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RECENT DEVELOPMENTS OF SCHWARZ’S TYPE TRACE
INEQUALITIES FOR OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we survey some recent trace inequalities for opera-
tors in Hilbert spaces that are connected to Schwarz’s, Buzano’s and Kato’s
inequalities and the reverses of Schwarz inequality known in the literature
as Cassels’ inequality and Shisha-Mond’s inequality. Applications for some
functionals that are naturally associated to some of these inequalities and for
functions of operators defined by power series are given. Examples for fun-
damental functions such as the power, logarithmic, resolvent and exponential
functions are provided as well.

1. INTRODUCTION

Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 2
(1.2) Do ldedl* = NAL1T =147
i€l jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator if and only if A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B (H). For A € By (H) we
define

1/2
2
(1.3) Al = (ZAeu )
i€l
for {e;},; an orthonormal basis of H. This definition does not depend on the choice
of the orthonormal basis.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that ||-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)l/Q.

1991 Mathematics Subject Classification. 47TA63; 47A99.

Key words and phrases. Trace class operators, Hilbert-Schmidt operators, Trace, Schwarz in-
equality, Kato inequality, Cassels and Shisha-Mond inequalities,Trace inequalities for matrices,
Power series of operators.

RGMIA Res. Rep. Coll. 19 (2016), Art. 169


e5011831
Typewritten Text
Received 03/11/16

e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 19 (2016), Art. 169


2 SILVESTRU SEVER DRAGOMIR Y2

Because |||A]z|| = ||Az|| for all x € H, A is Hilbert-Schmidt if and only if | 4| is
Hilbert-Schmidt and [|A[|, = [||4]]|, . From (1.2) we have that if A € By (H), then
A* € By (H) and [[All, = || 4],

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have
(1) (B2 (H),||||l5) is a Hilbert space with inner product

(1.4) (A, B), = Z (Ae;, Be;) = Z (B" Ae;, )
i€l iel
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities

iel’

(1.5) IAIl < [| Al
for any A € By (H) and
(1.6) IAT ||y, [T Ally < T 1Al

forany A€ By (H) and T € B(H);
(1ii) By (H) is an operator ideal in B(H), i.e.
B(H)B: (H)B(H) C By (H);
(tv) Byin (H) , the space of operators of finite rank, is a dense subspace of By (H);

(v) Bo (H) C K (H), where K (H) denotes the algebra of compact operators on
H.

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) Al ==Y (Al e, e5) < o0.
iel
The definition of [|Al|; does not depend on the choice of the orthonormal basis

{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |Al'* € By (H);
(ii) A (or |A]) is the product of two elements of By (H) .

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) 1Al = 1A%, and (Al < [[All,

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C By (H);

(i1i) We have
BQ (H)BQ (H) = Bl (H),
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(iv) We have
1Al = sup {[(A, B),| | B € Bz (H), [Blly <1};
(v) (Bi(H),||l;) is a Banach space.
(iv) We have the following isometric isomorphisms
By (H)= K (H)" and B, (H)" = B(H),
where K (H)" is the dual space of K (H) and By (H)" is the dual space of By (H) .
We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) = > (Aei e;)
il
where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(is) If A€ By (H) and T € B(H), then AT, TA € By (H) and
(1.11) tr (AT) = tr (T'A) and |tr (AT)| < ||A|l, IT|;

(#3) tr (+) is a bounded linear functional on By (H) with |[tr|| = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA);
(v) Byin (H) is a dense subspace of By (H).

Utilising the trace notation we obviously have that
(A, B), = tr (B*A) = tr (AB*) and [|A]? = tr (A*A) = tr (|A|2)

for any A, B € By (H).
Now, for the finite dimensional case, it is well known that the trace functional is
submultiplicative, that is, for positive semidefinite matrices A and B in M, (C),

0<tr(AB) <tr(A)tr(B).
Therefore
0 < tr(AR) < [tr (A)]F,
where k is any positive integer.
In 2000, Yang [96] proved a matrix trace inequality

(1.12) tr [(AB)’“} < (tr A)*(tr B)*,

where A and B are positive semidefinite matrices over C of the same order n and
k is any positive integer. For related works the reader can refer to [18], [20], [80]
and [98], which are continuations of the work of Bellman [6].

If (H,(-,-)) is a separable infinite-dimensional Hilbert space then the inequality
(1.12) is also valid for any positive operators A, B € B (H). This result was
obtained by L. Liu in 2007, see [68].

In 2001, Yang et al. [97] improved (1.12) as follows:

(1.13) tr[(AB)™] < [tr (A2™) tr (B>™)] "2,
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where A and B are positive semidefinite matrices over C of the same order and m
is any positive integer.

In [88] the authors have proved many trace inequalities for sums and products
of matrices. For instance, if A and B are positive semidefinite matrices in M,, (C)
then

(1.14) tr[(AB)}] < min{||AHktr (B*), 1B tr (Ak)}

for any positive integer k. Also, if A, B € M, (C) then for r > 1 and p, ¢ > 1 with
% + % = 1 we have the following Young type inequality

(1.15) tr (JAB*|") < tr K";'Z“i'ﬁ?.

Ando [4] proved a very strong form of Young’s inequality - it was shown that if A
and B are in M, (C), then there is a unitary matriz U such that

1 1
AB°| < U (S 147 + 2 1B") U
p q
where p, ¢ > 1 with % + % = 1, which immediately gives the trace inequality
* 1 P 1 q
(1.16) tr (|JAB*|) < Z;tr(|A\ )+5tr(|B| ).

This inequality can also be obtained from (1.15) by taking r = 1.
Another Holder type inequality has been proved by Manjegani in [77] and can
be stated as follows:

(1.17) tr(AB) < [tr(AP)])P [tr(B9))"?,

where p, ¢ > 1 with % +1 =1 and 4 and B are positive semidefinite matrices.

For the theory of trace functionals and their applications the reader is referred
to [90].

For other trace inequalities see [7], [18], [44], [36], [55], [67], [87] and [93].

In this paper we survey some recent trace inequalities obtained by the author for
operators in Hilbert spaces that are connected to Schwarz’s, Buzano’s and Kato’s
inequalities and the reverses of Schwarz inequality known in the literature as Cas-
sels’ inequality and Shisha-Mond’s inequality. Applications for some functionals
that are naturally associated to some of these inequalities and for functions of op-
erators defined by power series are given. Examples for fundamental functions such
as the power, logarithmic, resolvent and exponential functions are provided as well.

Although some of these inequalities have been established for the general concept
of positive linear map instead of trace, we would like to state them in this survey
for trace to unify our approach to trace inequalities.

For Griiss’ type inequalities for positive maps, see [5], [74] and [81]. For Cassels,
Diaz-Metcalf and Shisha-Mond type inequalities, see [79]. For other inequalities for
positive maps see [8], [9], [17], [91] and [99].

For trace inequalities for Hilbert space operators that appeared in information
theory and quantum information theory we refer to [21], [46], [76] and [95].
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2. SCHWARZ TYPE TRACE INEQUALITIES

2.1. Some Trace Inequalities Via Hermitian Forms. Let P a selfadjoint op-
erator with P > 0. For A € By (H) and {e;};.; an orthonormal basis of H we
have
2 * 2 2
1All3,p == tr (A*PA) =Y (PAe;, Ae;) < | P Y |1 Aes]” = [Pl Al
i€l i€l
which shows that (-, ), p defined by

(A,B), p:=tr(B*PA) =Y (PAe;,Be;) = > (B*PAe;,e;)
iel iel
is a nonnegative Hermitian form on By (H), i.e. (-,-), p satisfies the properties:
(h) (A, A)y p > 0 for any A € By (H);
(hh) (-, "), p is linear in the first variable;
(hhh) (B, A)y p = (A,B)Q,P for any A, B € By (H).
Using the properties of the trace we also have the following representations

JAI5 p = tr (P1A*7) = (J4* P)
and
(A, B)y p = tr (PAB") = tr (AB"P) = tr (B* PA)
for any A, B € By (H).
We start with the following result:

Theorem 4 (Dragomir, 2014, [38]). Let P a selfadjoint operator with P > 0, i.e.
(Pz,z) >0 for any z € H.
(i) For any A, B € By (H)

(2.1) Itr (PAB*)| < tr (P |A*\2) tr (P |B*|2)

and

(2.2) [ (P|A* )+2Retr(PAB*)+tr (P|B*|2)]1/2
< [ir (P1arP)] " 4 [ir (P1B7P)] "

(ii) For any A, B, C € By (H)

(2.3) r (PABY) (P|C* ) r (PAC*) tr (PCB)|
< [tr (P\A* )t (P\C* )—\tr(PAc*)ﬂ
X [tr (p|B |2) tr (P|c* )— |tr(PBc*)|2],
(2.4) ltr (PAB*)| tr (P| )

r (PAB*) tr (P\C* ) r (PAC*) tr (PCB")
| (PAC™) tr (PCB™)|

<[ (P\A*f)}m [ (P1me)] " (picP)
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and

(2.5)  |tr (PAC*)tr (PCB*)|
< % Htr (P\A*|2)]1/2 [tr (P|B*|2)r/2 + tr(PAB*)@ tr (P|C*|2) .

Proof. (i) Making use of the Schwarz inequality for the nonnegative hermitian form
(-,-)9 p we have

2
(A, Blop| < (A, A), (B, By p

for any A, B € By (H) and the inequality (2.1) is proved.

We observe that [|-[|, p is a seminorm on Bz (H) and by the triangle inequality
we have

A+ Bllyp < [|Ally p + 1Bl p

for any A, B € By (H) and the inequality (2.2) is proved.

(i) Let C' € By (H), C' # 0. Define the mapping [, -]y p o : B2 (H) x B2 (H) — C
by

[Aa B]Q,P,C = <Aa B>2,P HCH§,P - <A7 C>2,P <Ca B>2,P .

Observe that [+, ], p - is a nonnegative Hermitian form on By (H) and by Schwarz
inequality we have
‘2

(26)  [(4B)yplCIEp— (4,C)yp(C By p

2 2 2 2 2 2
< 1415 2 115 » = | (A, Cha o | [IBIZ 5 IC 5 = | (B, |

for any A, B € By (H), which proves (2.3).
The case C' = 0 is obvious.
Utilising the elementary inequality for real numbers m, n, p, ¢

(m? —n?) (p* — ¢*) < (mp —ng)*,

we can easily see that

2 2 2 2 2 2
@72) 14136 IC5 = (4, Cha | | [IBIS.6 ICI 5 = |¢B, C) |

2
< (I4llep 1Bl p 11135 = (4, O, o] (B, C)a )
for any A, B, C € By (H).

Since, by Schwarz’s inequality we have

1Ally p 115, 2 [(4,C)sp|

and
1Bly.p ICllp 2 [(B.C)s o

9

then by multiplying these inequalities we have
1Allo,p 1Bl p IIC15 > [(4, ) p| [(B,C)a
for any A, B, C € By (H).
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Utilizing the inequalities (2.6) and (2.7a) and taking the square root we get
2
(28) (4, By 5 |CI p = (A, p (C By |
< Al p I1Bllo,p €13, = (4, €y p| [(B. O |
for any A, B, C € By (H), which proves the second inequality in (2.4).

The first inequality is obvious by the modulus properties.
By the triangle inequality for modulus we also have

(2.9) (4, €. (C. By p| = (4, By o | ICI
<A, Bl p I p = (A, Oy p (C. By |

forany A, B, C € By (H).
On making use of (2.8) and (2.9) we have

(4,2 (C. By p| = (4, By p| ICI3
o 1Bl p ICI3 p = (4, ) | | (B, )

which is equivalent to the desired inequality (2.5). O

< [|A]

)

Remark 1. By the triangle inequality for the hermitian form [-, ']2,P,C : By (H) x
BQ (H) — (C,

(A, B]z,P,c = (4, B>2,P HC”§,P - (4, C>2,P (C, B>2,P

we get

) ) 9 1/2
(14+ 31 C18 5 - 14+ B. € )

, o\ 1/2 , , o 1/2
2
< (1B, 101 - [(4.Ch )+ (1B1E o 012 - | B0 [)

which can be written as
(2.10) (tr [P (A + B)ﬂ tr (p \c*|2) —Jtr[P (A + B) C*]|2)1/2
< (e (P1af) e (PIC) = Jx (PAC’*)|2)1/2
+ (o (PIB*P) e (PICP) = Jx (PBC*)|2)1/2
for any A, B, C € By (H).
Remark 2. If we take B = AC in (2.10), then we get
(2.11) 0<tr [P [(A+AC)" |2] tr (P |c*|2) —Jtr[P (A + AC) C*])?
< tr (P |A*|2> tr (P |o*|2) ~ Jtr (C*PA)?

forany A€ C and A, C € B2 (H) .
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Therefore, we have the bound

(2.12) ilég {tr {P [(A+XC)

2} tr (P \C*|2) — Jtr[P (A + AC) c*]|2}
= tr (P |A*|2) tr (P |0*\2) ~ Jtr (PACH)[?.
We also have the inequalities
(2.13) 0<tr [p (A+C)" |2] tr (P |c*|2) ~Jtr[P(A+0) 0]
< tr (P |A*|2) tr (P |c*\2) ~ |tr (PAC™))?
for any A, C € By (H).

Remark 3. We observe that, by replacing A* with A, B* with B etc...above, we
can get the dual inequalities, like, for instance

(2.14) [tr (PA*C) tr (PC*B)|
< % Htr (P \A|2>] i [tr (p |B|2)} Y (PA*B)@ tr (P \cﬁ) ,

that holds for any A, B, C € By (H).
This is an operator version of Buzano’s inequality in inner product spaces, namely

1
(2.15) [z, e) e, )l < 5 Mzl llyll + Iz, )]
for x,y, e € H with |le| = 1.
Since
tr (PA*C)| = |tr (PA*C)| = |tr [(PA*C)"]| = |tr (C*AP)| = |tr (PC* A)],

[tr (PC*B)| = |tr (PB*C))|
and

[tr (PA*B)| = |tr (PB*A)|
then the inequality (2.14) can be also written as
(2.16) [tr (PC*A) tr (PB*C)|

< % “tr (P \AF)] 2 [tr (P |B|2)] Y (PB*A)@ tr (P \C|2) ,

that holds for any A,B,C € By (H).
If we take in (2.16) B = A* then we get the following inequality

(2.17) [tr (PC*A) tr (PAC)]
< % Htr (P|A‘2)]1/2 {tr (P|A*|2)r/2 N |tr (PA2)|:| tr (P|C’|2> ,

for any A,B,C € By (H).
If A is a normal operator, i.e. |A|> = |A*|” then we have from (2.17) that

(218)  |tr(PC*A) tr (PAC)| < % [tr (P1AP) + | (P4%)]] 1 (PICP).
In particular, if C is selfadjoint and C € By (H), then

(2.19) ltr (PAC)[? < % [tr (P |A|2) + [tr (PA?) ” tr (PC?),
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for any A € By (H) a normal operator.

We notice that (2.19) is a trace operator version of de Bruijn inequality obtained
in 1960 in [10], which gives the following refinement of the Cauchy-Bunyakovsky-
Schwarz inequality:

provided that a; are real numbers while z; are complex for each i € {1,...,n}.

n
2
P

i=1

2
(2.20) <3 Z a; L_Zl 2] +

i=1

n
E Qaiz;
i=1

We notice that, if P € B; (H), P>0and A, B€ B(H), then
(A,B), p == tr (PAB") = tr (AB"P) = tr (B"PA)

is a nonnegative Hermitian form on B (H) and all the inequalities above will hold
for A, B, C € B(H). The details are left to the reader.

2.2. Some Functional Properties. We consider now the convex cone B, (H) of
nonnegative operators on the complex Hilbert space H and, for A, B € By (H)
define the functional o4 g : B4 (H) — [0,00) by

(221)  oap(P):= [tr (P|A|2)r/2 [tr (P|B|2>r/2 — [tr (PA*B)| (> 0).

The following theorem collects some fundamental properties of this functional.

Theorem 5 (Dragomir, 2014, [38]). Let A, B € By (H).
(i) For any P, Q € By (H)

(2.22) oaB(P+Q)>0ap(P)+0anp(Q)(>0)

;namely, o4 B is a superadditive functional on By (H);
(it) For any P, Q € By (H) with P > Q

(2.23) oap(P)>204p5(Q)(>0),

namely, o4 p is a monotonic nondecreasing functional on By (H);
(ii) If P, Q € B4 (H) and there exist the constants M > m > 0 such that MQ >
P > mQ@Q then

(2.24) MUA,B (Q)ZUAB(P)Z’ITLO'AB (Q)(Z 0).

Proof. (i) Let P, @ € B4 (H). On utilizing the elementary inequality

(a2 + 62)1/2 (02 + d2)1/2 >ac+bd, a,b,c,d >0
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and the triangle inequality for the modulus, we have

oap(P+Q)
= o ((P+@)1aP)] v [ ((P+Q)1BI)] (P A B
- [tr (P A2 +Q |A\2)} v [tr (P B +Q |B|2)] i

— |tr (PA*B + QA*B)|

- e (P17) s (@) [ (P18r) 4 ()]

— |tr (PA*B) +tr (QA*B)|
> [ir (P1aP) ] or (P1E)] ™ o (1) [ (@18)]
= [tr (PA"B)| — [tr (QA"B)|
=048 (P)+045(Q)
and the inequality (2.22) is proved.

(ii) Let P, Q € By (H) with P > Q. Utilising the superadditivity property we
have

oaB(P)=0a(P-Q)+Q)>0ap(P—-Q)+0ap(Q)>0a5(Q)

and the inequality (2.23) is obtained.
(iii) From the monotonicity property we have

oa,B(P)>o0a5(mQ)=moas(Q)

and a similar inequality for M, which prove the desired result (2.24). (I

Corollary 1. Let A, B € By (H) and P € B (H) such that there exist the constants
M >m >0 with M1g > P > mlg. Then

(2.25)  ([or (142)]) " [ (127)] 7 = e (a7
> [ (P1aP)] " [ (P18P)] " - v (Pa*B))
o ([or (147)] " [er (1)) = e ac )
Let P = |V|* with V € B(H).If A, B € By (H) then
oas (V1) = [ir (VP 14P)] " [er (v 1817)] 7 -
[tr (V* VA" A)]2 [t (V*VB*B)] Y2 — |tr (V*V A" B))|
| |

[
tr (VA* AV)]Y? [tr (VB*BV*)]Y? — |tr (VA*BV™)|
[tr ((AV*)* Av*)}” [tr (BV*) Bv*)]”% |tr ((AV*)* BV*)|

i (1avr)] ™

tr (|V|2 A*B)‘

tr (|Bv | )} — |t ((AV*)* BV¥)].
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On utilizing the property (2.22) for P = |V|*, Q = |U|* with V, U € B(H),
then we have for any A, B € By (H) the following trace inequality

(2.26) {tr (|AV*|2 4 |AU*\2)}1/2 {tr (IBV*‘Q + \BU*‘2)}1/2
— |tr ((AV?)* BV* 4 (AU™)" BU"))]

> [tr (|AV*\2>]1/2 {tr (|BV*\2)]1/2 — [t ((AV*)" BV®)|

+ [ (|AU*|2)]1/2 [ir (1BU°*)] e ((aU7y BUY| (2 0).

Also, if |V[> > |U|* with V, U € B(H), then we have for any A, B € By (H)
that

(2.27) [tr (\AV*E’)} i [tr (|BV*|2)] Ve |tr ((AV*)" BV¥)

Lo\11/2 o112 N
> [tr (|AU \2)] [tr (|BU |2)} — |t ((AU*)* BU*)| (= 0).
If U € B(H) is invertible, then
1
o] [zl| < [|[Uz|| < [|U|| |||l for any = € H,
which implies that

2 2
WIH <|UI" <|U|"1&.

By making use of (2.25) we have the following trace inequality

29 ol ([ (1aP)] " o (18)] - e o)

> [tr (|AU*|2)} v [tr (|BU*|2)] v ltr (AU*)* BU™)|

> ot ([ (a0)] " o (182)] = a1

for any A, B € By (H).
Similar results may be stated for P € By (H), P > 0 and A, B € B(H). The
details are omitted.

2.3. Inequalities for Sequences of Operators. For n > 2, define the Carte-
sian products B®™ (H) := B(H) x ... x B(H), B (H) := By (H) x ... x By (H)
and Bg_n) (H) := By (H) X ... x B4 (H) where By (H) denotes the convex cone of

nonnegative selfadjoint operators on H, i.e. P € By (H) if (Pz,z) > 0 for any
x € H.

Proposition 2 (Dragomir, 2014, [38]). Let P = (Py,...,P,) € BSF") (H) and A =

(A1,...,A4,), B =(By,...,B,) € Bgn) (H) and z = (21,...,2n) € C" with n > 2.
Then

(2.29)

2 n n
< tr (Z |21 | Py |Ak|2> tr (Z |2&| P |Bk2> .

k=1 k=1

tr <Z ZkPkA;;Bk>

k=1
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Proof. Using the properties of modulus and the inequality (2.1) we have

tr <ZZkPkAZBk> = sztr(PkAsz)
k=1 k=1
n
<) fzkl [tr (PLAGBy))|
k=1

< é |2k | [tr (Pk |Ak\2)} 2 {tr (Pk |Bk|2>} V2 )

Utilizing the weighted discrete Cauchy-Bunyakovsky-Schwarz inequality we also
have

n

5" o (1)) [ ()]

k=1

< <; 2] ([tr (Pe14x?)] 1/2>2) " <; 2] ([tr (Pe1B4)] 1/2>2>
() (Gntrns)

" 1/2 " 1/2
= <tr (Z |2k| P |Ak|2>) <tr (Z |2k| P |Bk|2>> ;
k=1 k=1

which is equivalent to the desired result (2.29). O

1/2

We consider the functional for n-tuples of nonnegative operators as follows:

n 1/2 n
(230) OA,B (P) = [tr <Z Pk |Ak|2> [tl‘ (Z Pk |B}c2>
k=1 k=1
tr (i PkAsz>

k=1

1/2

Utilising a similar argument to the one in Theorem 5 we can state:

Proposition 3. Let A = (A4,...,A,), B=(By,...,B,) € Bgn) (H).
(i) For any P, Q € B(f) (H)

(2.31) caB(P+Q)>0aB(P)+0oaB(Q)(>0),

namely, oA B 5 a superadditive functional on B(f) (H);
(ii) For any P, Q € B(f) (H) with P > Q, namely Py, > Qg for allk € {1,....,n}

(2:32) oan(P)>0ap(Q)(>0),

namely, oA B 15 a monotonic nondecreasing functional on Bf) (H);

(i) If P, Q € B(f) (H) and there exist the constants M > m > 0 such that
MQ > P >mQ then

(2.33) Moag(Q)>0caB(P)>moas(Q)(>0).
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If P=(pily,...,pnly) with pp > 0, k € {1,...,n} then the functional of non-

negative weights p = (p1, ..., p,) defined by
1/2 n 1/2
[tr (Zpk |Bk2>
k=1

(2.34) oaB(P) = [tr (Z Pk |Ak|2>
k=1
— |tr (ZpkAsz> ‘ .
k=1

has the same properties as in (2.31)-(2.33).

Moreover, we have the simple bounds:
1/2 n
k=1

1/2

1/2

(235 max {pi} [tr (Z Akf)
)

k=1
> ltr (ipk Ak|2> [‘ﬂr (Zpk | Bi| )

k=1

1/2 "
o] )

)

2.4. Inequalities for Power Series of Operators. Denote by:

— |tr (Z pkAZBk>
k=1

1/2

ze C:lz| < R}, if R < oo
D(O’R)_{é e if R = o0,

and consider the functions:

A— f(A):D(0,R) — C, f(A Zan)\"

n=0

and

A fa(A) s D(0,R) = C, fu(A Z\anw
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As some natural examples that are useful for applications, we can point out that,

if
(2.36) I ;)nvzln%, AeD(0,1);
n=1
g(\) = i ((;711)) A" =cos \, A € C;
n=0
h(\) = i ﬂﬁ"*l =sin\, A €C;
— (2n+1)! ’ '

z(A)zi(—m"A”:liA, NeD(0,1);

n=0

then the corresponding functions constructed by the use of the absolute values of
the coefficients are

<1 1
(2.37) =) ﬁ)\” ., AeD(0,1);
n=1
Z =cosh\, \ € C;
_ - 1 2n+1 _ . .
ha ()\)—Zom)\ —Slnh>\, )\GC,
Z A" = , AeD(0,1).

Other important examples of functions as power series representations with non-
negative coefficients are:

(2.38) exp () =

1
tanh™" () =Y ——A*""", XeD(0,1)

=T+ T(n+B8)T(y) .,
2 F1 (a,ﬂa%)\)—; nC ()T (B)T (n+7) A

AeD(0,1);

a, 3,7 >0,

where I' is Gamma function.

Proposition 4 (Dragomir, 2014, [38]). Let f(\) := > o7 a, A" be a power se-
ries with complex coefficients and convergent on the open disk D (0,R), R > 0. If
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(H,{(-,-)) is a separable infinite-dimensional Hilbert space and A, B € By (H) are
positive operators with tr (A), tr (B) < R'/2, then

(239) | (FAB)P < £2(trAwB) < £, ((tr A)2) fu ((tr B)?).
Proof. By the inequality (1.12) for the positive operators A, B € By (H) we have

tr lZak AB Zaktr AB
<Z|ak||tr AB |—Z\ak|tr AB ]

k=0

(2.40)

<Z|ak| (tr A)*(tr B)* Z|ak| (tr Atr B)F.

k=0 k=0
Utilising the weighted Cauchy-Bunyakovsky-Schwarz inequality for sums we have

n n 1/2 n 1/2
(241) > o (tr A)F trB)k§<Z|ak|(trA)2k> <Z|ak|(tr3)2k> .

k=0 k=0 k=0
Then by (2.40) and (2.41) we have
(2.42) trl (A < lZaﬂ (tr Atr B)*
=0 k=0
< Z|ak| [(tr A)? Zm\ [(tr B)?
for n > 1.

Since 0 < tr (A),tr (B) < RY?, the numerical series

Z\OLM (tr Atr B)® Z|ak| [(tr A)? " and Z|ak| trB)]

k=0 k=0

are convergent.

Also, since 0 < tr(AB) < tr (A) tr (B) < R, the operator series Y o ay(AB)*
is convergent in By (H).

Letting n — oo in (2.42) and utilizing the continuity property of tr () on By (H)
we get the desired result (2.39). O

Example 1. a) If we take in (2.39) f(A\) = (1£X) ", [\ < 1 then we get the
inequality

(2.43) ‘tr ((1H + AB)*) ‘2 < (1 - (trA)2)_1 (1 - (trB)Q)_

for any A, B € By (H) positive operators with tr (A), tr (B) < 1.
b) If we take in (2.89) f(A) =In(1£N) ", [\ < 1, then we get the inequality

In (1 — (tr B)g)_1

for any A, B € By (H) positive operators with tr (A), tr (B) < 1.

(244)  Jur (n(y+aB)) \2 <In(1- (tr4)°)

We have the following result as well:
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Theorem 6 (Dragomir, 2014, [38]). Let f(A) := D07 an A" be a power series
with complex coefficients and convergent on the open disk D (0,R), R > 0. If A,

B € By (H) are normal operators with A*B = BA* and tr (|A\2) , tr (|B|2> <R
then the inequality

(2.45) o (f A B)P < tr (fa (1)) e (fa (1B1)) -

Proof. From the inequality (2.29) we have
n 2 n 9 n 9
tr (Z ay, (A*)"B’“) <tr (Z ok | | AF| ) tr <Z|ak| | B| ) :
k=0 k=0 k=0

Since A, B are normal operators, then we have |Ak|2 = |A]** and |B]’C|2 = |B**

for any k > 0. Also, since A*B = BA* then we also have (4*)" B¥ = (4*B)" for
any k > 0.

Due to the fact that A, B € By (H) and tr (|A\2) , tr (|B\2> < R, it follows that
tr (A*B) < R and the operator series

Yoar(A*B)*, Y laxl [AP* and Y fen| |B**
k=0 k=0 k=0

are convergent in the Banach space B (H).
Taking the limit over n — oo in (2.46) and using the continuity of the tr(-) on

(2.46)

By (H) we deduce the desired result (2.45). O
Example 2. a) If we take in (2.45) f(\) = (1£X) ", [\ < 1 then we get the
inequality

2 —1 -1
(2.47) tr ((1HiA*B)_1)‘ gtr((1_ \A|2> )tr((1—|B|2) )

forany A, B € By (H) normal operators with A*B = BA* and tr (\A|2) , tr <|B|2> <
1.
b) If we take in (2.45) f(N\) = exp (A), A € C then we get the inequality
(2.48) |tr (exp (A*B))|* < tr (exp <|A|2)) tr (exp (|B|2))
for any A, B € By (H) normal operators with A*B = BA*.

Theorem 7 (Dragomir, 2014, [38]). Let f () := Y72 p;jz’ and g(z) := 3272 q;%
be two power series with nonnegative coefficients and convergent on the open disk
D(0,R), R>0.IfT and V are two normal and commuting operators from Bs (H)

with tr (|T|2) , tr (|V|2) < R, then

e e ) o] e (49) o (7))

— |t (f (T*V) + g (T*V))]

> (e (£ (1)) o (r (WR))] " — e v

o (o ()] [er (o (V)] - e @ vl 0).
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Moreover, if p; > q; for any j € N, then, with the above assumptions on T and
V,

es0) [ (s ()] [ (r (V)] - e @)
> [ir (o (1P))] " o (o (VP))] " - e eI 2 0).

Proof. Utilising the superadditivity property of the functional o s g (-) above as a
function of weights p and the fact that 7" and V' are two normal and commuting
operators we can state that

(2.51) [tr (Zn: (pr + i) |T|2k>

k=0

1/2

1/2 n
ltf <Z (Pk + qx) V2k>

k=0

N

k=0

n 1/2 n 1/2 n
> ltr Pr |T|2k> [tr (Zpk |V|2’“) — [tr (Zpk <T*V>’“> |
k=0 k=0 k=0
n 1/2 n 1/2 n
+ [tr (Z qk |T2k> [tr <Z qk |V|2k> — |tr (Z qk (T*V)k>
k=0 k=0 k=0
for any n > 1.

Since all the series whose partial sums are involved in (2.51) are convergent in
Bi1 (H), by letting n — oo in (2.51) we get (2.49).

The inequality (2.50) follows by the monotonicity property of oa g (-) and the
details are omitted. ]

Example 3. Now, observe that if we take

> 1
F) =sinhA =) —— ¥+
— (2n+1)!

and
_ _ - 1 2n
g(A) =cosh A\ = 7;) 7(211)!)\
then
(o] 1 "
FN+g() =expr=3_ —A
n=0
for any A € C.

If T and V are two normal and commuting operators from By (H), then by (2.11)

(2.52) {tr (exp (|T\2>>] i [tr (exp (|V|2)>} v [tr (exp (T*V))]
> [tr <sinh (|T\2)>] i [tr (sinh (|V|2))} Y2 ltr (sinh (T*V))]
+ [tr (cosh (|T\2)>] i [tr (cosh (|V|2)>} v [tr (cosh (T*V))| (> 0).
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Now, consider the series ﬁ =32, A A€D(0,1) and In ﬁ =3 Ly

n=1n
A€ D(0,1) and define p, =1, n >0, go =0, g, = %, n > 1, then we observe that
for anyn >0, p, > gn.

If T and V are two normal and commuting operators from By (H) with tr (|T\2) ,
tr (|V|2) <1, then by (2.12)

(2.53) { ((1H—|T| r/z{ ( Ly = V) 1)]1/2
]

[tr <1n (1H |7 ) )}1/2 {tr (m (1H — V] ) )}1/2

~tr (ln(lH - T*V)_l)‘ (>0).

2.5. Inequalities for Matrices. We have the following result for matrices.

Proposition 5 (Dragomir, 2014, [38]). Let f(A) := > ", " be a power series

ap
with complex coefficients and convergent on the open disk D (0 R),R>0.IfA and
B are positive semidefinite matrices in M, (C) with tr (A?), tr (B?) < R, then the
inequality

(2.54) ltr [f(AB)]” < tr [fa (4%)] tr [fa (B?)].
Iftr (A), tr (B) < VR, then also

(2.55) ltr [f (AB)]| < min {tr (fa (| Al B)) , tr (fa (| BI| A))} -

Proof. We observe that (1.13) holds for m = 0 with equality.
By utilizing the generalized triangle inequality for the modulus and the inequality
(1.13) we have

(2.56)

tr lz an,(AB)"
Z ap tr[(AB)"
= Z || tr [(AB)" Z o, | [tr (A%") ] [tr (B*")] 1/2,

< Zlanlltr [(AB)"]]

n=0

for any m > 1.
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Applying the weighted Cauchy-Bunyakowsky-Schwarz discrete inequality we also
have

@51 3 ol [ (4] e (57

n=0

(St (it ) : (Sl (1)) h

n=0 n=0

(S ten)” (St )

n=0
m 1/2 m

— |:or (Z v A2"> [tr <Z oy BQ">
n=0 n=0

for any m > 1.
Therefore, by (2.56) and (2.57) we get

m 2 m m
tr [Z an(AB)™"|| <tr <Z |y | A2”> tr <Z |y | B2">
n=0 n=0

IN

1/2

1/2

(2.58)

n=0

for any m > 1.
Since tr (42) ,tr (B?) < R, then tr (AB) < y/tr (42) tr (B?) < R and the series

i an(AB)", i |atn| A2 and i lovn| B2
n=0 n=0 n=0

are convergent in M, (C).

Taking the limit over m — oo in (2.58) and utilizing the continuity property of
tr () on M, (C) we get (2.54).

The inequality (2.55) follows from (1.14) in a similar way and the details are
omitted. g

Example 4. a) If we take f(A) = (1 +£X) "', |A| < 1 then we get the inequality
(2.59) ltr [(I, £ AB)™']|* < tr [(In _ Az)‘l} tr [(In — 32)‘1}
for any A and B positive semidefinite matrices in My, (C) with tr (AQ) ) tr (BQ) <1
Here I, is the identity matriz in M, (C).

We also have the inequality
(2.60) |tr [(I, + AB)™]| < min {tr ((In —JlA]| B)_1> tr ((In —|IB|| A)—l)}

for any A and B positive semidefinite matrices in M, (C) with tr (A), tr (B) < 1.
b) If we take f(A) = exp A, then

(2.61) (tr [exp(AB)])2 <tr [eXp (AQ)} tr [eXp (BZ)]
and
(2.62) tr [exp(AB)] < min {tr (exp (||A[| B)) , tr (exp (|| B|| A))}

for any A and B positive semidefinite matrices in M, (C).
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Proposition 6 (Dragomir, 2014, [38]). Let f(X) := > >, a, A" be a power series
with complex coefficients and convergent on the open disk D (0,R), R > 0. If A
and B are matrices in M, (C) with tr (|A|"), tr (|B|?) < R, where p, ¢ > 1 with

% + % =1, then
P q
[fa <A| ML )}
p q
1 p 1 q
r [pfa(lAl )+ Lha )} |

Proof. The inequality (1.15) holds with equality for » = 0.
By utilizing the generalized triangle inequality for the modulus and the inequality
(1.15) we have

(2.63) [tr (f (|AB™]))]|

IA

IN

m

(2.64) o (Z an |AB*|”>| = 3 a, tr(|AB|")
n=0 n=0
SZ:IOmIItr [AB*|"M)| = |an|tr (JAB*[")

n=0

Erae[()]
iy ([Z |an| |A|p |B|q)

foranym>1andp,q>1w1thp+q

It is know that if f : [0,00) — R is a convex function, then tr f (-) is convex on
the cone M, (C) of positive semidefinite matrices in M, (C). Therefore, for n > 1
we have

Ay |B|Q)"} Lo 1 L (e
2.65 tr + < —tr(j4 + —tr(|B
(265) (BE+E S (AP + e (1BI")

Wherep,q>1with%—|—%:1.
The inequality reduces to equality if n = 0.
Then we have

(2.66) Z| o tr K'Ap ujq) ]gilaﬂ Btr(|A|pn)+;tr(|B|qn)]

n=0 n=0

1 . n
I PP SURITERRD SNIE

n=0 n=0

| ES—

foranymz1andp,q>1with%+%:1.

From (2.64) and (2.66) we get
m |A|p |B|q)’n
< tr an|l | — + ——
(5

tr (Z n AB*|">
n=0 n=0
m
<t [ S aulia+ 1 Danumqn

(2.67)

—
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foranymz1andp,q>1with%—|—%:1.
Since tr (JA|"), tr (|B|]?) < R, then all the series whose partial sums are involved

in (2.67) are convergent, then by letting m — oo in (2.67) we deduce the desired
inequality (2.63). O

Example 5. a) If we take f(A) = (1 +£\)~", |A| < 1 then we get the inequalities

(- (3 0)

1 1 1 1
tr*In—Ap +*In_Bq :|7
[p( AP+ (1 - |1

(2.68)

IN

H(Uﬁi|ABﬂf4N

IN

where A and B are matrices in M, (C) with tr (|A]"), tr (|B|?) < 1 and p,q > 1
with & + ¢ = 1.
b) If we take f(\) = exp A, then

(2.69) tr (exp (|AB*|))

IN

[ <|A|” Bq)]
tr [exp | — + ——
p q

1 1
. [p exp (|A]P) + qexp<|B|q>} 7

IN

where A and B are matrices in M, (C) and p,q > 1 with % + % =1.
Finally, we can state the following result:

Proposition 7 (Dragomir, 2014, [38]). Let f(\) :=Y_." an A" be a power series

n=
with complex coefficients and convergent on the open disk D (0, R), R > 0. If A and
B are commuting positive semidefinite matrices in My, (C) with tr (AP), tr (B?) <
R, where p, ¢ > 1 with % + % =1, then

(2.70) Itr (f (AB))| < [tr(fa (AP)]VP [tr(fa (BT))]1.

Proof. Since A and B are commuting positive semidefinite matrices in M, (C),
then by (1.17) we have for any natural number n including n = 0 that

(2.71) tr((AB)") = tr(A"B™) < [tr(A™)]Y? [tr(B"7)]Y/?

Wherep,q>1with%+%:1.
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By (2.71) and the weighted Holder discrete inequality we have

o ($E o) -

n=0

Z ay, tr(A"B™)

n=0

<3 Jonl (A" B

n=0

< 3 Jea] [sr(A™P)] P [ex(B"9)) 1
n=0

(Z ol (fr(47) ”p)”)
")

IN

n=0

<Z | | (tr (B"9)] /a q)
n=0

1/q
= (Z lay, | tr(A™F) > (Z |y, | tr(B™) )

X

n=0

m 1/q
(tr Z |, | A™P) ) (tr Z|an|3"q)>
n=0

wherep,q>1with%+%:1.
The proof follows now in a similar way with the ones from above and the details
are omitted. 0

Example 6. a) If we take f(A) = (1+£X)~", |A| < 1 then we get the inequality
-1 -1 l/p -1 1/(]
tr ((zn + AB) )‘ < [tr(([n — AP) )] [tr((fn -y Hl ",
for any A and B commuting positive semidefinite matrices in M, (C) with tr (AP),
tr (B?) < 1, where p, ¢ > 1 with ]% + % =1.
b) If we take f(A\) = exp A, then

(2.73) tr (exp (AB)) < [tx(exp (A”)]"” [ex(exp (B1))],

(2.72)

for any A and B commuting positive semidefinite matrices in My, (C) and p, ¢ > 1
with & + ¢ = 1.

3. KAaT0’s TYPE TRACE INEQUALITIES

3.1. Kato’s Inequality. We denote by B (H) the Banach algebra of all bounded
linear operators on a complex Hilbert space (H; (-, -)).

If P is a positive selfadjoint operator on H, i.e. (Pz,z) > 0 for any « € H, then
the following inequality is a generalization of the Schwarz inequality in H

(3.1) (Pz,y)|” < (Pz,x) (Py,y),

for any z,y € H.
The following inequality is of interest as well, see [62, p. 221].
Let P be a positive selfadjoint operator on H. Then

2
(3.2) |1Pz||” < |[P|| (Pz, z)
for any z € H.



RECENT DEVELOPMENTS OF SCHWARZ’S TYPE TRACE INEQUALITIES 23

The "square root" of a positive bounded selfadjoint operator on H can be defined
as follows, see for instance [62, p. 240]: If the operator A € B (H) is selfadjoint and
positive, then there exists a unique positive selfadjoint operator B := /A € B (H)
such that B2 = A. If A is invertible, then so is B.

If A € B(H), then the operator A*A is selfadjoint and positive. Define the
"absolute value" operator by |A| := vV A*A.

In 1952, Kato [63] proved the following celebrated generalization of Schwarz
inequality for any bounded linear operator 7" on H:

(3.3) (T, y) < (T°1) 2,2) (T yy),

for any z, y € H, o € [0, 1] . Utilizing the modulus notation introduced before, we
can write (3.3) as follows

(3.4) (T, < (|11 ) (TP yy)

for any z, y € H, a € [0,1].
It is useful to observe that, if T = N, a normal operator, i.e., we recall that
NN* = N*N, then the inequality (3.4) can be written as

(3.5) [(Na,y) < (INP 2,2 ) (INPO ),

and in particular, for selfadjoint operators A we can state it as
a 11—«

(3.6) (Az,y)| < 141" o] |11y

for any z, y € H, a € [0,1].
If T = U, a unitary operator, i.e., we recall that UU* = U*U = 1y, then the
inequality (3.4) becomes

KUz, y)| < [l |yl
for any x,y € H, which provides a natural generalization for the Schwarz inequality
in H.
The symmetric powers in the inequalities above are natural to be considered, so
if we choose in (3.4), (3.5) and in (3.6) a = 1/2 then we get for any =, y € H

(3.7) (T, y)|* < (|T|z,2) (IT"|y,y)
(3-8) (N, y)I* < (IN|z,2) (IN|y,y).
and
(3.9) (Az,y)| < 14172 2] ||147/2
respectively.
It is also worthwhile to observe that, if we take the supremum over y € H, ||y|| = 1
in (3.4) then we get
(3.10) ITa|* < TP (|71 2, )

for any € H, or in an equivalent form
1—
(3.11) 1T < (|71 2 1T

for any = € H.
If we take o = 1/2 in (3.10), then we get

(3.12) IT2|* < | T (T 2, )
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for any x € H, which in the particular case of T = P, a positive operator, provides
the result from (3.2).

For various interesting generalizations, extension and Kato related results, see
the papers [48]-[58], [68]-[77] and [92].

3.2. Trace Inequalities Via Kato’s Result. We start with the following result:

Theorem 8 (Dragomir, 2014, [37]). Let T € B(H).
(i) If for some o € (0,1), |T)**, |T*|**~) € B, (H), then T € By (H) and

(3.13) It (T)]? < tr (\T|2°‘> tr (|T*|2(1_°‘)) ;
(ii) If for some o € [0,1] and an orthonormal basis {e;};c; the sum
« * 11—«
Do lITell™ 1Tl
el
is finite, then T € By (H) and
«@ * 11—«
(3.14) [tr (T)] <> ITes| ™ [T~
iel
Moreover, if the sums ), || Te;|| and Y, ; [|T*e;|| are finite for an orthonormal

basis {€;};c;, then T € By (H) and
(3.15)

* 1— *
[tr (T)] < mofl]{ZIITezll 1T O‘} <mm{ZIIT€z|| dT ezll}
i€F i€F

Proof. (i) Assume that o € (0,1). Let {e;};c; be an orthonormal basis in H and
F a finite part of I. Then by Kato’s inequality (3.4) we have

1/2 1/2
> (Tee) <Z|Tez,ez|<z<m2“ez,ez> (I P ee)

i€eF i€eF

(3.16)

By Cauchy-Buniakovski-Schwarz inequality for finite sums we have

(317) Z<|T\2aei,ei>”2<|T*|2<1—°*>ei,ei>”2

/272 1/2 1272 1/2
< |T|2a 61’61> :| > <Z |:<|T*|2(1—OL) 6i76i> :| )
ieF

ieF

1/2 1/2
(gres) (i)

e F

IN

Therefore, by (3.16) and (3.17) we have

1/2 1/2
Z <T6i, ei> < (Z <|T|20‘ €, €i>> (Z <|T*|2(1704) €, €i>>

i€EF ieF 1€EF

(3.18)

for any finite part F of I.
If for some o € (0,1) we have |T|2a,|T*\2(1_a) € By (H), then the sums

el <|T|2a ei7ei> and Y., <\T*|2(17a) ei,ei> are finite and by (3.18) we have
that >, ; (Te;, e;) is also finite and we have the inequality (3.13).
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(ii) Assume that o € [0,1]. Let {e;},.; be an orthonormal basis in H and F' a
finite part of I. Utilising McCarthy’s inequality for the positive operator P, namely

<Pﬁm,x> < <Px,m>5,
that holds for 8 € [0,1] and = € H, ||z|| = 1, we have
<|T|2a ei,ei> < <|T|26i,ei>a
and

11—«
<|T*|2(1_a) e, €i> < <|T*|2 €, €i>

for any i € I.
Making use of (3.16) we have

1/2 1/2
(319) |3 (Teren| <3 [(Tei e < Z<|T|2a ei,ei> <|T*\2(1’”‘) ei,ei>
ieF ieF ieF
a/2 (1-w)/2
§Z<|T|2€i76¢> <|T*|2 ei,€i>
ieF
= Z <T*T6i, €¢>a/2 <’IVI'*61‘7 6i>(1ia)/2
ieF
a * -«
=Y | Teil|* I T e~
ieF
Utilizing Holder’s inequality for finite sums and p = é, q= 171(1 we also have
« * 11—«
(3.20) o Te| [ T7e|
ieF
- -] "
SlZ(llTeina)”a] > (=) 1
icF ieF
a 11—«
= |Sre| | lred
icF ieF

Since all the series involved in (3.19) and (3.20) are convergent, then we get

Z <T€i, 6i>

icl

(3.21)

<D T T e
el

[eY e’

<

> ITe)

iel

> IT el

iel

for any a € [0,1].
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Taking the infimum over « € [0, 1] in (3.21) produces

(3.22) > (Tei,e;)| < inf ZHTQH 1T e~
el a€[0.1]
11—«
f Te; T e;
s o ZII i ZII i

icF

— min {Z |Teill ||T*ez-||} :

i€l i€l

Corollary 2. Let T € B(H).
(i) If |T|, |T*| € By (H), then T € By (H) and

(3.23) [t () < o (IT) b (IT7]) 5

(ii) If for an orthonormal basis {e;},c; the sum Y. /|| Teil| [T*es|| is finite,
then T € By (H) and
(3.24) ltr (D) <Y VITell [T*ei.
iel
Corollary 3. Let N € B(H) be a normal operator. If for some a € (0,1), |N[**,
IN|**=%) ¢ B, (H), then N € By (H) and

(3.25) Itr (N)]? < tr <|N\2a) tr (|N\2(1_°‘)) .
In particular, if |N| € By (H), then N € By (H) and
(3.26) tr ()] < tr ()

The following result also holds.

Theorem 9 (Dragomir, 2014, [37]). Let T € B(H) and A, B € By (H).
(i) For any o € [0,1], |A*]* | T, |B*[*|T*** ) and B*T A € B, (H) and

B21) AR < (AP TR e (1B TR0
(1) We also have
(3.28) |tr (AB*T)|?

< min {tr (|B) o (|47 1T7) tr (J4]) oo (1B* 17°1) |

Proof. (i) Let {e;},.; be an orthonormal basis in H and F a finite part of /. Then
by Kato’s inequality (3.4) we have

(3.29) (T Ae;, Be;)|? < <|T\2°‘ Aes, Aei> <|T*|2<1—‘” Be;, Bei>
for any ¢ € I. This is equivalent to

1/2 1/2
(3.30) (B*TAe;, )| < <A* aks Aei,ei> <B* 720 Bei,ei>

for any i € 1.
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Using the generalized triangle inequality for the modulus and the Cauchy-Bunyakowsky-
Schwarz inequality for finite sums we have from (3.30) that

(3.31) > (B*TAei,e;)

i€l

<> [(B*TAe;,e;)|

i€EF

*|\2e 4 V2 ). *2(1-a) B, 12
<;<A IT| Ae“ez> <B bl Bel,ez>

lz (<A* T[> Aei,ei>1/2>2

ieF

1 12(1—a) o 1/2)2
[; <<B IT*| Be,,ez>
1/2 1/2
Z<A* |T\2a A€¢7€i> Z<B* |T*|2(17Q) B€i7€i>]

i€F i€l

1/2

IA

1/2

X

for any F' a finite part of I.
Let a € [0,1]. Since A, B € By (H), then A*|T)** A, B*|T*[**~* B and
B*T'A € By (H) and by (3.31) we have
1/2 1/2
(3.32) ltr (B*TA)| < [tr (A* ks A)} [tr (B* i B)] :
Since, by the properties of trace we have
tr (B*TA) = tr (AB*T),
tr (A* T2 A) — tr (AA* |T|2a) = tr (|A*|2 \T|2O‘)
and
tr (B* |T*|2(1—0¢) B) —tr (|B*|2 |T*‘2(1—0¢)) ’

then by (3.32) we get (3.27).
(ii) Utilising McCarthy’s inequality [77] for the positive operator P

<PB:L’,:1:> < (Pz,z)?
that holds for 8 € (0,1) and x € H, ||z|| = 1, we have

(3.33) (PPy.y) < w7 (Py.y)”
for any y € H.
Let {e;};,c; be an orthonormal basis in H and F a finite part of /. From (3.33)
we have
(TP Aci, Ae;) < || Aei] = (TP Ac, Ae; )
and

11—

<|T*|2(1—a) Bei,Bei> < ||Bez||2a <|T*|2B€i,B€i>
for any i € 1.
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Making use of the inequality (3.29) we get

11—«

(T Aes, Beg)” < [ Aeil ) (71 Aei, Aes) | Beil ™ (|7 Bei, Ber)

= 1Beil® (171 Acs, Ae:) [ Aei 20~ {IT*? Be, Bes)

and taking the square root we get

l1—o

(3.34) |(TAe;, Be;)| < HBei||“<|T|2Aei,Aei>§\|Aei||1_“ <|T*|2Bei,Bei> :

for any i € I.
Using the generalized triangle inequality for the modulus and the Holder’s in-
equality for finite sums and p = %, g = ﬁ we get from (3.34) that

«

(3.35) Z (B*T Ae;, e;)

i€EF

<Y (B'TAei,e;)]

i€F

l—a

e 2 . 4 \? i—a S p o \ 2
g;HBelu <|T\ Aez,AeZ> || Aes| <|T| Be“Bel>

<Z [LARGREN /)

i€F

1—aql/(1-a)
(Z [Aei”<|T*|QBei,Bei> 2 } )

i€l

«@ 11—«
(Z | Bes| <|T|2Aei,Aei>%> <Z | Aes | <T*|2Bei,Bei>é> .
icF

icF

IN

11—«

X

By Cauchy-Bunyakowsky-Schwarz inequality for finite sums we also have

1 1/2 1/2
> IBei| <|T\2Aei,Aei>§ < (Z ||Bei||2> (Z <|T|2Aei,Aei>>

ieF el i€l
— 2 . . " * 2 . . "
= Z<\B| ez,el> Z<A T Ael,ez>
i€F i€EF
and
i 1/2 1/2
> Aei]| (|7 Bei, Bei)” < (Z ||Aei||2> <Z<|T*|23ei,3ei>>
i€l ieF ieF

_ (Z (147 e, e>> - (Z (B* T Be, e>> "

i€EF ieF
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and by (3.35) we obtain

(3.36) D (B'TAe;,e)

i€F

< (Z (1B e, ei>>a/2 (Z (a* P Aei,ei>> .

i€EF ieF

(1—a)/2 (1-a)/2
X <Z<|A26i,€i>> (Z <B* |T*|2Bei7ei>>

i€l i€l

for any F' a finite part of I.
Let a € [0,1]. Since A, B € By (H), then A* |T|> A and B* |T*|* B € By (H)
and by (3.36) we get

(3.37) |tr (AB*T)|?
< o (1B1?) w (47 7P A)]a [tx (141) e (B° 7 B)] e
= [ (182w (1A 12P)] i (148 o (13 \T*|2)]1_“
Taking the infimum over « € [0, 1] we get (3.28). O

Corollary 4. Let T € B(H) and A, B € By (H). We have |A*]> |T|, |B*|* |T*|
and B*T'A € By (H) and

(3.38) ltr (AB*T)[? < tr (|A*\2 |T|) tr (\B*|Q |T*\> .

Corollary 5. Let N € B(H) be a normal operator and A, B € By (H) .
(i) For any o € [0,1], |A*]* IN|**, |B*|*|N]**™®) and B*NA € B, (H) and

(3.39) jbr (AB* N < o (JA% 2 NPt (1B INPO)).
In particular, |A*|* N|, |B*|*IN| and B*NA € By, (H) and
(3.40) Itr (AB*N)|? < tr (\A*|2 |N|) tr (|B*|2 |N|) .
(i) We also have
(3.41) |tr (AB*N)|?
< min {tr (1B[) tr (]4* P [NT*) o (147) o (1B° INT) }

Remark 4. Let o € [0,1]. By replacing A with A* and B with B* in (3.27) we
get

(3.42) jbr (A*BT)[* < tr (JA] TP e (1B 7720 )

foranyT € B(H) and A, B € By (H).
If in this inequality we take A = B, then we get

(3.43) o (1B T) ‘2 <o (1B (1B e PO
forany T € B(H) and B € B (H) .
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If in (3.42) we take A = B*, then we get
(3.44) It (B2T)|* < tr (|B*\2 \T|2"‘> tr (|B|2 |T*\2<1—a))

for anyT € B(H) and B € By (H).
Also, if T = N, a normal operator, then (3.43) and (8.44) become

R () e R R (C
and
) (BN <o (B INE) o (1BEINPC),

for any B € By (H) .
3.3. Some Functional Properties. Let A € By (H) and P € B(H) with P > 0.
Then @ := A*PA € By (H) with @ > 0 and writing the inequality (3.43) for
B = (A*PA)I/2 € By (H) we get
* 2 * 20 * % 12(1—a)
ltr (A*PAT)| < tr (A PA|T| )tr (A PA|T| )
which, by the properties of trace, is equivalent to

(3.47) ltr (PATA*)? < tr (PA aks A*) tr (pA 720 A*) ,

where T' € B(H) and « € [0,1].
For a given A € By (H), T € B(H) and « € [0,1], we consider the functional
0 A4,T,o defined on the cone B, (H) of nonnegative operators on B (H) by
1/2 1/2
TATa(P) = [tr (PA|T|2a A*)] [tr (pA|T*\2<1—a) A*)}
— |[tr (PAT A™)|.
The following theorem collects some fundamental properties of this functional.

Theorem 10 (Dragomir, 2014, [37]). Let A€ By (H), T € B(H) and a € [0,1].
(i) For any P, Q € By (H)

(3.48) oar,a(P+Q)>0ara(P)+0oara(Q)(>0),

namely, 04 1.« 18 a superadditive functional on By (H);
(i1) For any P, Q € B (H) with P > @

(349) OAT,a (P) 2 OAT,o (Q) (Z 0) )

namely, 0 a,1,o 18 a monotonic nondecreasing functional on By (H);
(i) If P, Q € By (H) and there exist the constants M > m > 0 such that
M@ > P > mQ then

(350) MUA,T,& (Q) > OAT,o (P) > ™Mo AT, (Q) (2 0) .

Proof. (i) Let P, @Q € B4 (H). On utilizing the elementary inequality

(a2 + b2)1/2 (02 + d2)1/2 >ac+bd, a,b,c,d >0
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and the triangle inequality for the modulus, we have
OAT,« P + Q)

(
= [ ((P+@ AT a%)] i [ir (P + QAT PO A*)}”Q
—|tr (P + Q) AT A®)|

_ [tr (PA T A* + QA|T A*)] v

[r(PA|T* 2(1 @) A*+QA|T*|2(1 ) A*)] 1/2

— |tr (PATA* + QAT A*)]
1/2

[ r (PA lals A*) + tr (QAITIM A*)} /
[ . (PA|T* 20 A*) +tr (QA|T*|2(1 a) A*)}
— |tr (PATA%) + tr (QAT A™)|

)r/ {tr (PA\T*|2(1—<X) A*ﬂl/z

+ [ (Qaprpe at)]" [ir (Qarepo=) )]
— |tr (PAT A*)| — |tr (QAT A™)|

— 0ama (P)+ 0470 (@)

> [tr (PA T[> A*

and the inequality (3.48) is proved.
(ii) Let P, Q € By (H) with P > Q. Utilising the superadditivity property we
have

0aTa(P) = 04a70(P—Q)+Q)>0ar0a(P—Q)+0ar,a(Q)
> OAT,a (Q)

and the inequality (3.49) is obtained.
(iii) From the monotonicity property we have

OAT,a (P) > OAT,a (mQ) = MO AT« (Q)

and a similar inequality for M, which prove the desired result (3.50). O

Corollary 6. Let Ac Bo(H), T € B(H) and o € [0,1]. If P € B(H) is such that
there exist the constants M > m > 0 with M1y > P > mly, then

(351) M ([tr (A ks A*)} v [tr (A 720 A*)] RS (ATA*)|>
> [ir (PAITE® 47)] i [ir (PA T 0= %) Y2l (PATAY)|

> o ([ (A a)] 2 i (a0 )] s aray)
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For a given A € By (H), T € B(H) and a € [0,1], if we take P = |V|* with V €
B (H), we have

wara (V) = [er (v aprre an) | [er (v aprepe= a)]

—‘tr V|? AT A* )‘

_ _tr (v VAT A* )} i [tr (V*VA|T*|2<1*“) A*)T/Q
~ Jtr (V*V AT AY)]

- :tr (A*V*VA |T|2‘X>r/2 [tr (A*V*VA |T*|2(1_0‘))} 2
— Jtr (A*V*VAT)]

- :tr ((VA)* VA \T|2°‘)] i [tr ((VA)* VA |T*|2<1*a>)] i
— [tr ((VA)"VAT)|

= [ox (jvap )] v [t (VAP )] v o (VAP ).

Assume that A€ By (H), T € B(H) and a € [0,1].
If we use the superadditivity property of the functional o4 1, we have for any
V, U € B(H) that

(3.52) {tr ((|VA|2 i |UA|2> |T|2a>:|1/2 [tr ((‘VA‘Q n \UA|2) |T*‘2(17a)>}1/2
~ e ((var +wap) )|

> [tr (VAP 1) i [tr (VAP =) v ’tr (var T)}

+ [t (|UA|2 |T|2°‘)]1/2 [tr (|UA\2 \T*|2<1*a>)]1/2 - ’tr (\UA|2T)‘

(=20).

Also, if |V|* > |U|* with V, U € B(H), then

(353)  [i (VAP TP?)] i [ir (v ap e p0-)] Ve i (jvapT)|

> i (A )] v [t (jU AP \T*|2(1_°‘)>]1/2 _
(>0).

tr (\UA|2 T)‘

If U € B(H) is invertible, then

1
o= ]l < [|Uz]| < [[U] ||z|| for any = € H,

which implies that

1 2 2
WlH <[UF<|UI"1n.
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Utilising (3.51) we get
1/2 B 1/2
(354 U ([tr (14 )] o (1A )| -
1/2 1/2
> [or (wap rpe) | [or (waP rpPt=) - -

L1
— _1112
K

o ) R ) e M a1}

3.4. Inequalities for n-Tuples of Operators. We have:

o (1477))

tr (\UA|2 T)‘

Proposition 8 (Dragomir, 2014, [37]). Let P = (P1,....,P,) € Bs_n) (H), T =

(T, ..., T,) € B™ (H), A = (A, ..., A,) € B8 (H) and z = (21, ..., 2,) € C* with
n > 2. Then

n 2
(355) tr (Z Zk'Pk'AkaAz->
k=1
<tr (Z |2k| PeAg |Ti|>® A;) tr (Z |2k PoAy | T A;;)
k=1 k=1

for any a € [0,1].
Proof. Using the properties of modulus and the inequality (3.47) we have

tr (Z ZkPkAkaAZ> ‘

k=1

<D Ll ltr (PeARTRAY)|
k=1

< zn: Jzal [or (PoAx 1T A7) | i [tr (Pedy 1T PO A7) 1
k=1

Z Zk tr (PkAkaAZ)
k=1

/2

Utilizing the weighted discrete Cauchy-Bunyakovsky-Schwarz inequality we also

have
n

;|2’k| [tr (PkAk |Tk‘2a AZ)}IN [tr (PkAk ‘T;|2(1—a) AZ)}IM

(é 24| ([tr (Peas [T 47)] 1/2)2)
(i EX ({tr (P 770 7)) 1/2)2> 12

k=1

n 2 /4 1/2
:<Z|zk|tr(PkAk|Tk|2aA}§)> <Z|zk|tr(PkAk|T,:|2““%4;;)) :

k=1 k=1
which imply the desired result (3.55). (]

1/2

IN

X
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Remark 5. If we take P, = 1y for any k € {1,....,n} in (3.55), then

2

k=1
<tr <Z |2k] | Ak |Tk|2a) tr (Z 2] | Ax|? |T,;*2(1_“)>
k=1 P

provided that T = (T,...,T,,) € B (H), A = (Ay,..., A,) € Bén) (H), a €0,1]
and z = (21, ..., z,) € C™.

We consider the functional for n-tuples of nonnegative operators P = (P, ..., P,) €
BSF") (H) as follows:

n 1/2
(3.57) oama(P):= |tr <Z P Ay | T A;;)
k=1
X ltr (Z PLA, |T]:|2(1_a) AZ) — |tr <Z PkAkaAZ> ,
k=1 k=1

where T = (T4, ..., T,)) € B™ (H), A = (Ay,..., A,) € BS" (H) and a € [0,1].
Utilising a similar argument to the one in Theorem 10 we can state:

Proposition 9 (Dragomir, 2014, [37]). Let T = (Ty,...,T,,) € B™ (H), A =
(A1,...,A,) € Bgn) (H) and o € [0,1].
(i) For any P, Q € Bin) (H)

(3.58) oaTa(P+Q)>0a10(P)+oar1e(Q)(>0),

namely, oA T.o S a superadditive functional on Bg_n) (H);
(ii) For any P, Q € Bg_n) (H) with P > Q, namely P, > Qy, for allk € {1,...,n}

(3.59) oA Ta(P)>0aTa(Q)(=0),

namely, oA B IS a monotonic nondecreasing functional on Bf') (H);

(iti) If P, Q € Bg_n) (H) and there exist the constants M > m > 0 such that
MQ > P >mQ then

(3.60) Moar,a(Q)>0aT1e(P)>moara(Q)(>0).

If P=(pily,...,pnly) with pr > 0, k € {1,...,n} then the functional of real
nonnegative weights p = (p1, ..., p,) defined by

n 1/2
(3.61) oaT.w (D)= [tr (Zpk | Ag|? |Tk|2“>
k=1
n 1/2 n
x [tr (Zpkmﬂ:m?(la)ﬂ — ltr (Zpk |Ak|2Tk)’
k=1 k=1

has the same properties as in Theorem 10.
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Moreover, we have the simple bounds

(3.62) { ax }{pk} [tr (Z |Ak|2 |Tk|2a>

k=1

X [ (Z |Ag? T3P0 f”)] — |tr (Zpk |Ak|2Tk>‘
k= k=1

n 1/2 n 1/2
> [tr (Zpk |Axl? mﬁ“ﬂ [tr (Zpk | A T;F“—“)ﬂ
k=1 k=1
— |tr (Zpk |Ak|2Tk>‘

k=1
n 1/2
tr (Z |Ax|? |Tk2a>]

k=1

x [tr (Z A |Tk*2“‘“>>

k=1

1/2

o
2 emin | {p}

1/2

— |tr (Zpk |Ak|2Tk> ‘
k=1

3.5. Further Inequalities for Power Series. We have the following version of
Kato’s inequality for functions defined by power series:

Theorem 11 (Dragomir, 2014, [37]). Let f()\) := Y .2 a, A" be a power series
with complex coefficients and convergent on the open disk D (0,R), R > 0. Let
N € B(H) be a normal operator. If for some o € (0,1), [N**, |[N|**=%) € B, (H)
with tr (|N|20‘) , tr (|N\2(1_a)) < R, then

(3:63) jor (F (VDI <t (fu (INP) ) b (fu (INPO)).

Proof. Since N is a normal operator, then for any natural number k£ > 1 we have
|NE* = [N P°% and [NE|207) = N[0
By the generalized triangle inequality for the modulus we have for n > 2

tr <iaka> = iaktr(Nk) §i|ak||tr(Nk)|

If for some a € (0,1) we have |[N|**, |[N|**™®) € B, (H), then by Corollary 3
we have N € By (H). Now, since N, |[N|**, [N|*"™*) ¢ B, (H) then any natural
power of these operators belong to By (H) and by (3.25) we have

(3.65) |tr (NF) }2 <tr (|N|2°‘k) tr (\N|2(1_a)k> 7

(3.64)

for any natural number k& > 1.
Making use of (3.65) we have

(3.66) z": o tr (N¥)| < zn: e (tr (|N|2"’“))1/2 (tr (\N|2(1_a)k))1/2,
k=1 k=1
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Utilising the weighted Cauchy-Bunyakovsky-Schwarz inequality for sums we also
have

(3.67) i ok (tr (|N|2ak)>1/2 (tr (|N‘2(1—a)k))1/2
=1

n 1/2\ 2 1z

>l (e (14)) ) ]

(1vp- “”“))1/2)2]
v tr (INIQ"’“)] " lzn: g | tr (INQ(““)'“)]

k=1 k=1

Making use of (3.64), (3.66) and (3.67) we get the inequality

n 2 n n
tr <Z oszk> < tr (Z |aug| N|2"k> tr (Z |aug| |N|2<1_O‘)k>
k=1

k=1 k=1
for any n > 2.
Due to the fact that tr (|N\2a) , tr (|N|2(1_a)) < R it follows by (3.25) that
tr (|N]) < R and the operator series

IN

X
l—|.ﬁ
3
i
<.—P
=

1/2

1/2

(3.68)

oo

oo [e.¢]
Do arNE D on] NP and Y o [N
k=1

k=1 k=1

are convergent in the Banach space B (H).
Taking the limit over n — oo in (3.68) and using the continuity of the tr (-) on
B (H) we deduce the desired result (3.63). O

Example 7. a) If we take in f(A) = (1£X) "' =1 =F\ ((1 + )\)_1>, [A| <1 then
we get from (3.63) the inequality

(3.69) ‘tr (N ((1H + N)*l)) ‘2

tr <N|2“ (1 - |N|2“)_1> r (|N2(1°‘) (1 - |N|2<1a>)‘1) ,

provided that N € B (H) is a normal operator and for o € (0,1), [N|**, [N|*7) ¢
By (H) with tr (|N|2°‘)  tr (|N|2<1*“>) <1
b) If we take in (3.63) f(N\) = exp (A) — 1, A € C then we get the inequality

(3.70) Jtr (exp (N) — 15)|* < tr (exp (|N|2a> - IH) tr (exp (|N\2(1_a)) - 1H> ,

provided that N € B(H) is a normal operator and for o € (0,1), |[N|**, [N|*7) ¢
By (H).

The following result also holds:
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Theorem 12 (Dragomir, 2014, [37]). Let f(\) := Y o2 an\" be a power series
with complex coefficients and convergent on the open disk D (0,R), R > 0. If T €
B(H), A€ By(H) are normal operators that double commute, i.e. TA = AT and

TA* = A*T and tr (|A\2 |T|2o‘> , tr <|A|2 |T\2(1_Q)) < R for some a € [0,1], then

o (7 (14P7))[ < (7 (148 127 ) e (52 (1472 [P0

Proof. From the inequality (3.56) we have

(3.71)

2

(3.72) tr <Z o | A*|? T’“)
k=0
< tr (Z e [ A*|” ;m“) tr ( e | AF[* |Tk|2““)> .
k=0 k=0
Since A and 7' are normal operators, then |A’“|2 = A", |Tk‘2a = |T**" and

’Tk|2(1—a) _ |T|2(1—a)k

for any natural number k£ > 0 and « € [0, 1] .
Since T' and A double commute, then is easy to see that

2% 2.\ * 2% | 20k 2 120\ *
APFTE = (JAP T, [AP* TPt = (1A )
and
k
|A|2k‘ |T|2(1—a)k — (‘A|2 |T|2(1—DL)>

for any natural number k£ > 0 and « € [0, 1] .
Therefore (3.72) is equivalent to

tr (Z o, (|A2T>k>

k=0
< tr (i loug| (\A|2 |T|2a)k) tr (i || (|A‘2 T|2(1a)>k> |
= k=0

for any natural number n > land « € [0,1].
Due to the fact that tr (|A|2 \T|2O‘) , tr (\A|2 |T|2(17a)) < R it follows by (3.56)

2
(3.73)

for n =1 that tr <|A|2 T) < R and the operator series

ST arN® S ol NP and D oy [N
k=1 k=1 k=1

are convergent in the Banach space B (H).
Taking the limit over n — oo in (3.73) and using the continuity of the tr(-) on
B1 (H) we deduce the desired result (3.71). O
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Example 8. a) If we take f(A\) = (1£X) "', [\ < 1 then we get from (3.71) the
inequality
tr ((1H + |A|2T >

<or (=12 ire) Yo (- 1ap P .

provided that T € B(H), A € By (H) are normal operators that double commute
and tr (|A|2 |T\2“) (\A| T2~ ">) <1 foraclo1].
b) If we take in (3.71) f(A) =exp (\), A € C then we get the inequality

tr (exp (|41 7)) f < tr (exp (|4 T1*) ) o (exp (4] [7P0)),

provided that T € B(H) and A € By (H) are normal operators that double commute
and o € [0,1].

(3.74)

(3.75)

Theorem 13 (Dragomir, 2014, [37]). Let f (2) := 372 p;27 and g (z) := 372 q;%
be two power series with nonnegative coefficients and convergent on the open disk
DO,R), R > 0. If T € B(H), A € By(H) are normal operators that double

commute and tr (|A|2 |T|2a> , tr (\A|2 |T|2(17a)) < R for a € [0,1], then

(3.76) [or (£ (147 [12°) 4.9 (142 21>))]
e (7 (P ) g (P =)
i (£ (14PT) +9 (142 7)),
e (1)) [ (s (i)
| (s (ar )|
[ o (1) o (o =)}
“Jir(o (7)) 0

Moreover, if p; > q; for any j € N, then, with the above assumptions on T and

v

A,

(3.77) [t (7 (147 171>))] . [or (7 (14 20 =) )| "
(1 (14° 7))

> [or (o (148 22))] " or (o (142 1220-))]
(s (147 7)) 2 0.

The proof follows in a similar way to the proof of Theorem 12 by making use
of the superadditivity and monotonicity properties of the functional oA 1, (). We
omit the details.
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Example 9. Now, observe that if we take

o0

1
— & _ )\2n+1
f(A) =sinh A 7122(]7(2n+ ol
and
. 1 2n
g(A) =cosh A\ = ;w)\
then
o0 1 N
F+g(N) =expr=3 —A
n=0
for any A € C.

If T € B(H), A€ By(H) are normal operators that double commute and o €
[0,1], then by (3.76)

(3.78) {tr (exp (|A|2 |T|2O‘))} 1/2 {tr (exp <|A|2 |T‘2(1—a))>}1/2

— |tr (exp (|A|2 T))‘

> [t (sinn (142 )] er (sin (142 re=))] 7
— |tr (sinh (|A|2 T))‘

+ [or (cosh (P 1) )| 12 or cosh (142 (121 )] 12
— |tx (cosh (|4 7)) | (= 0).

Now, consider the series T =Y 0" (A", A€ D (0,1) and In 15 = >">7  L\",

A€ D(0,1) and define p, =1, n >0, go =0, g, = %, n > 1, then we observe that
for anyn >0, p, > qy.
IfT e B(H), A€ By(H) are normal operators that double commute, « € [0, 1]

and tr (|A|2 |T\2a) tr (\A|2 |T|2<1*a>) <1, then by (3.77)

6r9) [ (1n-iafr) ") : oo (1P o) )]
" ((1H - |A|2T)‘1)‘

> Jor (1 (1~ 142 ) ) v
ety

" (1“ (1 - |A2T)1> ’ (>0).

1/2
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4. REVERSES OF SCHWARZ INEQUALITY

4.1. Some Classical Facts. Let a = (a1,...,a,) and b = (by,...,b,) be two
positive n-tuples with

(4.1) 0<mi<a; <M <ooand 0<mo <b; <My < o0

for each i€ {1,...,n}, and some constants my, ma, My, Ms.
The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality for posi-
tive sequences of real numbers are well known:

a) Pdlya-Szegd’s inequality [85]:
i1 % Vi L[ MMy \/m
_jaib N m1my 1Mo
(Choyanbe)” 4 M M
b) Shisha-Mond’s inequality [89]:
1 172
ZZ:1 a% _ ZZ:l aby < (le> 2 (ml> 2
k=1 @Dk k=1 i T [ \ma2 M,

If w = (wy,...,w,) is a positive sequence, then the following weighted inequal-
ities also hold:

2

c) Cassels” inequality [94]. If the positive real sequences a = (a1, ...,a,) and
b = (by,...,b,) satisfy the condition
(4.2) O<m§Z—kSM<ooforeachk€{1,...,n},
k
then
n n 2
(X1 wrag) (i wib}) < (M +m)
(e wrarby)” - AmM
For other recent results providing discrete reverse inequalities, see the monograph
online [23].
The following reverse of Schwarz’s inequality in inner product spaces holds [24].

Theorem 14 (Dragomir, 2003, [24]). Let A, a € C and z, y € H, a complex inner
product space with the inner product (-,-). If

(4.3) Re (Ay — z,2 — ay) > 0,
or equivalently,

a+ A 1
(4.4) T — Y| < 5 lA=alllyll,

2 2
holds, then
1

(4.5) 0 < [l lyl* = [(z, 9)[* < 14~ al* [ly]*-

The constant + is sharp in (4.5).

In 1935, G. Griiss [61] proved the following integral inequality which gives an
approximation of the integral mean of the product in terms of the product of the
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integrals means as follows:

bia/abf(x)g(m)dx—bia/abf(x)dx-bia/abg(x)dm
1

SZ((I’_QS)(F—’Y)y

(4.6)

where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition
(4.7) < f(x)<®,y<g(@)<T

for each = € [a,b], where ¢, @, 7, I are given real constants.

Moreover, the constant i is sharp in the sense that it cannot be replaced by a
smaller one.

In [26], in order to generalize the Griiss integral inequality in abstract structures
the author has proved the following inequality in inner product spaces.

Theorem 15 (Dragomir, 1999, [26]). Let (H,(-,-)) be an inner product space over
K(K=R,C) and e € H, |le]| = 1. If ¢, v, @, T’ are real or complex numbers and
x, y are vectors in H such that the conditions

(4.8) Re(®Pe —z,2 — pe) > 0 and Re (Te —y,y —ye) >0
hold, then

1
(4.9) {z,y) —(z,e) eyl < 112 —¢| [T =1l

The constant % is best possible in the sense that it can not be replaced by a smaller
constant.

For other results of this type, see the recent monograph [29] and the references
therein.

For other Griiss type results for integral and sums see the papers [1]-[3], [11]-[13],
[14]-[16], [25]-[32], [47], [83], [100] and the references therein.

4.2. Additive Reverses of Schwarz Trace Inequality. We denote by
Bf (H):={P: PeB;(H), P is selfadjoint and P > 0}.
We obtained recently the following result [39]:
Theorem 16 (Dragomir, 2014, [39]). For any A, C € B(H) and P € By (H)\ {0}

tr (PAC) tr(PA) tr (PC)
tr(P)  tr(P) tr(P)‘

1 P
< if A=A Lyl —tr (’(c_ ) PD
Xec

(4.10)

tr (P) tr (P)
) 1/2
< inf A A L] tr(P|C| ) | (PO)
= Nec " tr (P) tr (P) ’

where ||-|| is the operator norm.
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Proof. We observe that, for any A € C we have

(4.11) Ik [p A— ) (o _ tzr(fPC)) 1H)]

(
! tr{PA(C—tr(Pc)l )]

tr (P) "

)
)

tr (PA) tr (PC)
tr(P)  tr(P) tr(P)’

Taking the modulus in (4.11) and utilizing the properties of the trace, we have

tr (PAC) tr(PA) tr (PC)
tr(P)  tr(P) tr(P)‘

<l 50)
:tr(lp) {A MH( tr(P) )PH

ctat gl 0 )

for any A € C.
Utilising Schwarz’s inequality we also have

b (o))
-s(|f- )]

o\ 11/2
<[l )] e




) -5
) (o) )
(- 45) - 5050)
(e ) - )
(AT

) (tr (t|C|2P) ) ’tr(PC)r) .

P

tr (P)

r(P) tr (P)

By (4.12) and (4.13) we get

o(|fo- sty ) < (U)o

and by (4.24) we have

(4.14) ‘trt(ﬁ;lf) (fpfi) ZDPO))‘
<[ A= X1y (1P) ( ( ) D
<JJA=X-14] (t E' P) ’ttr(P) ‘)

for any A € C.

Taking the infimum over A € C in (4.14) we get the desired result (4.23). O

We also have [39]:

Corollary 7. Let a, f € C and A € B(H) such that

a+ B 1
Agl|<Z1B8-qf.
5 HH_25 al

|4
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For any C € B(H) and P € B (H)\ {0}

(4.15)

tr (PAC) tr(PA) tr (PC)
tr(P)  tr(P) tr(P)‘

(o 222) )
1/2
tr (P|CI . 2
= %'B_O“ EI(P) ) N ttr(fPC)’)
In particular, if C € B(H) is such that
Hc S 1HH <2l6-al,
then
(4.16)  0< " Ef(f)' ) tzr(fPC)) ’
2tz (o~ 550) )
1/2
tr ( P|C] r 2
S%w_ |[ g(P))_ttr(fPC)) Si'*g_aﬁ
Also
r (PC? r (PC) 2
(4.17) : tl(r (P)) ; <ttrfPC; )
r(PC
<310l (- Sy ) 7)
) 712
oo -] <dow

For other related results see [39].
In order to simplify writing, we use the following notation

By (H):={PeB(H), P is selfadjoint and P > 0}.
The following result holds:

Theorem 17 (Dragomir, 2014, [41]). Let, either P € By (H), A, B € By (H) or
PeBi(H), A, BEB(H) and~, T € C.
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(i) We have
(4.18)  0<tr (P |A\2) tr (P |B|2) — |tr (PB*A)|?
= Re [(F tr (P |B|2) —tr (PB*A)) (tr(PA*B) ot (P |B|2))}
Ctr (P |B|2) Re (tr [P (A* — 7B*) (TB — A)])
< 10— i (P1BP)]
—tr (P |B|2> Re (tr [P (A* —7B*) (TB — A)]).
(i) If
(4.19) Re (tr [P (A* —4B*)(IB—A)]) >0

or, equivalently

(4.20) r (P ‘A - #B

? 1 2 2

) < ;0= (PIBF),

then

(4.21)  0<tr (P |A\2) tr (P |B|2) — |tr (PB*A)[?
< Re Krtr (P|B|2) —tr (PB*A)) (tr(PA*B) At (P|B|2))}
L (i)

and

(4.22) 0<tr (P|A|2) tr (P|B|2) — |tr (PB*A)?
<Lt o o)
—tr (P |B|2> Re (tr [P (A" —7B*) (IB — A)))
< 110 = [ix (P1BP)]

Proof. Observe that, by the trace properties, we have

2

(4.23) I, :=Re KFtr (P|B|2) —tr (PB*A)) (tr (PA*B) — Ftr (P|B|2))}
~ Re [(rtr (P|B\2> —tr(PB*A)) (m—w« (P|B|2))]
= Re [Ftr <P \B|2) tr (PB*A) + 7 tr (PB*A) tr (P |B|2)
~|tr (PB*A)? —T7 [tr (P |B|2)]2
_— (p |B|2> Re [rm+w (pB*A)}

|t (PB*A))? — [tr (P|B\2)}2Re (T'7)
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and
Iy = tr (P |B|2> Re (tr [P (A* —7B*) (TB — A)])
— tr (P \B|2> Re[tr (PA*B + 7PB*A — FTPB*B — PA*A)]
= tr (P \B|2) Re [['tr (PA*B) + 7tr (PB* A)]
AT tr (P|B|2> oty (P|A|2)}
_— (P \B|2) Re {rmJﬂtr (PB*A)]
- [u« (P \BF)FRe (AT) — tr (P |B|2) tr (P |A|2) ,

for P a selfadjoint operator with P >0, A, B € By (H) and v, I' € C.
Then we have

I —1Iy = tr (P |B|2) tr (P \A|2) —|tr (PB*A)[?,

which proves the equality in (4.18).
Utilising the elementary inequality for complex numbers

Re (uT) < \u+v| ,wveC,
we have
Re[(Ttr (PIBI*) = tr(PB*4)) (1 (PA*B) - 7t (P|BI") )]
— Re [(Ftr (PIBP) —w(PB 1)) <tr (PB*A) —vtr (PBQ))]
< % [I‘tr (P\B\Q) —tr (PB*A) + tr (PB*A) — ytr (P\B\Q)]Q
= LIt [ (PR

which proves the last inequality in (4.18).
We have the equalities

1 r

(4.24) 4|F—7|2P|B|2—P’A—7‘;B
1 2|2 v+ T
) YT P R

{0l 1Bl - 4= 23

ol r \* r
Pl r -2 BP-(4a-21B) (a-2t1p
1 2 2
1
20
_4|

P r T
7; B A+ 7+ T+L g "H

2| o2
- B

Ny \ B
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T I
:P[—|AQ+Wr B*AJFV—QF A*B
1 2 YT L
Sir—AP - |22 ) B
+<4| - ‘)II
T I
_P[_ 4P+ = pras 2 A*B—Re(F7)|B|2}

for any bounded operators A, B, P and the complex numbers v, I' € C.
Let P be a selfadjoint operator with P > 0, A, B € By (H) and v, I' € C. Taking
the trace in (4.24) we get

(4.25) 1|F7|2tr(P|B|2>tr< 'A ”PBD
- tr (P |A|2) ~ Re(I9) tr (p |B|2>
v+T v+T

+ 15— tr(PB*A) + T~ tr (PA"B)

= —tr (P|A]?) ~Re (D7) (P|B?)

+ 2w ppeay+ G
= —tr (P1AP) = Re(r7) tr (P|BI*) + 15~ 7” c(PBA) + L (pea)
= —tr (P|AF) = Re(T7) tr (P|BI*) +2Re { r (PB* A)}
—tr (P|A|2) Re (I7) tr (P|B|2) +Re [ytr (PB*A)] + Re [T tr (PB* A)]
= —tr (P|AP) = Re(07) tr (P|BI*) + Re[ytr (PB*A)] + Re [Ttr (PB*A)]

= —tr (P1AP) = Re(07) tr (P|B*) + Re [7tr (PB* A)] + Re [Tt (PB*4)] .

Utilising the equality for Iy above, we conclude that (4.19) holds if and only if
(4.20) holds, and the inequalities (4.21) and (4.22) thus follow from (4.18).

The case P € Bf (H), A, B € B(H) goes likewise and the details are omitted.

(]

For two given operators T, U € B (H) and two given scalars «, 8 € C consider
the transform
Cap (T, U)=(T"—-aU")(BU - T).

This transform generalizes the transform
CawB (T) = (T* - 5[1]-]) (/BlH - T) = CO{,,B (T7 lH) )

where 1p is the identity operator, which has been introduced in [35] in order to
provide some generalizations of the well known Kantorovich inequality for operators
in Hilbert spaces.

We recall that a bounded linear operator T' on the complex Hilbert space (H, (-, -))
is called accretive if Re (Ty,y) > 0 for any y € H.
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Utilizing the following identity

(4.26) Re(Cap(T,U)z,x) =Re(Cp,a (T,U) z,x)

1wm20ﬂFWua+5¢u
4 2

2
=i|ﬁ—alz <|U|295790>— <‘T— a—;—ﬁ U x,x>

that holds for any scalars «, 8 and any vector x € H, we can give a simple charac-

terization result that is useful in the following:

Lemma 1. Fora, § € C and T, U € B(H) the following statements are equivalent:
(i) The transform Co.p (T,U) (or, equivalently, Cg o (T,U)) is accretive;

(ii) We have the norm inequality

_oz-i-ﬂ'
2

1
(4.27) HT:C UxH < §|ﬂ—a||\Ux||
for any x € H;
(iii) We have the following inequality in the operator order

oz-i-ﬁl 2

U
2

1
- <Lig—apup.

As a consequence of the above lemma we can state:
Corollary 8. Let o, € C and T, U € B(H). If Co 5 (T, U) is accretive, then

a+p
U
2

(1.28) I7- | <318-alion.

Remark 6. In order to give examples of linear operators T, U € B(H) and numbers
a, B € C such that the transform Cqo5 (T,U) is accretive, it suffices to select two
bounded linear operator S and V and the complex numbers z, w (w # 0) with the
property that ||Sx — zVz| < |w|||Vz| for any x € H, and, by choosing T = S,
U=V,a=1(z+w) and B =1 (z—w) we observe that T and U satisfy (4.27),
i.e., Co g (T,U) is accretive.

Corollary 9. Let, either P € By (H), A, B € Bo(H) or P € B (H), A, B €
B(H) and v, I' € C. If the transform Cr (A, B) is accretive, then we have the
inequalities (4.21) and (4.22).

The case of selfadjoint operators is as follows.

Corollary 10. Let P, A, B be selfadjoint operators with either P € By (H), A,
B € By(H) or P € Bf (H), A, B € B(H) and m, M € R with M > m. If
(A—mB)(MB— A) >0, then

(4.29) 0 < tr (PA?) tr (PB?) — [tr (PBA)]?

[(M tr (PB?) — tr (PBA)) (tr (PAB) — mtr (PB?))]

1
4

IN

IN

(M — m)2 [tr (PBQ)]2
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and

-+

r (PA?) tr (PB?) — [tr (PBA))?
(M —m)? [tr (PB?)]* — tr (PB?) tr [P (A — mB) (MB — A)]

(4.30)  0<

IN IN
[N B A

(M —m)? [tr (PB)]*.

We also have the following result:

Theorem 18 (Dragomir, 2014, [41]). Let, either P € By (H), A, B € By (H) or
PeBf(H), A, B€B(H) and ) € C.
(i) We have

(4.31) 0<tr (P|B\2) tr (P |A\2) — |tr (PB*A))?

- <p )

- ' [ (P|B|2)T/2A CweBa)

{tr (P|B\2)]U2A— AB

(i) If there is r > 0 such that

) <o (1))

tr (P ‘ {tr (P |B|2)]1/2 A—AB

then we have the reverse of Schwarz inequality

(4.32) 0< tr (P|B\2) tr (P|A\2) ~|tr (PB*A))?
< [i(P16)] = | [ (P151)] 2= w(pEn)

<72 {tr (P\BF)] .

2
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Proof. Using the properties of trace, we have for P >0, A, B € By (H) and A € C

that
[ (P|B|2>]1/2A - ABD

Jl = tr <P

— tr <P <[m~ (P |B|2)} Yy )\B>* ({tr (P |B|2>} Yy AB))

= tr (p [tr (p |B|2) |A]> + A |B)?
e (p1pe)] - fer (p1pe)]) T ans))

= tr (P|B]*) tx (P|A]*) + APt (P|BP)

Y [tr (P |B\2)} V2 (PBEA) - [tr (P |B|2)} Y (PA*B)
= tr (P|B]*) tx (P|A]*) + AP o (P|BP)

— Nt (PB*A) [tr (P |B|2>] V  Nw(PBA) [tr (P \B|2)} i
= tr (P|B]*) tx (P|A]") + WP & (P|BP)

—2 [tr (P |B|2)} " Re (Xtr (PB* A))

and
Jy i = [tr (P |B|2)} Y e (PBA) :
_ <[tr (P|B|2>r/2)\ Ctr (PB*A)) ([tr (P|B\2)T/2 A tr (PB*A)>
=t (PIBP) W =2 [t (P(BP)] "? Re (R tr (PB* A)) + |tr (PB* ).
Therefore
Sy — Jo

2

[tr (P|B|2)]1/2A—>\B [tr (P|B|2)T/2A—tr (PB*A)

=tr (P

2)
and the equality (4.31) is proved.
The inequality (4.32) follows from (4.31).
The other case is similar. (]

Corollary 11. Let, either P € By (H), C, D € By (H) or P € B (H), C,
DeB(H) and §, A eC.
If

(4.33) Re (tr [P (C* —3D*) (AD - 0)]) >0
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or, equivalently
I+ A
(4.34) rP|IC———D
2
then

(4.35) 0<tr (P \0|2) tr (P |D|2) ~|tr (PD*O)?
’6+A

) 18— s (PIDP),

2

IN

1
T1a—oP ¢ [ P|D| P|D| ) —tr (PD*C)

N

i (10

Proof. The equivalence of the inequalities (4.33) and (4.34) follows from Theorem
17 (ii).
If we write the inequality (4.34) for C = A and D = B, we have

A 1
pla_ 0+ < la—5u (P|BP).
2 4
If we multiply this inequality by tr (P |B |2) >0 we get

am) o <p [ (p1m)) " = T2 [ (p1)] 5

< % A5 tr (P |B|2) tr (P |B|2> .

)

A= % [tr (P |B|2)} V2 and = % IA - 4| {tr (P |B|2)]1/2 .

Then by (4.36) we have

tr <P ’ [tr (P |B|2)} Y4B

and by (4.32) we get

Let

2
) <ritr (P |B|2) ,

0<tr (P |B|2) tr (P \AIQ) — |tr (PB*A)/?

’6+A 2

N

1 2
1A= [ (PIBF)

s o (107

and the inequality (4.35) is proved. O

P|B| ) —tr (PB*A)

IN

Corollary 12. Let, either P € By (H), C, D € By(H) or P € Bf (H), C,
D e B(H) and 6§, A € C. If the transform Cs a (C, D) is accretive, then we have
the inequalities (4.35).

The case of selfadjoint operators is as follows.
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Corollary 13. Let P, C, D be selfadjoint operators with either P € By (H), C,
D € By(H) or P € Bf (H), C, D € B(H) and n, N € R with N > n. If
(C—nD)(ND —C) >0, then

(4.37) 0 < tr (PC?) tr (PD?) — [tr (PDC))?
< LV n)? [ (PD?)]? - (" N (PD?) — (PDC))2
1
<L v o n)? [ (PDY)2.

4

4.3. Trace Inequalities of Griiss Type. Let P be a selfadjoint operator with
P > 0. The functional (-, -), p defined by

(A,B), p := tr (PB*A) = tr (APB") = tr (B*AP)

is a nonnegative Hermitian form on By (H).

For a pair of complex numbers («, 8) and P € By (H), in order to simplify the
notations, we say that the pair of operators (U, V) € By (H) x B2 (H) has the trace
P-(a, B)-property if

Re(tr [P (U* —aV*)(BV —U)]) >0

or, equivalently

2
Oé+6 1 2 2
PlU— VI | <> 18-« PV|?).
tr(’ 2 )4' o (PVP)

The above definitions can be also considered in the case when P € B (H) and A,
BeB(H).

Theorem 19 (Dragomir, 2014, [41]). Let, either P € By (H), A, B, C € By (H)
or P B (H), A, B, C € B(H) and \, T, §, A € C. If (A,C) has the trace
P-(\,T)-property and (B,C) has the trace P-(§, A)-property, then

(4.38)

tr (PB*A) tr (p |c|2) —tr (PC*A) tr (PB*C)‘
2 1 2
gtr(P|C| ) [4 D —~]|A - 8| tr (P\C| )

— [Re (tr [P (A* —5C*) (C — A))]/?

x [Re (tr [P (B* —3C") (aC - B)))]"”]
2

< 3T —l1a [ (Pici)].

Proof. We prove in the case that P € By (H) and A, B, C € By (H) .

Making use of the Schwarz inequality for the nonnegative hermitian form (-, -), p
we have

2
(A B)yp| < (A A)yp (BB, p

for any A, B € By (H).
Let C € By (H), C # 0. Define the mapping [+, -], p o : B2 (H) x B2 (H) — C by

(A, B]Z,P,C’ = (4, B>2,P HCH;,P — (4, C>2,P (C, B>2,P'
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Observe that [, -], p~ is a nonnegative Hermitian form on By (H) and by Schwarz
inequality we also have

2
(4, B)s p ICI3p = (4, C)y p (C By
2 2 2 2 2 2
< {141 IC13.p = (4. O o | [IBI5 5 ICI3. 5 = |(B. O
for any A, B € By (H), namely

(4.39) ’tr (PB*A) tr (P \C|2) —tr (PC*A) tr (PB*C)F
< [tr (P |A|2) tr (P |C|2) ~Jtr (PC*A)ﬂ
x [tr (P|B\2) tr (P|C|2) . |tr(Pc*B)\2} :
where for the last term we used the equality ‘(B C’>2 p ‘2

' (C,B)yp
Since (A, C) has the trace P-(A\,T')-property and (B, C) has the trace P-(d,A)

-property, then by (4.22) we have
(4.40)  0<tr (P |A\2) tr (P |C|2) — |tr (PC* A)?
<tr (P |C|2)
1 2 2 * — vk
x 710 =7l [tr <P\C| )} — Re(tr[P (A" — 7C*) (IC — A)])
and
(441)  0<tr (P |B|2) tr (P |C|2) — |tr (PC*B)|?
<tr (P |C|2)
1 2 2 R
x [4 A = o [tr (PICP)] = Re (tr [P (B* ~ 5C*) (AC - B))])
If we multiply (4.40) with (4.41) and use (4.39), then we get

2
(4.42) ’

PB*A) tr (P\C| ) —tr (PC*A) tr (PB*C)

()]

i
<|
[ r = [ir (PICP)] - R (tr[P(A*—vC*)(FC—A)])]

X

x L A = 8 [tx (PICF) | = Re (tr [P (B* - 3C") (AC — B)})} :

Utilising the elementary inequality for positive numbers m, n, p, q

(m* —n?) (p* — ¢°) < (mp—ng)*,
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we can state that

(4.43) [i It = [tr (PICP)] - Re (tr[P (4" = 5C") (TC — A)])}
b ()] wntelr 500
< (3 (rcr)

— [Re (tr [P (A* —5C*) (TC — A)])]"/?

« [Re (i [P (8"~ 507) (AC - B)))] %)’

with the term in the right hand side in the brackets being nonnegative.
Making use of (4.42) and (4.43) we then get

(4.44) ‘tr (PB*A) tr (P |C’|2> —tr (PC*A) tr (PB*C)

< [tr (P \C|2)}2 (i T —~[1A =4 [U" (P |C|2)}
~ [Re (tr [P (4" =5C") (IC — A)))]'

‘ 2

* EVati 1/2 2
x [Re (i [P (B = 6C*) (aC - B)))]*) .
Taking the square root in (4.44) we obtain the desired result (4.38). O

Corollary 14. Let, either P € By (H), A, B, C € By (H) or P € Bf (H), A, B,
C e B(H)and A\, T, 6, A € C. If the transforms Cxr (A,C) and Cs.a (B,C) are
accretive, then the inequality (4.38) is valid.

We have:

Corollary 15. Let P, A, B, C be selfadjoint operators with either P € By (H),
A, B, C € By(H) or PecBf(H), A B,C¢c B(H) and m, M, n, N € R with
M>mand N >n. If (A—mC)(MC — A) >0 and (B —nC) (NC — B) > 0 then

(4.45) |tr (PBA) tr (PC?) — tr (PCA) tr (PBC))|
<t (PC?) | 7 (M —m) (N — ) r (PC?)
= [Re (tx (A = mC) (MC — 4))]'/*
« [Re (tr [P (B — nC) (NC — B)ml/?]

< = (M —m) (N —n) [tr (PC?)]?.

= =

Finally, we have:
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Theorem 20 (Dragomir, 2014, [41]). With the assumptions of Theorem 19

(4.46)

tr (PB*A) tr (P |C|2) — tr (PC* A) tr (PB*C)‘

< tr (P |0|2) [i T —~||A — 4] tr (P \0|2)

r
’“L” P|C>—tr(PC*A)‘

“HA el —tr(PC*B)H

<10 —slla-a i (PlcP)]

If the transforms Cyr (A,C) and Cs A (B,C) are accretive, then the inequality
(4.46) also holds.

The proof is similar to the one for Theorem 19 via the Corollary 11 and the
details are omitted.

Corollary 16. With the assumptions of Corollary 15
(4.47) |tr (PBA) tr (PC?) — tr (PCA) tr (PBC))|
1
< tr (PC?) [4 (M —m) (N —n)tr (PC?)

M+m

tr (PC?) — tr (PCA)’

n+ N
X

tr (PC?) — tr (PCB) H
< i (M —m) (N —n) [tr (PC?)]?.

4.4. Some Examples in the Case of P € B; (H). Utilising the above results in
the case when P € B (H), A€ B(H) and B = 1y we can also state the following
inequalities that complement the earlier results obtained in [39]:

Proposition 10 (Dragomir, 2014, [41]). Let P € Bf (H), A€ B(H) and~,T € C.
(i) We have

w(PIAP) g (pay)?
(448) 0= — T T )

cwl(-552) (5550

Re (tr [P (A" —71g) (I'ly — A)])

1
~tr(P)

< 410 = 9 = gy Re ([P (4" = 71) (CLy — 4))

(i) If
(4.49) Re (tr [P (A* — 71g) (Cly — A)]) > 0
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or, equivalently

1 y+T . |? 1 )
4.50 tr| P|A— ——1 <-Ir-
(4.50) mp)f() : H>_4| a2,
and we say for simplicity that A has the trace P-(\,T")-property, then
2
(4.51) o<tr(P|A‘)_ tr (PA) [
’ - tr(P) tr (P)

cul(e-557) (50 ) < e

and

1
< 20 =a” - opy Re(tr [P (A" =71g) Ty — A))) < [T -I*.

A~ =

(i11) If the transform Cxr (A) := (A* —71y) (Cly — A) is accretive, then the in-
equalities (4.51) and (4.52) also hold.

Corollary 17. Let P € B (H), A be a selfadjoint operator and m, M € R with
M >m.
(i) If (A—mly)(M1ly — A) >0, then

tr (PA%)  [tr(PA)]?
sy st [
tr (PA) tr (PA) 1
<|(v-5) (R —m)] < qor-mr
and
tr (PA%)  [tr(PA)]?
s o< - hm)
< %(M—m)Q— ﬁtr[P(A—mB)(MB—A)] < i(M—m)Q.

(i) If mlpg < A< M1y, then (4.53) and (4.54) also hold.
We have the following reverse of Schwarz inequality as well:

Proposition 11 (Dragomir, 2014, [41]). Let P € B} (H), A€ B(H) and~,T € C.
(i) If A has the trace P-(\,T')-property, then

2
(455 ) < tr (PIA\ ) REZE
’ - tr(P) tr (P)
1 2 F+’y tI'(PA>2 1 2
<D=~ = | —1L — <ZIr-
<7 T=l 5 & (P) el

(it) If the transform Cyp (A) = (A* —7ly) (Tly — A) is accretive, then the
inequality (4.55) also holds.
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Corollary 18. Let P € B (H), A be a selfadjoint operator and m, M € R with
M >m.
(i) If (A—mlyg) (M1l — A) >0, then

tr (PA%)  [tr(PA)]”
I L
< i(M—m)Q— ‘m;M - tzr(fpf;) < i(]\/[fm)2

(i) If mly < A < M1y, then (4.56) also holds.
Finally, we have the following Griiss type inequality as well:

Proposition 12 (Dragomir, 2014, [41]). Let P € Bf (H), A, B € B(H) and ),
o, AeC.

(i) If A has the trace P-(\,T')-property and B has the trace P-(§,A)-property,
then

tr (PB*A)  tr(PA)tr (PB*)
(457 tr(P)  tr(P) tr(P)
< |3Ir-slla-s
ey IRe (P (4 = 1) (e — )]
< [Re (o [P (B = 31) (A = B))] | < {Ir =118 -0
and
tr (PB*A)  tr(PA) tr (PB*)
(4.58) =P "t %)
! T+~ w(PA)|[5+A w(PB)
§4|F’Y||A5|‘ 2 tr(P) H 2 w(p)
< I0=l1a -4

(i1) If the transforms Cxr (A) and Cs A (B) are accretive then (4.57) and (4.58)
also hold.

The case of selfadjoint operators is as follows:

Corollary 19. Let P, A, B be selfadjoint operators with P € B (H), A, B € B(H)
and m, M, n, N € R with M >m and N > n.
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(i) If (A—mly)(M1ly —A) >0 and (B —nly)(N1lg — B) >0 then

(4.59)

tr (PBA) tr(PA)tr(PB)
tr(P)  tr(P) tr(P) ‘
< |JOr-m@ -
1
tr (P)
1

[Re (tr (A — mlp) (M1y — A))]*/?

X

[Re (tr [P (B —nly) (Nlg — B)])]l/ﬂ

-+

r(P)

<7 (M —m)(N—n)

1
4

and

(4.60) tr(P)  tr(P) tr(P)
L (M —m) (N —n) - ‘m;M - tzr(gji)

tr (PBA) tr(PA)tr(PB) ’

n+ N tr(PB)
2 tr(P)

<

IN
NN

(M —m)(N —n).

(is) Ifmly < A< Mly andnly < B < Nlg then (4.59) and (4.60) also hold.

5. CASSELS TYPE INEQUALITIES

5.1. General Inequalities. We have the following result:

Theorem 21 (Dragomir, 2014, [42]). Let, either P € By (H), A, B € By (H)
or P € Bf (H), A, B € B(H) and v, T € C with Re(I'y) = Re(T')Re(y) +
Im (T") Im (y) > 0.

(i) If (A, B) satisfies the P-(~y,T')-trace property, then

(5.1) tr (p |A|2> tr (p |B|2)

[Re (v + I) Retr (PB*A) + Im (y + I') Im tr (PB* A)]”

= Re () Re (7) + Im (I) Im (7)

v TP
Re (T'7)

e N

ltr (PB*A)|?.

(i) If the transform C r (A, B) is accretive, then the inequality (5.1) also holds.
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Proof. (i) If (A, B) satisfies the P-(v,T')-trace property, then, on utilizing the cal-
culations above, we have

r,
|r o (PIBP) — o | P 7* ‘)

S (P|A| ) e (T9) tr (P|B|2)
+Re [ytr (PB*A)] + Re [Tt (PBA)|
S (P|A| ) e (I9) tr (P|B|2
+Re[7tr (PB* A)] + Re |Ttr (PBA)
— tr (P|A| ) Re (I7) tr (P|B|2
+ Re[ytr (PB*A)] 4+ Re [T tr (PB*A)]
= —tr (P[4]*) = Re(17) tr (P|BI*) +Re [(7+T) tr (PB"4)]
which implies that
(5.2) tr (P1AP) + Re (19) tr (P|BP)
<Re[(7+T7T) tr (PB*A)]
=Re(y+T)Retr (PB*A)+Im (y+1I')Imtr (PB*A).
Making use of the elementary inequality

2Vpg<p+q, p,q =0,
we also have
(5.3) 2\/Re (T7) tr (p |A|2) tr (p |B|2) <tr (P \A|2> + Re (I7) tr (P |B|2> .
Utilising (5.2) and (5.3) we get

(5.4) \/tr (P |A\2> tr (P |B|2)

Re(y+TI')Retr (PB*A) 4+ Im (v +I') Imtr (PB*A)
Re (I7)

<

that is equivalent with the first inequality in (5.1).
The second inequality in (5.1) is obvious by Schwarz inequality

(ab+cd)® < (a®+¢?) (b +d?), a,b,c,d € R.
The (ii) is obvious from (i). O

Remark 7. We observe that the inequality between the first and last term in (5.1)
is equivalent to

2
[y~ T

1 2
- tr (PB*A)2.
1 Re(T7) o ( )

(5:5) 0<tr(PlAP)tr (PIBP) - [tr(PB*A) <
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Corollary 20. Let, either P € B, (H), A € By (H) or P € Bf (H), A € B(H)
and v, I' € C with Re (I'y) = Re (') Re (7) + Im (T") Im () > 0.
(i) If A satisfies the P-(y,T')-trace property, namely

(5.6) Re (tr[P (A" —=71y) (T1g — A)]) >0
or, equivalently
2
(5.7) tr <P’A”2F1H‘ ) §3|F77|2tr(P),
then
tr (P |A\2)
(5.8) P
2
1 [Rer D S Iy ) B
~ 4 Re (T) Re (7) + Im (T) I (7)
_1 Iy +T)? |tr (PA)|?
~— 4 Re(Iw)| tr(P)

(i1) If the transform C 1 (A) is accretive, then the inequality (5.1) also holds.
(i1i) We have

2 2

2
(5.9) 0< ' Ef(f)' ) _

tr (PA)

1 p-rp
tr (P)

— 4 Re(T7y)

tr (PA)
tr (P)

Remark 8. The case of selfadjoint operators is as follows.

Let A, B be selfadjoint operators and either P € By (H), A, B € By (H) or
PeBf (H), A, BeB(H) and m, M € R with mM > 0.

(i) If (A, B) satisfies the P-(m, M )-trace property, then

(5.10) tr (PA?) tr (PB?) < W [tr (PBA)]?
or, equivalently
(5.11) 0 < tr (PA?) tr (PB?) — [tr (PBA)]® < W [tr (PBA)]”.

(i) If the transform Cp ar (A, B) is accretive, then the inequality (5.10) also holds.
(1ii) If (A—mB)(MB — A) > 0, then (5.10) is valid.

5.2. Trace Inequalities of Griiss Type. We have the following Griiss type in-
equality:

Theorem 22 (Dragomir, 2014, [42]). Let, either P € By (H), A, B, C € By (H)
or P e Bf (H), A, B, C € B(H) with P|A|*, P|B]*, P|C|” # 0 and A, T, 6,
A € C with Re(I'y), Re (Ad) > 0. If (A,C) has the trace P-(\,T')-property and
(B, C) has the trace P-(6, A)-property, then

[y =T[5 - Al

1
4 /Re(I9)Re (A0)

tr (PB*A) tr (P |C\2>

(5:12) tr (PC*A) tr (PB*C)

—1l<
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Proof. We prove in the case that P € By (H) and A, B, C € By (H) .
Making use of the Schwarz inequality for the nonnegative hermitian form (-, -), p
we have

2
(A, Blop| < (A, A)y 0 (B, By p

for any A, B € By (H).
Let C € B> (H), C # 0. Define the mapping [+, |, p o : B2 (H) x By (H) — C by

[A, B]27P7C = (4, B>2,P HC“;,P — (4, C>2,P (C, B>2,P :

Observe that [+, ], p - is a nonnegative Hermitian form on B, (H) and by Schwarz
inequality we also have

2
(A, Bl p ICI3 o = (4, )y p (C B
< lran 2 2 2 2 2
= || H2,P ||C||2,P - ‘<A7C>27P ||B||2,P ”CH2,P - <B7C>27P
for any A, B € By (H), namely
2
(5.13) ’tr (PB*A)tr <P \cﬁ) —tr (PC*A) tr (PB*C)’
< [tr (P |A|2) tr (P |0|2) ~tr (PC*A)ﬂ
X [tr (P|B\2) tr (P|C|2) - |tr(PB*0)\2} :
2
where for the last term we used the equality ‘(B C)yp| = ’ (C,B), P‘
Since (A, C) has the trace P-(A,I')-property and ( C) has the trace P-(d, A)
-property, then by (5.5) we have

Iy - T

(5.14) o< (PlaP)u (PlCF) —|tr(PC*A)|2§i nepe I (PO )
and

2 2 1 ‘5 A' * 2
(5.15) 0<tr (P\B\ )tr (P|0| ) tr (PBO) < 7 - Re (3) ltr (PB*C)[.

If we multiply the inequalities (5.14) and (5.15) we get
(5.16) [tr (P |A|2) tr (P |o|2) —|tr (PC*A)ﬂ
X [tr (P |B|2) tr (P |C\2> —Jtr (PB*C)|2]
L =T[5 AP
=16 Re(T%) Re (A9)
If we use (5.13) and (5.16) we get

ltr (PC*A)|* |tr (PB*C)|*.

(5.17) tr (PB*A) tr (P |0|2) —tr (PC* A) tr (PB*C)|

1 |y— I — AP
=16 Re(Iy) Re (A6)

ltr (PC* A)? |tr (PB*C)|?.
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Since P, A, B, C # 0 then by (5.14) and (5.15) we get tr (PC*A) # 0 and
tr (PB*C') # 0. Now, if we take the square root in (5.17) and divide by |tr (PC*A) tr (PB*C)|
we obtain the desired result (5.12). O

Corollary 21. Let, either P € By (H), A, BE By or P € Bf (H), A, B € B(H)
with P|A]*, P|B|> # 0 and A\, T, 8, A € C with Re(I'7), Re (Ad) > 0. If A has
the trace P-(\,T')-property and B has the trace P-(8, A)-property, then

(5.18) tr(PB*A)tr(P)_1‘<l. |y — T[]0 — A
' tr (PA) tr (PB*) — 4 Re (I'7) Re (AS) '

The case of selfadjoint operators is useful for applications.

Remark 9. Assume that A, B, C are selfadjoint operators. If, either P € By (H),
A, B,CeBy(H)orPeBf (H), A, B,C <€ B(H) with PA%2, PB?, PC? # 0 and
m, M, n, N € R with mM, nN > 0. If (A, C) has the trace P-(m, M)-property and
(B, C) has the trace P-(n, N)-property, then

tr (PBA) tr (PC’2)

(5.19) tr (PCA) tr (PBC)

-1

If A has the trace P-(k, K)-property and B has the trace P-(I, L)-property, then

(K—-k)(L-1

1
5.20 Z.
( ) 4 kIKL

)

tr (PBA) tr (P)
r(PA)tr (PB) 1‘ =

where kK, [L > 0.
We observe that, if 0 < klg < A< Klyg and 0 < llyg < B < Llg, then by
(5.21)

1 (K—=k)(L=-1
(5.21) |tr (PBA)tr(P)—tr (PA)tr (PB)| < 1 Tk tr (PA) tr (PB)
or, equivalently
(5.22) tr (PBA)  tr (PA)tr (PB) < 1 (K —k)(L-1)tr(PA)tr(PB)
' tr (P) tr (P) tr(P) |~ 4 LIKL tr(P) tr(P)

5.3. Applications for Convex Functions. In the paper [40] we obtained amongst
other the following reverse of the Jensen trace inequality:

Let A be a selfadjoint operator on the Hilbert space H and assume that Sp (A) C
[m, M] for some scalars m, M with m < M. If f is a continuously differentiable
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convex function on [m, M] and P € By (H) \ {0}, P > 0, then we have

tw(Pf(A) _, ((PA)
(5.23) 0<—%my ( tr (P) )

_ i (Pf(A)A)  w(PA) tr(Pf(A))
tr (P) tr (P) tr (P)
L1 () — ) A )

< o
b - SO

) 911/2

LI (M) = f (m) [“55;53) - () ]

< 1/2
L (M —m) [cr(Pt[i'S” ) (strpo) ]

< U0 = 7 (m) OF — m).

Let M,, (C) be the space of all square matrices of order n with complex elements
and A € M,, (C) be a Hermitian matrix such that Sp (4) C [m, M] for some scalars
m, M with m < M. If f is a continuously differentiable convex function on [m, M],
then by taking P = I, in (5.23) we get

(5.24) 0< tr(f(4) F <tr (A)>
< tr(f (A)A4) tr(4) tr(f(4))
L1 () — g ) A5 )
) ! tr(£/(4))
3 (M —m) tr( ! (A)_TlHD
2 1/2
417 o) = ] |6 - ()]
< )
oy [HEOL) _ (e’
o[- (2422
< i [f'(M)_f/(m)] (M—m)

The following reverse inequality also holds:

Proposition 13 (Dragomir, 2014, [42]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp(A) C [m, M] for some scalars m, M with
0<m < M. If {is a continuously differentiable convex function on [m, M] with
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f'(m)>0and P € By (H)\ {0}, P>0, then

tr (Pf(A tr (PA
(525 0< (tr{P(’) ! _f( tr((P))>
tr(Pf'(A)A) tr(PA) tr(Pf (4))
tr (P) tr (P) tr (P)
1 (M —m)[f" (M) — f'(m)] tr (PA) tr (P’ (A))
4 VmMf'(m) f' (M) tr(P)  tr(P)

The proof follows by the inequality (5.22) and the details are omitted.

Let A € M,, (C) be a Hermitian matrix such that Sp(A) C [m, M] for some
scalars m, M with m < M. If f is a continuously differentiable convex function on
[m, M] with f’ (m) > 0 then by taking P = I,, in (5.25) we get

(5.26) o< BE@A) (tr (A))
_EA)A) w(A) r(f(A4)
S 1 (M —m) [ (M) — f ()] tr (A) tr (f (A4))
“4 /mMf (m)f (M) n n

We consider the power function f : (0,00) — (0,00), f (t) =t" with ¢t € R\ {0}.
For r € (—o0,0) U [1,00), f is convex while for r € (0,1), f is concave.

Let » > 1 and A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M with 0 < m < M. If P € B (H)\{0},
then

tr (PA") tr (PA)\"
(5:27) o<~ ()
tr (PA")  tr(PA) tr (PA""_l)
tr(P)  tr(P)  tr(P)
1 (M —m) (M™ ! —m" 1) tr (PA) tr (PA™)

=1 mr /2 M2 tr(P)  tr(P)

If we take the first and last term in (5.27) we get the inequality:

tr(P)tr(PA")  tr(P)[tr(PA)""
(5.28) O YPhHuEa ) o (PAP=1) [or (P)]"
1 (M —m) (M7 = mr)

— Zr mr/2 M /2

Consider the convex function f : R — (0,00), f(t) = expt and let A be a
selfadjoint operator on the Hilbert space H and assume that Sp(A) C [m, M] for
some scalars m, M with 0 < m < M. If P € Bf (H) \ {0}, then using (5.25) we
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have
tr (PexpA) tr (PA)
(5.29) 0<—% (P) ( tr (P) >
tr (PAexpA) tr(PA) tr(PexpA)
tr(P)  tr(P)  tr(P)

< 1 (M —m)(expM —expm) tr (PA) tr (Pexp A)

4 vV/mM exp (m + M) tr (P) tr (P)
If we take the first and last term in (5.29) we get the inequality:
2 tr(PA
(5.30) oo () [P exp ()
’ ~tr(PA)  tr(PA)tr(PexpA)
1 (M —m)(expM —expm)

4 V/mM exp (m + M)

<

6. SHISHA-MOND TYPE TRACE INEQUALITIES
6.1. General Results. We have the following result:

Theorem 23 (Dragomir, 2014, [43]). Let, either P € By (H), A, B € By (H) or
PeBf (H), A, BeB(H) and~, T € C withT +~ # 0.
(i) If (A, B) satisfies the P-(vy,T")-trace property, then

(6.1) \/tr (P |A\2) tr (P |B|2)

_ Re(y + D) Retr (PB*A) + Im (y + ) Im tr (PB*A)
N T+l

1|F*'Y|2 2
+= tr(PB )
4 T+~ 18]

< Jtr (PBA)| + L E= ol (P |B|2) .
- 4 T+
(ii) If the transform C, 1 (A, B) is accretive, then the inequality (6.1) also holds.

Proof. (i) If (A, B) satisfies the P-(v,T')-trace property, then
ro|*\ 1
tr (P‘A— %B ) < — [ tr (P|B|2)

that is equivalent to

tr (P |A|2) ~Re[(7+T)tr (PB*A)]—i—% T+~ tr (P |B|2) <o~ (P |B|2) ,

=] =

which implies that
(6.2) tr (P|A\2) + i T+~ tr (P|B\2>
<Re[([F+T)tr(PB*A)] + % D=~ tr (P \B\Q) .

Making use of the elementary inequality

2ypqg<p+gq, p,qg=>0,
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we also have
(6.3) |0+ {tr (P |A|2) tr (P |B\2)} R (P |A|2) + i I+ )% tr (P \B\Q) .
Utilising (6.2) and (6.3) we get
(6.4) 0+ [or (P1AP) (P|B|2)r/2
<Re[([F+T)tr(PB*A)] + i D — A tr (p \B\Q) .
Dividing by [I' + 7| > 0 and observing that

Re[(7+T)tr (PB*A)] =Re(y+TI)Retr (PB*A) 4+ Im (y + I') Im tr (PB*A)

we get the first inequality in (6.1).
The second inequality in (6.1) is obvious by Schwarz inequality

(ab+ cd)? < (a®>+¢*) (b +d*), a,b,c,d €R.
The (ii) is obvious from (i). O

Remark 10. We observe that the inequality between the first and last term in (6.1)
s equivalent to

65 0< \/tr (P\A|2> tr (P\B|2) — Jtr (PB*A)| < 111“;177'2 tr (P|B|2) .

Corollary 22. Let, either P € B, (H), A € By (H) or P € Bf (H), A € B(H)
and v, I' € C with v+ T # 0.
(i) If A satisfies the P-(y,T')-trace property, namely

(6.6) Re (tr [P (A" —71g) (I'lg — A)]) >0

or, equivalently

r*\ 1
(6.7) tr <P’A—’Y;IH ) §Z|1"—'y|2tr(P)7
then
tr (P |A|2)
(6.8) S A
tr (P)
_ Re(y+T) Rettrr((jf)A) +Im(y+7T) 71“1::((;;‘4) 1|0 —~[?
- T+ 4T +1]
tr (PA) ‘ 1|0 =4
~ | tr (P) 4 T+~]°

(i) If the transform Cr (A) is accretive, then the inequality (6.1) also holds.
(i1i) We have

tr (p |A|2)
tr (P)

(6.9) 0< _ tr(PA)'<1|F7|2

tr(P) |~ 4|0+~
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Remark 11. The case of selfadjoint operators is as follows.

Let A, B be selfadjoint operators and either P € B, (H), A, B € By (H) or
PeBf(H), A, B€B(H) and m, M € R with m + M # 0.

(i) If (A, B) satisfies the P-(m, M )-trace property, then

(M —m)*

(6.10) Vtr (PA?) tr (PB?) < Retr (PBA) + ] tr (PB?)
(”4 _m)2 2
< - 7
_|tr(PBA)|+4| |tr(PB )
and

(M — m)2 2
< 2 2) < .
0 < \/tr (PA2)tr (PB2) — Retr (PBA) < A0 ] tr (PB?)
(i) If the transform Cp, m (A, B) is accretive, then the inequality (6.10) also holds.
(iti) If (A —mB) (MB — A) >0, then (6.10) is valid.

Corollary 23. Let A, B be selfadjoint operators and either P € By (H), A, B €
By (H) or Pe B (H), A, B€ B(H) and m, M € R with m + M # 0.
(i) If (A, B) satisfies the P-(m, M )-trace property, then

(6.11) (\/tr (PA?) + \/tr (PBZ))2 “tr (P (A+ B)2) LM =m)” (PB?)

~ 4|M +m)|
and
(6.12) /tr (PA2)4\/tr (PB2)—/tr (P (A+ B)Q) < ?\/];%\/tr (PB?).

Proof. Observe that

(\/tr (PA2) + \/tr (PB2))2 —tr (P (A+ B)Q)
=2 (\/tr (PA2)tr (PB2) — Retr (PBA)) .

Utilising (6.10) we deduce (6.11).
The inequality (6.12) follows from (6.11). O

6.2. Trace Inequalities of Griiss Type. We have the following Griiss type in-
equality:

Theorem 24 (Dragomir, 2014, [43]). Let, either P € By (H), A, B, C € By (H)
or P e Bf (H), A, B, C € B(H) with P|A”>, P|B>, P|C|” # 0 and X, T, 6,
AeCwithy+T #£0,06+A#0. If (A,C) has the trace P-(\,T)-property and
(B, C) has the trace P-(d,A)-property, then

2

(6.13) tr(PB*A)  tr(PC*A) tr(PB*C)

tr(PICP)  (PICP) o (PICP)

<1 D —~2 A =5 |t (P|A|2> tr (P|B|2>
=4 [T+q] [A+4] [tr(PIC\Q)r '
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Proof. We prove in the case that P € By (H) and A, B, C € By (H) .

Making use of the Schwarz inequality for the nonnegative hermitian form (-, -), p
we have

2
‘<Av B>2,P’ < <A7 A>2,P <B7 B>2,P

for any A, B € By (H).
Let C € By (H), C # 0. Define the mapping [, -] p o : B2 (H) X B2 (H) — C by

(A, B]Z,P,C’ = (4, B>2,P HCH;,P — (4, C>2,P (C, B>2,P

Observe that [, -], p - is a nonnegative Hermitian form on By (H) and by Schwarz
inequality we also have

(A4, By 5 ICI5 = (4, Chy p (C, By p

2 2 2 2 2 2
< 1413, 1C13.» = {4, Cha | | [1BI3.5 ICN3. = [¢B,Ca |

‘ 2

for any A, B € By (H), namely

(6.14) tr (PB*A) tr (P \0|2) —tr (PC*A) tr (PB*C)(2
< [tr (P |A|2) tr (P |C|2) — Jtr (PC*A)|2]

X [tr (P|B\2) tr (p|c|2) - |tr(PB*C’)\2} ,

2
where for the last term we used the equality ‘(B C),, ’ = ’ (C, B), P‘
Since (A, C') has the trace P-(A,T')-property and (B, C) has the trace P-(d,A)
-property, then by (6.5) we have

og\/tr(PA|2)tr(PC|2)—|tr(pc* )|<411||FF 7|| e (PlCP?)

and

0< \/tr (P\BF) tr (P|C|2) ltr (PC*B)| < i'i;‘yf tr (P\C|2> ,

which imply

(6.15) 0<tr (P \A|2) tr (P |C\2)  Jtr (PC*A)[?

1|0 — 4

< T (Picr?) <\/u~ (P1aP)tr (PICP) + ur (PC*A)|>
LL—of (P le] ) \/tr (P |A|2> tr (P |0|2)

=2 T+~
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and
(6.16) 0< tr (P \B|2) tr (P |C|2) ~tr (PB*C))?

i'@;ﬁi tr (P |C|2) <\/tr (P |B|2) tr (P \C|2) +tr (PC*B)|>

< ;'@;‘gi i (Plof) \/tr (P1BP) ur (PICP).

If we multiply the inequalities (6.15) and (6.16) we get
(6.17) [tr (P |A\2) tr (p |0|2) ~tr (PC*A)ﬂ

X (P |B|2) tr (P |0|2) —|tr (PB*C)F}

tr
i B e () o () (e

X tr (P|C’|2) \/tr (P|B|2> tr (P\C|2>.

If we use (6.14) and (6.17) we get

IN

(6.18) ‘tr (PB*A) tr (P |C|2) —tr (PC*A) tr (PB*C)

B O L e T T (PicP) \/tr (PlaP) i (PlcP)
—4 T'+q] |A+4
<t (PICI*) \/tr (PIBP)tr (PICP).

Since P |C|* # 0 then by (6.18) we get the desired result (6.13). O

Corollary 24. Let, either P € By (H), A, B€ By or P € By (H), A, B € B(H)
with P|A]*, P|B|> 20 and A\, T, 6, A € C with y+T #0, 6 + A # 0. If A has
the trace P-(\,T')-property and B has the trace P-(8, A)-property, then

tr (PB*A)  tr(PA)tr (PB*)|?

tr (P) tr (P) tr(P)
LA~ (W w (P14F) u (P15T)

‘ 2

(6.19)

4 T+l A+ [tr (P)]?
The case of selfadjoint operators is useful for applications.

Remark 12. Assume that A, B, C are selfadjoint operators. If, either P € By (H),
A, B,C €By(H) or Pe B (H), A, B, C € B(H) with PA?, PB?, PC? # 0 and
m, M, n, N € R withm+M, n+N #0. If (A, C) has the trace P-(m, M)-property
and (B, C) has the trace P-(n, N)-property, then

tr (PBA)  tr (PCA) tr (PBC)
tr (PC?)  tr (PC?) tr (PC?)
1 (M-m)®(N=n)* [tr(PA%)tr(PB?)
4 |M+m| |N+n| [tr (PC2)]>

2
(6.20)

<
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If A has the trace P-(k, K)-property and B has the trace P-(I, L)-property, then

tr (PBA)  tr(PA) tr (PB)|?

tr(P)  tr(P) tr(P)
1 (K—k)?(L—-1)7° |tr(PA2)tr (PB?)

4 |K+kl |[L+1 [tr (P)]?

(6.21)

<

)

where k+ K, [+ L # 0.

6.3. Applications for Convex Functions. In the paper [40] we obtained amongst
other the following reverse of the Jensen trace inequality:

Let A be a selfadjoint operator on the Hilbert space H and assume that Sp (A4) C
[m, M] for some scalars m, M with m < M. If f is a continuously differentiable
convex function on [m, M| and P € By (H)\ {0}, P > 0, then we have

tr (Pf(4)) tr (PA)
(6.22) 0< o (P) _f<tmp))
tr(Pf/(A)A)  tr(PA) tr(Pf'(A))
tr (P) tr (P) tr (P)
L1 () — g (o) St
= (ps ()
1 (M —m) tr<P d (A);(P;r(P) IHD
, 57 1/2
s on - o] S - (55|
< 1/2
L~ m) [”(Pt[i/é?” ) (strpon) ]
< 1) = ()] (O = m).

Let M,, (C) be the space of all square matrices of order n with complex elements
and A € M,, (C) be a Hermitian matrix such that Sp (A) C [m, M] for some scalars
m, M with m < M. If f is a continuously differentiable convex function on [m, M],
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then by taking P = I, in (6.22) we get
629 o U ()

H( (A wA) (S (4)
) ) tr(|A7n“ﬁ#1H|)

3L (M) = f' (m)] n

IN

()=,

n

oty

3 [/ (M) = f' (m)] {t(:) N (t(nA)ﬂ

[ I

IN

IN
=
E
=
g
E
2

The following reverse inequality also holds:

Proposition 14 (Dragomir, 2014, [43]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp (A) C [m,M] for some scalars m, M with
m+ M # 0. If f is a continuously differentiable convex function on [m, M| with
frm)+ f'(M)#0 and P € By (H)\ {0}, P >0, then

6210) o< TP (tr(PA))

- tr(P) tr (P)
< tr(Pf'(A)A) tr(PA) tr(Pf(A)
tr (P) tr (P) tr (P)

2
1M mllf (M) — £ () jumww4PWMN)
~ 2 Im+ MIV[F )+ f(M)] N tr(P) tr (P)

The proof follows by the inequality (6.21) and the details are omitted.
Let A € M,, (C) be a Hermitian matrix such that Sp(A) C [m, M] for some

scalars m, M with m 4+ M # 0. If f is a continuously differentiable convex function
on [m, M] with ' (m)+ f' (M) # 0 then by taking P = I,, in (6.24) we get

(6.25) 0< w iy (tr (A))

_U WA ) (S (4)

Sl M -ml|f (M) - ()] iltr(AZ)tr([f'(A)F).
"2 Ve M)+ NN n

We consider the power function f : (0,00) — (0,00), f (¢t) =t" with ¢t € R\ {0}.
For r € (—00,0) U [1,00), f is convex while for r € (0,1), f is concave.
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Let » > 1 and A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M with 0 < m < M.If P € B (H)\{0},
then

620 o< @A) (tr (PA))T

tr (P) tr (P)
tr (PA")  tr(PA) tr(PA™)
tr(P)  tr(P)  tr(P)

(M —m) (Mt —m™1) ,[tr (PA?) tr (PA2(>—1))
m -+ M)1/2 (mr=1 + Mrfl)l/Q tr (P) tr (P)

Consider the convex function f : R — (0,00), f(¢t) = expt and let A be a
selfadjoint operator on the Hilbert space H and assume that Sp (A) C [m, M] for
some scalars m, M with m < M. If P € B (H) \ {0}, then using (6.24) we have

1
< —r
_2(

tr (Pexp A) tr (PA)
0 0s ST e (G
tr (PAexpA) tr(PA) tr(PexpA)
tr(P)  t(P)  tr(P)

< 1M —m|(exp (M) —exp (m)) ,[tr (PA?) tr (Pexp (24))
“ 2 \/Im+ M|yexpm +exp M tr (P) tr (P)
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