality f (t) = %, then we get

Inb—1Ina 2
. < —
(3.6) 0= b—a a+b

for any a, b > 0.
If in this inequality we take a = 1 and b =y > 1, then we get the desired result
(3.2). O

We also have:

Theorem 3. Let A, B be two positive invertible operators and B > A, then for
any t > 0 we have

(3.7)  0<Ty(A|B)(A#4B)"' A—S(AB)

< ST (AIB) (A7 — (a1B) ) A (A — (48B) ") (4B + 4)
and
(3.8)  0<S(AB)—2T, (AB)(Af,B+A)"" A

< ST (AIB) (A7~ (45B) 1) A4 (A7 = (A1) ) (A4 B + A).

Proof. From inequality (3.1) for y = z* with z > 1 and ¢ > 0, we have

22— 1 L1t —1)°(at +1)
0 < St —Ilnz < é 22t 5
that is equivalent to
21 1 /2t -1
OSth xtlnz§8<xt >(1mt)2(mt+l),

for any x > 1 and ¢t > 0.
By using the functional calculus, we have

B 1 on2t
UBBA N 2L (qapat) ™ (a0 2pan)

_ _ t 2
< 1 <(A 2BA 1/2) — 1) <1 - (A1/2BA1/2)t>

8 t

((AWBAW)t + 1) :

for any A, B positive invertible operators with B > A and for any ¢ > 0.

39) 0<
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If we multiply both sides with A'/2, then we get
_ o2t
(A '/2BA 1/2) -1 (A—1/2BA—1/2)% AL/2
2t

_AL/2 (ln (A71/2BA71/2>> AL/2

_ ot
AL/2 <(A '/2BA 1/2) - 1) <1 B (A1/2BA1/2>_t)2

(3.10) 0< AY?

<

0| =

t
((A—1/QBA—1/2)t n 1> Al/2

Observe that

_ _ t
1A1/2 ((A /2BA 1/2) — 1> AL/2 p—1/2
8

t
2
<A1/2 A~ o412 (A1/23—1A1/2>tA—1/2> A1/2>

<A—1/2 (A1/2 (A—l/QBA—l/Q)tA1/2 +A> A—1/2) AL/2

_ _ t
_ éAl/2 ((A 1/2BA 1/2) — 1) A1/2
t

A-1/2 4172 (A‘l _A-1/2 (A1/23—1A1/2)tA—1/2> A1/2
AL/2 <A—1 _ A2 (A1/2B—1A1/2)tA—1/2) AL/2
A-1/2 <A1/2 (A’l/zBA’1/2>tA1/2 +A) A—1/241/2

_ _ t
8

t
t
(Al _ A2 (A1/2371A1/2> A1/2) A
t
<A1 A2 (A1/2B’1A1/2) A1/2>
t
<A1/2 (A—l/QBA—1/2> AV2 4 A)

= ST (AB) (A7 — (41B) ) A (A7 — (A1B) ") (A1B + A)

and by (3.10) we get the desired result (3.7).
The inequality (3.8) follows in a similar way and we omit the details.

If we take in (3.7) and (3.8) t = 3, then we get
(311)  0<(B—A)(AfB) " A— S(AB)
< (AB - A) (47— (agB) ) A (A7 - (41B) ) (A1B + A)
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and
(312)  0<S(A|B)—4(AfB— A)(AfB+A)"' A
< 1 (A8 A) (A7 — (4B ) A (A - (41B) ) (A1B + 4)

for any positive invertible operators with B > A.
If we take in (3.7) and (3.8) t = 1, then we get

(3.13) 0< % (B—AB™'4) — S(A|B)

< é (B—A)(A"' =B ")A(A' =B ") (B+4)
and
(3.14) 0<S(AB)—2(B—A)+ (Af,B+ A) " A

< é (B—A)(A'-B HYAA'-B ) (B+A)

for any positive invertible operators with B > A.
Similar inequalities may be stated if we take ¢ = 2 in Theorem 3, however the
details are omitted.

Corollary 2. Let C be a positive invertible operator and C < 1y, then for any
t > 0 we have

(3.15) 0< 2% (1g —C*)C = (C) < écl—% (1-c)’ (1+CY)
and
2 _ 1
(316) 0<n(C)~2C(1n = C") (1 +C") " < 2O (1-C")* (1+07).
If we take in this corollary ¢t = %, then we get

1 3

(3.17) 0<(1y —C)CY2 —5(C) < 7(1—01/2) (1+01/2)
4

and

(3.18) 0<7(C) — 4C (1H - 01/2) (1H + 01/2)_1 < (1 - 01/2)3 (1 + 01/2>

1
4
while, if we take ¢t = 1, then we get

(3.19) 0< 2 (1n— %) —n(0) < 307 (1= 0P (1+C)

and

(3200 0<p(C)—2C(y—C)(1y+C)" < éc—l (1-C)P(140).
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