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Abstract

We give here many very general fractional self adjoint operator Poincaré

and Sobolev type and other basic inner product inequalities to various di-

rections. Initially we give several very general fractional representation

formulae in the self adjoint operator sense. Inequalities are based in the

self adjoint operator order over a Hilbert space.
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1 Background

Let A be a selfadjoint linear operator on a complex Hilbert space (H; 〈·, ·〉).
The Gelfand map establishes a ∗−isometrically isomorphism Φ between the set

C (Sp (A)) of all continuous functions defined on the spectrum of A, denoted

Sp (A), and the C∗-algebra C∗ (A) generated by A and the identity operator

1H on H as follows (see e.g. [11, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have

(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;

(ii) Φ (fg) = Φ (f) Φ (g) (the operation composition is on the right) and

Φ
(
f
)

= (Φ (f))
∗

;

(iii) ‖Φ (f)‖ = ‖f‖ := sup
t∈Sp(A)

|f (t)| ;

(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for

t ∈ Sp (A) .
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With this notation we define

f (A) := Φ (f) , for all f ∈ C (Sp (A)) ,

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on

Sp (A) then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e. f (A) is a

positive operator on H. Moreover, if both f and g are real valued continuous

functions on Sp (A) then the following important property holds:

(P) f (t) ≥ g (t) for any t ∈ Sp (A), implies that f (A) ≥ g (A) in the operator

order of B (H) (the Banach algebra of all bounded linear operators from H into

itself).

Equivalently, we use (see [10], pp. 7-8):

Let U be a selfadjoint operator on the complex Hilbert space (H, 〈·, ·〉) with

the spectrum Sp (U) included in the interval [m,M ] for some real numbers

m < M and {Eλ}λ be its spectral family.

Then for any continuous function f : [m,M ] → C, it is well known that

we have the following spectral representation in terms of the Riemann-Stieljes

integral:

〈f (U)x, y〉 =

∫ M

m−0
f (λ) d (〈Eλx, y〉) , (1)

for any x, y ∈ H. The function gx,y (λ) := 〈Eλx, y〉 is of bounded variation on

the interval [m,M ], and

gx,y (m− 0) = 0 and gx,y (M) = 〈x, y〉 , (2)

for any x, y ∈ H. Furthermore, it is known that gx (λ) := 〈Eλx, x〉 is increasing

and right continuous on [m,M ] .

We have also the formula

〈f (U)x, x〉 =

∫ M

m−0
f (λ) d (〈Eλx, x〉) , ∀ x ∈ H. (3)

As a symbol we can write

f (U) =

∫ M

m−0
f (λ) dEλ. (4)

Above, m = min {λ|λ ∈ Sp (U)} := minSp (U), M = max {λ|λ ∈ Sp (U)} :=

maxSp (U). The projections {Eλ}λ∈R , are called the spectral family of A, with

the properties:

(a) Eλ ≤ Eλ′ for λ ≤ λ′;
(b) Em−0 = 0H (zero operator), EM = 1H (identity operator) and Eλ+0 =

Eλ for all λ ∈ R.
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Furthermore

Eλ := ϕλ (U) , ∀ λ ∈ R,

is a projection which reduces U , with

ϕλ (s) :=

{
1, for −∞ < s ≤ λ,
0, for λ < s < +∞. (5)

The spectral family {Eλ}λ∈R determines uniquely the self-adjoint operator U

and vice versa.

For more on the topic see [12], pp. 256-266, and for more details see there

pp. 157-266. See also [9].

Some more basics are given (we follow [10], pp. 1-5):

Let (H; 〈·, ·〉) be a Hilbert space over C. A bounded linear operator A defined

on H is selfjoint, i.e., A = A∗, iff 〈Ax, x〉 ∈ R, ∀ x ∈ H, and if A is selfadjoint,

then

‖A‖ = sup
x∈H:‖x‖=1

|〈Ax, x〉| . (6)

Let A,B be selfadjoint operators on H. Then A ≤ B iff 〈Ax, x〉 ≤ 〈Bx, x〉, ∀
x ∈ H.

In particular, A is called positive if A ≥ 0.

Denote by

P :=

{
ϕ (s) :=

n∑
k=0

αks
k|n ≥ 0, αk ∈ C, 0 ≤ k ≤ n

}
. (7)

If A ∈ B (H) is selfadjoint, and ϕ (s) ∈ P has real coefficients, then ϕ (A) is

selfadjoint, and

‖ϕ (A)‖ = max {|ϕ (λ)| , λ ∈ Sp (A)} . (8)

If ϕ is any function defined on R we define

‖ϕ‖A := sup {|ϕ (λ)| , λ ∈ Sp (A)} . (9)

If A is selfadjoint operator on Hilbert space H and ϕ is continuous and given

that ϕ (A) is selfadjoint, then ‖ϕ (A)‖ = ‖ϕ‖A. And if ϕ is a continuous real

valued function so it is |ϕ|, then ϕ (A) and |ϕ| (A) = |ϕ (A)| are selfadjoint

operators (by [10], p. 4, Theorem 7).

Hence it holds

‖|ϕ (A)|‖ = ‖|ϕ|‖A = sup {||ϕ (λ)|| , λ ∈ Sp (A)} (10)

= sup {|ϕ (λ)| , λ ∈ Sp (A)} = ‖ϕ‖A = ‖ϕ (A)‖ ,

that is

‖|ϕ (A)|‖ = ‖ϕ (A)‖ . (11)
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For a selfadjoint operator A ∈ B (H) which is positive, there exists a unique

positive selfadjoint operator B :=
√
A ∈ B (H) such that B2 = A, that is(√

A
)2

= A. We call B the square root of A.

Let A ∈ B (H), then A∗A is selfadjoint and positive. Define the ”operator

absolute value” |A| :=
√
A∗A. If A = A∗, then |A| =

√
A2.

For a continuous real valued function ϕ we observe the following:

|ϕ (A)| (the functional absolute value) =

∫ M

m−0
|ϕ (λ)| dEλ =

∫ M

m−0

√
(ϕ (λ))

2
dEλ =

√
(ϕ (A))

2
= |ϕ (A)| (operator absolute value),

where A is a selfadjoint operator.

That is we have

|ϕ (A)| (functional absolute value) = |ϕ (A)| (operator absolute value). (12)

2 Main Results

Let A be a selfadjoint operator in the Hilbert space H with the spectrum

Sp (A) ⊆ [m,M ], m < M ; m,M ∈ R.

In the next we obtain many very general fractional operator representation

formulae, and many very general fractional operator Poincaré and Sobolev type

inequalities, and many other basic fractional operator inner product inequali-

ties, in the operator order of B (H) (the Banach algebra of all bounded linear

operators from H into itself). All of our functions next in this article are real

valued.

We mention the following general Taylor formula

Theorem 1 ([2], p. 400) Let f, f ′, ..., f (n); g, g′ be continuous from [m,M ] into

R, n ∈ N. Assume
(
g−1

)(k)
, k = 0, 1, ..., n, are continuous. Then

f (λ) = f (m) +

n−1∑
k=1

(
f ◦ g−1

)(k)
(g (m))

k!
(g (λ)− g (m))

k
+Rn (m,λ) , (13)

where

Rn (m,λ) =
1

(n− 1)!

∫ λ

m

(g (λ)− g (s))
n−1 (

f ◦ g−1
)(n)

(g (s)) g′ (s) ds (14)

=
1

(n− 1)!

∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt, ∀ λ ∈ [m,M ] .
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We present the operator representation formula

Theorem 2 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spectral

family, I be a closed subinterval of R with [m,M ] ⊂
◦
I (the interior of I) and

n ∈ N. We consider f ∈ Cn ([m,M ]), g ∈ C1 ([m,M ]), such that there exist(
g−1

)(k)
, k = 0, 1, ..., n, that are continuous, where f, g : I → R.

Then

f (A) =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (m))

k!
(g (A)− g (m) 1H)

k
+Rn (f, g,m,M) , (15)

where

Rn (f, g,m,M) =

1

(n− 1)!

∫ M

m−0

(∫ λ

m

(g (λ)− g (s))
n−1 (

f ◦ g−1
)(n)

(g (s)) g′ (s) ds

)
dEλ (16)

=
1

(n− 1)!

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt

)
dEλ.

Proof. We integrate (13), (14) against Eλ to get∫ M

m−0
f (λ) dEλ =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (m))

k!

∫ M

m−0
(g (λ)− g (m))

k
dEλ

+

∫ M

m−0
Rn (m,λ) dEλ. (17)

By the spectral representation theorem we obtain

f (A) =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (m))

k!
(g (A)− g (m) 1H)

k
+

∫ M

m−0
Rn (m,λ) dEλ, (18)

proving the claim.

Note 3 (to Theorem 2) By [2], p. 401, if f (k) (m) = 0, for k = 0, 1, ..., n − 1,

then
(
f ◦ g−1

)(k)
(g (m)) = 0, all k = 0, 1, ..., n− 1. In that case it holds

f (A) = Rn (f, g,m,M) . (19)

We need
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Definition 4 ([3]) Let α > 0, dαe = n, d·e the ceiling of the number. Here

g ∈ AC ([m,M ]) (absolutely continuous functions) and it is strictly increasing.

We assume that
(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([m,M ]). We define the left generalized

g-fractional derivative of f of order α as follows:

(
Dα
m+;gf

)
(x) =

1

Γ (n− α)

∫ x

m

(g (x)− g (t))
n−α−1

g′ (t)
(
f ◦ g−1

)(n)
(g (t)) dt,

(20)

x ≥ m, where Γ is the gamma function.

If α /∈ N, by [3], we have that Dα
m+;gf ∈ C ([m,M ]).

We set

Dn
m+;gf (x) :=

((
f ◦ g−1

)(n) ◦ g) (x) , (21)(
D0
m+;gf

)
(x) := f (x) , ∀ x ∈ [m,M ] .

When g = id, then

Dα
m+;gf = Dα

m+;idf = Dα
∗mf, (22)

the usual left Caputo fractional derivative [1], p. 270, and [8], p. 50.

We need the following g-left fractional generalized Taylor’s formula:

Theorem 5 ([3]) Let g be strictly increasing function and g ∈ AC ([m,M ]).

We assume that
(
f ◦ g−1

)
∈ ACn ([g (m) , g (M)]), where N 3 n = dαe, α > 0 (it

means
(
f ◦ g−1

)(n−1) ∈ AC ([g (m) , g (M)]), and implies that f ∈ C ([m,M ])).

Also we assume that
(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([m,M ]). Then

f (λ) = f (m) +

n−1∑
k=1

(
f ◦ g−1

)(k)
(g (m))

k!
(g (λ)− g (m))

k
+ (23)

1

Γ (α)

∫ λ

m

(g (λ)− g (t))
α−1

g′ (t)
(
Dα
m+;gf

)
(t) dt,

∀ λ ∈ [m,M ] .

Calling R
(1)
α (m,λ) the remainder of (23), we get that

R(1)
α (m,λ) =

1

Γ (α)

∫ g(λ)

g(m)

(g (λ)− z)α−1
((
Dα
m+;gf

)
◦ g−1

)
(z) dz, (24)

∀ λ ∈ [m,M ] .

R
(1)
α (m,λ) is a continuous function in λ ∈ [m,M ] .

We present the following operator left fractional representation formula
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Theorem 6 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spec-

tral family, I be a closed subinterval of R with [m,M ] ⊂
◦
I and n ∈ N, with

n := dαe, α > 0. Let f, g : I → R. Assume that g is strictly increasing and

g ∈ AC ([m,M ]), and
(
f ◦ g−1

)
∈ ACn ([g (m) , g (M)]), and

(
f ◦ g−1

)(n) ◦ g ∈
L∞ ([m,M ]). Then

f (A) =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (m))

k!
(g (A)− g (m) 1H)

k
+R(1)

α (f, g, α,m,M) ,

(25)

where

R(1)
α (f, g, α,m,M) :=

1

Γ (α)

∫ M

m−0

(∫ λ

m

(g (λ)− g (t))
α−1

g′ (t)
(
Dα
m+;gf

)
(t) dt

)
dEλ

=
1

Γ (α)

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− z)α−1
((
Dα
m+;gf

)
◦ g−1

)
(z) dz

)
dEλ. (26)

Proof. We integrate (23) against Eλ to get∫ M

m−0
f (λ) dEλ =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (m))

k!

∫ M

m−0
(g (λ)− g (m))

k
dEλ

+

∫ M

m−0
R(1)
α (m,λ) dEλ. (27)

By the spectral representation theorem we obtain

f (A) =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (m))

k!
(g (A)− g (m) 1H)

k
+

∫ M

m−0
R(1)
α (m,λ) dEλ, (28)

proving the claim.

Note 7 (to Theorem 6) If
(
f ◦ g−1

)(k)
(g (m)) = 0, for k = 0, 1, ..., n− 1, then

f (A) = R(1)
α (f, g, α,m,M) . (29)

We need
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Definition 8 ([3]) Let α > 0, dαe = n. Here g ∈ AC ([m,M ]) and it is strictly

increasing. We assume that
(
f ◦ g−1

)(n) ◦g ∈ L∞ ([m,M ]). We define the right

generalized g-fractional derivative of f of order α as follows:

(
Dα
M−;gf

)
(x) =

(−1)
n

Γ (n− α)

∫ M

x

(g (t)− g (x))
n−α−1

g′ (t)
(
f ◦ g−1

)(n)
(g (t)) dt,

(30)

all x ∈ [m,M ] .

If α /∈ N, by [3], we get that
(
Dα
M−;gf

)
∈ C ([m,M ]).

We set (
Dn
M−;gf

)
(x) := (−1)

n
((
f ◦ g−1

)(n) ◦ g) (x) , (31)(
D0
M−;gf

)
(x) := f (x) , ∀ x ∈ [m,M ] .

When g = id, then(
Dα
M−;gf

)
(x) =

(
Dα
M−;idf

)
(x) =

(
Dα
M−f

)
(x) , (32)

the usual right Caputo fractional derivative, [2], p. 336-337.

We will use the g-right generalized fractional Taylor’s formula:

Theorem 9 ([3]) Let g be strictly increasing function and g ∈ AC ([m,M ]).

We assume that
(
f ◦ g−1

)
∈ ACn ([g (m) , g (M)]), where N 3 n = dαe, α > 0.

Also we assume that
(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([m,M ]). Then

f (λ) = f (M) +

n−1∑
k=1

(
f ◦ g−1

)(k)
(g (M))

k!
(g (λ)− g (M))

k
+

1

Γ (α)

∫ M

λ

(g (t)− g (λ))
α−1

g′ (t)
(
Dα
M−;gf

)
(t) dt, (33)

all m ≤ λ ≤M.

Calling R
(2)
α (M,λ) the remainder of (33), we get that

R(2)
α (M,λ) =

1

Γ (α)

∫ g(M)

g(λ)

(z − g (λ))
α−1 ((

Dα
M−;gf

)
◦ g−1

)
(z) dz, (34)

∀ λ ∈ [m,M ] .

R
(2)
α (M,λ) is a continuous function in λ ∈ [m,M ] .

We present the following operator right fractional representation formula

Theorem 10 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spec-

tral family, I be a closed subinterval of R with [m,M ] ⊂
◦
I and n ∈ N, with
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n := dαe, α > 0. Let f, g : I → R. Assume that g is strictly increasing and

g ∈ AC ([m,M ]), and
(
f ◦ g−1

)
∈ ACn ([g (m) , g (M)]), and

(
f ◦ g−1

)(n) ◦ g ∈
L∞ ([m,M ]). Then

f (A) =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (M))

k!
(g (A)− g (M) 1H)

k
+R(2)

α (f, g, α,m,M) ,

(35)

where

R(2)
α (f, g, α,m,M) :=

1

Γ (α)

∫ M

m−0

(∫ M

λ

(g (t)− g (λ))
α−1

g′ (t)
(
Dα
M−;gf

)
(t) dt

)
dEλ

=
1

Γ (α)

∫ M

m−0

(∫ g(M)

g(λ)

(z − g (λ))
α−1 ((

Dα
M−;gf

)
◦ g−1

)
(z) dz

)
dEλ. (36)

Proof. We integrate (33) against Eλ to get∫ M

m−0
f (λ) dEλ =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (M))

k!

∫ M

m−0
(g (λ)− g (M))

k
dEλ

+

∫ M

m−0
R(2)
α (M,λ) dEλ. (37)

By the spectral representation theorem we obtain

f (A) =

n−1∑
k=0

(
f ◦ g−1

)(k)
(g (M))

k!
(g (A)− g (M) 1H)

k
+

∫ M

m−0
R(2)
α (M,λ) dEλ, (38)

proving the claim.

Note 11 (to Theorem 10) If
(
f ◦ g−1

)(k)
(g (M)) = 0, for k = 0, 1, ..., n − 1,

then

f (A) = R(2)
α (f, g, α,m,M) . (39)

We make

Background 12 ([4]) Let g : [m,M ] → R be a strictly increasing function.

Let f ∈ Cn ([m,M ]), n ∈ N. Assume that g ∈ C1 ([m,M ]), and g−1 ∈
Cn ([g (m) , g (M)]). Call l := f ◦ g−1 : [g (m) , g (M)] → R. It is clear that

l, l′, ..., l(n) are continuous from [g (m) , g (M)] into f ([m,M ]) ⊆ R.
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Let ν ≥ 1 such that [ν] = n, n ∈ N as above, where [·] is the integral part of

the number. Clearly when 0 < ν < 1, [ν] = 0.

Next we follow [1], pp. 7-9.

Let h ∈ C ([g (m) , g (M)]), we define the left Riemann-Liouville fractional

integral (
Jg(m)
ν h

)
(z) :=

1

Γ (ν)

∫ z

g(m)

(z − t)ν−1 h (t) dt, (40)

for g (m) ≤ z ≤ g (M) .

We set J
g(m)
0 h = h.

Let α := ν − [ν] (0 < α < 1). We define the subspace Cνg(m) ([g (m) , g (M)])

of C [ν] ([g (m) , g (M)]) as

Cνg(m) ([g (m) , g (M)]) :={
h ∈ C [ν] ([g (m) , g (M)]) : J

g(m)
1−α h

([ν]) ∈ C1 ([g (m) , g (M)])
}
. (41)

So let h ∈ Cνg(m) ([g (m) , g (M)]); we define the left g-generalized fractional

derivative of h of order ν, of Canavati type, over [g (m) , g (M)] as

Dν
g(m)h :=

(
J
g(m)
1−α h

([ν])
)′
. (42)

Clearly, for h ∈ Cνg(m) ([g (m) , g (M)]), there exists

(
Dν
g(m)h

)
(z) =

1

Γ (1− α)

d

dz

∫ z

g(m)

(z − t)−α h([ν]) (t) dt, (43)

for all g (m) ≤ z ≤ g (M).

In particular, when f ◦ g−1 ∈ Cνg(m) ([g (m) , g (M)]) we have that

(
Dν
g(m)

(
f ◦ g−1

))
(z) =

1

Γ (1− α)

d

dz

∫ z

g(m)

(z − t)−α
(
f ◦ g−1

)([ν])
(t) dt, (44)

for all g (m) ≤ z ≤ g (M).

We have that

Dn
g(m)

(
f ◦ g−1

)
=
(
f ◦ g−1

)(n)
, (45)

and

D0
g(m)

(
f ◦ g−1

)
= f ◦ g−1. (46)

We mention the following left generalized g-fractional, of Canavati type,

Taylor’s formula:

Theorem 13 ([4]) Let f ◦ g−1 ∈ Cνg(m) ([g (m) , g (M)]) .
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(i) if ν ≥ 1, then

f (λ) =

[ν]−1∑
k=0

(
f ◦ g−1

)(k)
(g (m))

k!
(g (λ)− g (m))

k
+ (47)

1

Γ (ν)

∫ g(λ)

g(m)

(g (λ)− t)ν−1
(
Dν
g(m)

(
f ◦ g−1

))
(t) dt,

all λ ∈ [m,M ] ,

(ii) if 0 < ν < 1, then

f (λ) =
1

Γ (ν)

∫ g(λ)

g(m)

(g (λ)− t)ν−1
(
Dν
g(m)

(
f ◦ g−1

))
(t) dt, (48)

all λ ∈ [m,M ] .

By the change of variable method, see [13], we may rewrite the remainder

of (47), (48), as

R(3)
ν (m,λ) :=

1

Γ (ν)

∫ g(λ)

g(m)

(g (λ)− t)ν−1
(
Dν
g(m)

(
f ◦ g−1

))
(t) dt = (49)

1

Γ (ν)

∫ λ

m

(g (λ)− g (s))
ν−1

(
Dν
g(m)

(
f ◦ g−1

))
(g (s)) g′ (s) ds,

all λ ∈ [m,M ] .

We present the following operator left fractional representation formula

Theorem 14 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spectral

family, I be a closed subinterval of R with [m,M ] ⊂
◦
I and n ∈ N, with n := [ν],

ν > 0. Let f, g : I → R. Assume that g : [m,M ] → R is strictly increasing

function, f ∈ Cn ([m,M ]) , g ∈ C1 ([m,M ]), and g−1 ∈ Cn ([g (m) , g (M)]).

Suppose also that f ◦ g−1 ∈ Cνg(m) ([g (m) , g (M)]). Then

(i) if ν ≥ 1, then

f (A) =

[ν]−1∑
k=0

(
f ◦ g−1

)(k)
(g (m))

k!
(g (A)− g (m) 1H)

k
+R(3)

ν (f, g, ν,m,M) ,

(50)

(ii) if 0 < ν < 1, then

f (A) = R(3)
ν (f, g, ν,m,M) . (51)

Here it is

R(3)
ν (f, g, ν,m,M) :=

11



1

Γ (ν)

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− t)ν−1
(
Dν
g(m)

(
f ◦ g−1

))
(t) dt

)
dEλ =

1

Γ (ν)

∫ M

m−0

(∫ λ

m

(g (λ)− g (s))
ν−1

(
Dν
g(m)

(
f ◦ g−1

))
(g (s)) g′ (s) ds

)
dEλ.

(52)

Proof. We integrate (47), (48) against Eλ and use the spectral representa-

tion theorem, as in Theorem 6.

Note 15 If ν ≥ 1 and f (k) (m) = 0, then
(
f ◦ g−1

)(k)
(g (m)) = 0, all k =

0, 1, ..., [ν]− 1, (see [2], p. 401), and

f (A) = R(3)
ν (f, g, ν,m,M) . (53)

We need

Background 16 Let g, f, l, ν, n, h as in Background 12. Here we follow [2], pp.

345-348.

We define the right Riemann-Liouville fractional integral as(
Jνg(M)−h

)
(z) :=

1

Γ (ν)

∫ g(M)

z

(t− z)ν−1 h (t) dt, (54)

for g (m) ≤ z ≤ g (M) .

We set J0
g(M)−h = h.

Let α := ν−[ν] (0 < α < 1). We define the subspace Cνg(M)− ([g (m) , g (M)])

of C [ν] ([g (m) , g (M)]) as

Cνg(M)− ([g (m) , g (M)]) :={
h ∈ C [ν] ([g (m) , g (M)]) : J1−α

g(M)−h
([ν]) ∈ C1 ([g (m) , g (M)])

}
. (55)

So let h ∈ Cνg(M)− ([g (m) , g (M)]); we define the right g-generalized frac-

tional derivative of h of order ν, of Canavati type, over [g (m) , g (M)] as

Dν
g(M)−h := (−1)

n−1
(
J1−α
g(M)−h

([ν])
)′
. (56)

Clearly, for h ∈ Cνg(M)− ([g (m) , g (M)]), there exists

(
Dν
g(M)−h

)
(z) =

(−1)
n−1

Γ (1− α)

d

dz

∫ g(M)

z

(t− z)−α h([ν]) (t) dt, (57)

for all g (m) ≤ z ≤ g (M).

12



In particular, when f ◦ g−1 ∈ Cνg(M)− ([g (m) , g (M)]) we have that

(
Dν
g(M)−

(
f ◦ g−1

))
(z) =

(−1)
n−1

Γ (1− α)

d

dz

∫ g(M)

z

(t− z)−α
(
f ◦ g−1

)([ν])
(t) dt,

(58)

for all g (m) ≤ z ≤ g (M).

We get that(
Dn
g(M)−

(
f ◦ g−1

))
(z) = (−1)

n (
f ◦ g−1

)(n)
(z) , (59)

and (
D0
g(M)−

(
f ◦ g−1

))
(z) =

(
f ◦ g−1

)
(z) , (60)

all z ∈ [g (m) , g (M)] .

We need the following right generalized g-fractional, of Canavati type, Tay-

lor’s formula:

Theorem 17 ([4]) Let f ◦ g−1 ∈ Cνg(M)− ([g (m) , g (M)]) .

(i) if ν ≥ 1, then

f (λ) =

[ν]−1∑
k=0

(
f ◦ g−1

)(k)
(g (M))

k!
(g (λ)− g (M))

k
+

1

Γ (ν)

∫ g(M)

g(λ)

(t− g (λ))
ν−1

(
Dν
g(M)−

(
f ◦ g−1

))
(t) dt, (61)

all m ≤ λ ≤M,

(ii) if 0 < ν < 1, we get

f (λ) =
1

Γ (ν)

∫ g(M)

g(λ)

(t− g (λ))
ν−1

(
Dν
g(M)−

(
f ◦ g−1

))
(t) dt, (62)

all m ≤ λ ≤M.

By change of variable, see [13], we may rewrite the remainder of (61), (62),

as

R(4)
ν (M,λ) :=

1

Γ (ν)

∫ g(M)

g(λ)

(t− g (λ))
ν−1

(
Dν
g(M)−

(
f ◦ g−1

))
(t) dt =

1

Γ (ν)

∫ M

λ

(g (s)− g (λ))
ν−1

(
Dν
g(M)−

(
f ◦ g−1

))
(g (s)) g′ (s) ds, (63)

all m ≤ λ ≤M.

We present the following operator right fractional representation formula
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Theorem 18 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spectral

family, I be a closed subinterval of R with [m,M ] ⊂
◦
I and n ∈ N, with n := [ν],

ν > 0. Let f, g : I → R. Assume that g : [m,M ] → R is strictly increasing

function, f ∈ Cn ([m,M ]) , g ∈ C1 ([m,M ]), and g−1 ∈ Cn ([g (m) , g (M)]).

Suppose also that f ◦ g−1 ∈ Cνg(M)− ([g (m) , g (M)]). Then

(i) if ν ≥ 1, then

f (A) =

[ν]−1∑
k=0

(
f ◦ g−1

)(k)
(g (M))

k!
(g (A)− g (M) 1H)

k
+R(4)

ν (f, g, ν,m,M) ,

(64)

(ii) if 0 < ν < 1, then

f (A) = R(4)
ν (f, g, ν,m,M) . (65)

Here it is

R(4)
ν (f, g, ν,m,M) :=

1

Γ (ν)

∫ M

m−0

(∫ g(M)

g(λ)

(t− g (λ))
ν−1

(
Dν
g(M)−

(
f ◦ g−1

))
(t) dt

)
dEλ =

1

Γ (ν)

∫ M

m−0

(∫ M

λ

(g (s)− g (λ))
ν−1

(
Dν
g(M)−

(
f ◦ g−1

))
(g (s)) g′ (s) ds

)
dEλ.

(66)

Proof. We integrate (61), (62) against Eλ and use the spectral representa-

tion theorem, as in Theorem 10.

Note 19 If ν ≥ 1 and f (k) (M) = 0, then
(
f ◦ g−1

)(k)
(g (M)) = 0, all k =

0, 1, ..., [ν]− 1, (see [2], p. 401), and

f (A) = R(4)
ν (f, g, ν,m,M) . (67)

We need

Background 20 Let f : [m,M ] → R : f (m) ∈ L∞ ([m,M ]), the left Caputo

fractional derivative ([8], p. 50) of order α /∈ N, α > 0, m = dαe (d·e ceiling)

is defined as follows:

(Dα
∗mf) (x) =

1

Γ (m− α)

∫ x

m

(x− t)m−α−1 f (m) (t) dt, (68)

∀ x ∈ [m,M ] .

Let n ∈ N, we denote

Dnα
∗m = Dα

∗mD
α
∗m...D

α
∗m (n-times). (69)

14



Let us assume now that

Dkα
∗mf ∈ C ([m,M ]) , k = 0, 1, ..., n+ 1; n ∈ N, 0 < α ≤ 1. (70)

By [5], [14], we mention the following generalized fractional Caputo type

Taylor’s formula:

f (λ) =

n∑
i=0

(λ−m)
iα

Γ (iα+ 1)

(
Diα
∗mf

)
(m) +

1

Γ ((n+ 1)α)

∫ λ

m

(λ− t)(n+1)α−1
(
D

(n+1)α
∗m f

)
(t) dt, (71)

∀ λ ∈ [m,M ] .

We give the following operator left fractional representation formula

Theorem 21 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spectral

family, I be a closed subinterval of R with [m,M ] ⊂
◦
I. Here f : I → R.

Furthermore assume that f ′ ∈ L∞ ([m,M ]), and Dkα
∗mf ∈ C ([m,M ]), k =

0, 1, ..., n+ 1; n ∈ N, 0 < α ≤ 1. Then

f (A) =

n∑
i=0

(
Diα
∗mf

)
(m)

Γ (iα+ 1)
(A−m1H)

iα
+

1

Γ ((n+ 1)α)

∫ M

m−0

(∫ λ

m

(λ− t)(n+1)α−1
(
D

(n+1)α
∗m f

)
(t) dt

)
dEλ. (72)

Proof. We use (71) and the spectral representation theorem, as in Theorem

6.

Note 22 (to Theorem 21) If
(
Diα
∗mf

)
(m) = 0, i = 0, 1, ..., n, then

f (A) =
1

Γ ((n+ 1)α)

∫ M

m−0

(∫ λ

m

(λ− t)(n+1)α−1
(
D

(n+1)α
∗m f

)
(t) dt

)
dEλ.

(73)

We need

Background 23 The right Caputo fractional derivative of order α > 0, m =

dαe, f ∈ ACm ([m,M ]) is defined as follows (see [2], p. 336):

(
Dα
M−f

)
(x) =

(−1)
m

Γ (m− α)

∫ M

x

(z − x)
m−α−1

f (m) (z) dz, (74)
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∀ x ∈ [m,M ] , with

Dm
M−f (x) := (−1)

m
f (m) (x) . (75)

Denote by

Dnα
M− = Dα

M−D
α
M−...D

α
M− (n-times), n ∈ N. (76)

We need the following right generalized fractional Taylor’s formula

Theorem 24 ([3]) Suppose that f ∈ AC ([m,M ]) and Dkα
M−f ∈ C ([m,M ]) ,

for k = 0, 1, ..., n+ 1, where 0 < α ≤ 1. Then

f (λ) =

n∑
i=0

(M − λ)
iα

Γ (iα+ 1)

(
Diα
M−f

)
(M) +

1

Γ ((n+ 1)α)

∫ M

λ

(z − λ)
(n+1)α−1

(
D

(n+1)α
M− f

)
(z) dz, (77)

∀ λ ∈ [m,M ] .

We give the following operator right fractional representation formula

Theorem 25 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spectral

family, I be a closed subinterval of R with [m,M ] ⊂
◦
I. Here f : I → R.

Furthermore assume that f ∈ AC ([m,M ]), and Dkα
M−f ∈ C ([m,M ]), for k =

0, 1, ..., n+ 1, where 0 < α ≤ 1. Then

f (A) =

n∑
i=0

(M1H −A)
iα

Γ (iα+ 1)

(
Diα
M−f

)
(M) +

1

Γ ((n+ 1)α)

∫ M

m−0

(∫ M

λ

(z − λ)
(n+1)α−1

(
D

(n+1)α
M− f

)
(z) dz

)
dEλ. (78)

Proof. Use of (77) and spectral representation theorem, as in Theorem 21.

Note 26 (to Theorem 25) If
(
Diα
M−f

)
(M) = 0, i = 0, 1, ..., n, then

f (A) =
1

Γ ((n+ 1)α)

∫ M

m−0

(∫ M

λ

(z − λ)
(n+1)α−1

(
D

(n+1)α
M− f

)
(z) dz

)
dEλ.

(79)

Background 27 ([3]) Denote by (α > 0)

Dnα
m+;g := Dα

m+;gD
α
m+;g...D

α
m+;g (n-times), n ∈ N. (80)

By convention D0
m+;g = I (identity operator).
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We need the following left general fractional Taylor’s formula

Theorem 28 ([3]) Let g be strictly increasing and g ∈ AC ([m,M ]). Suppose

that Fk := Dkα
m+;gf , for k = 0, 1, ..., n+ 1, fulfill: Fk ◦ g−1 ∈ AC ([g (m) , g (M)])

and
(
Fk ◦ g−1

)′ ◦ g ∈ L∞ ([m,M ]), where 0 < α ≤ 1. Then

f (λ) =

n∑
i=0

(g (λ)− g (m))
iα

Γ (iα+ 1)

(
Diα
m+;gf

)
(m) +

1

Γ ((n+ 1)α)

∫ λ

m

(g (λ)− g (t))
(n+1)α−1

g′ (t)
(
D

(n+1)α
m+;g f

)
(t) dt, (81)

∀ λ ∈ [m,M ] .

We give the following operator general left fractional representation formula

Theorem 29 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spectral

family, I be a closed subinterval of R with [m,M ] ⊂
◦
I. Here f, g : I → R. Fur-

thermore we assume that g is strictly increasing and g ∈ AC ([m,M ]) . Suppose

that Fk := Dkα
m+;gf, for k = 0, 1, ..., n+1, fulfill: Fk ◦g−1 ∈ AC ([g (m) , g (M)]),

and
(
Fk ◦ g−1

)′ ◦ g ∈ L∞ ([m,M ]) , where 0 < α ≤ 1. Then

f (A) =

n∑
i=0

(
Diα
m+;gf

)
(m)

Γ (iα+ 1)
(g (A)− g (m) 1H)

iα
+

1

Γ ((n+ 1)α)

∫ M

m−0

(∫ λ

m

(g (λ)− g (t))
(n+1)α−1

g′ (t)
(
D

(n+1)α
m+;g f

)
(t) dt

)
dEλ.

(82)

Proof. Use of (81) and spectral representation theorem.

Note 30 (to Theorem 29) If
(
Diα
m+;gf

)
(m) = 0, i = 0, 1, ..., n, then

f (A) =
1

Γ ((n+ 1)α)
·

∫ M

m−0

(∫ λ

m

(g (λ)− g (t))
(n+1)α−1

g′ (t)
(
D

(n+1)α
m+;g f

)
(t) dt

)
dEλ. (83)

We need

Background 31 ([3]) Denote by (α > 0)

Dnα
M−;g := Dα

M−;gD
α
M−;g...D

α
M−;g (n-times), n ∈ N. (84)

By convention D0
M−;g = I (identity operator).
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We need the following right general fractional Taylor’s formula

Theorem 32 ([3]) Let g be strictly increasing and g ∈ AC ([m,M ]). Suppose

that Fk := Dkα
M−;gf , for k = 0, 1, ..., n+1, fulfill: Fk ◦g−1 ∈ AC ([g (m) , g (M)])

and
(
Fk ◦ g−1

)′ ◦ g ∈ L∞ ([m,M ]), where 0 < α ≤ 1. Then

f (λ) =

n∑
i=0

(g (M)− g (λ))
iα

Γ (iα+ 1)

(
Diα
M−;gf

)
(M) +

1

Γ ((n+ 1)α)

∫ M

λ

(g (t)− g (λ))
(n+1)α−1

g′ (t)
(
D

(n+1)α
M−;g f

)
(t) dt, (85)

∀ λ ∈ [m,M ] .

We give the following operator general right fractional representation formula

Theorem 33 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spectral

family, I be a closed subinterval of R with [m,M ] ⊂
◦
I. Here f, g : I → R. Fur-

thermore we assume that g is strictly increasing and g ∈ AC ([m,M ]) . Suppose

that Fk := Dkα
M−;gf, for k = 0, 1, ..., n+1, fulfill: Fk ◦g−1 ∈ AC ([g (m) , g (M)]),

and
(
Fk ◦ g−1

)′ ◦ g ∈ L∞ ([m,M ]) , where 0 < α ≤ 1. Then

f (A) =

n∑
i=0

(
Diα
M−;gf

)
(M)

Γ (iα+ 1)
(g (M) 1H − g (A))

iα
+

1

Γ ((n+ 1)α)

∫ M

m−0

(∫ M

λ

(g (t)− g (λ))
(n+1)α−1

g′ (t)
(
D

(n+1)α
M−;g f

)
(t) dt

)
dEλ.

(86)

Proof. Use of (85) and spectral representation theorem.

Note 34 (to Theorem 33) If
(
Diα
M−;gf

)
(M) = 0, i = 0, 1, ..., n, then

f (A) =
1

Γ ((n+ 1)α)
·

∫ M

m−0

(∫ M

λ

(g (t)− g (λ))
(n+1)α−1

g′ (t)
(
D

(n+1)α
M−;g f

)
(t) dt

)
dEλ. (87)

We need

Background 35 ([4]) Denote by

Dmν
g(m) = Dν

g(m)D
ν
g(m)...D

ν
g(m) (m-times), m ∈ N. (88)
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We will use the left fractional Taylor’s formula

Theorem 36 ([4]) Let 0 < ν < 1.

Assume that
(
Diν
g(m)

(
f ◦ g−1

))
∈ Cνg(m) ([g (m) , g (M)]), i = 0, 1, ...,m. As-

sume also that
(
D

(m+1)ν
g(m)

(
f ◦ g−1

))
∈ C ([g (m) , g (M)]) . Then

f (λ) =
1

Γ ((m+ 1) ν)

∫ g(λ)

g(m)

(g (λ)− z)(m+1)ν−1
(
D

(m+1)ν
g(m)

(
f ◦ g−1

))
(z) dz

=
1

Γ ((m+ 1) ν)

∫ λ

m

(g (λ)− g (s))
(m+1)ν−1

(
D

(m+1)ν
g(m)

(
f ◦ g−1

))
(g (s)) g′ (s) ds,

(89)

all m ≤ λ ≤M.

We present the operator left fractional representation formula

Theorem 37 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spectral

family, I be a closed subinterval on R with [m,M ] ⊂
◦
I, and 0 < ν < 1. Let

f, g : I → R. Assume that g : [m,M ] → R is strictly increasing function,

f ∈ C1 ([m,M ]) , g ∈ C1 ([m,M ]) , and g−1 ∈ C1 ([g (m) , g (M)]) . Furthermore

we suppose that
(
Diν
g(m)

(
f ◦ g−1

))
∈ Cνg(m) ([g (m) , g (M)]), i = 0, 1, ...,m, and(

D
(m+1)ν
g(m)

(
f ◦ g−1

))
∈ C ([g (m) , g (M)]). Then

f (A) =
1

Γ ((m+ 1) ν)
·

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− z)(m+1)ν−1
(
D

(m+1)ν
g(m)

(
f ◦ g−1

))
(z) dz

)
dEλ (90)

=
1

Γ ((m+ 1) ν)
·

∫ M

m−0

(∫ λ

m

(g (λ)− g (s))
(m+1)ν−1

(
D

(m+1)ν
g(m)

(
f ◦ g−1

))
(g (s)) g′ (s) ds

)
dEλ.

Proof. Use of (89).

We need

Background 38 ([4]) Denote by

Dmν
g(M)− = Dν

g(M)−D
ν
g(M)−...D

ν
g(M)− (m-times), m ∈ N. (91)

We will use the right fractional Taylor’s formula
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Theorem 39 ([4]) Let 0 < ν < 1.

Assume that
(
Diν
g(M)−

(
f ◦ g−1

))
∈ Cνg(M)− ([g (m) , g (M)]), for all i =

0, 1, ...,m. Assume also that
(
D

(m+1)ν
g(M)−

(
f ◦ g−1

))
∈ C ([g (m) , g (M)]) . Then

f (λ) =
1

Γ ((m+ 1) ν)

∫ g(M)

g(λ)

(z − g (λ))
(m+1)ν−1

(
D

(m+1)ν
g(M)−

(
f ◦ g−1

))
(z) dz

=
1

Γ ((m+ 1) ν)

∫ M

λ

(g (s)− g (λ))
(m+1)ν−1

(
D

(m+1)ν
g(M)−

(
f ◦ g−1

))
(g (s)) g′ (s) ds,

(92)

all m ≤ λ ≤M.

We present the operator right fractional representation formula

Theorem 40 Let A be a selfadjoint operator in the Hilbert space H with the

spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its spec-

tral family, I be a closed subinterval on R with [m,M ] ⊂
◦
I, and 0 < ν < 1.

Let f, g : I → R. Assume that g : [m,M ] → R is strictly increasing function,

f ∈ C1 ([m,M ]) , g ∈ C1 ([m,M ]) , and g−1 ∈ C1 ([g (m) , g (M)]) . Further-

more we suppose that
(
Diν
g(M)−

(
f ◦ g−1

))
∈ Cνg(M)− ([g (m) , g (M)]), for all

i = 0, 1, ...,m, and
(
D

(m+1)ν
g(M)−

(
f ◦ g−1

))
∈ C ([g (m) , g (M)]). Then

f (A) =
1

Γ ((m+ 1) ν)
·

∫ M

m−0

(∫ g(M)

g(λ)

(z − g (λ))
(m+1)ν−1

(
D

(m+1)ν
g(M)−

(
f ◦ g−1

))
(z) dz

)
dEλ

=
1

Γ ((m+ 1) ν)
·

∫ M

m−0

(∫ M

λ

(g (s)− g (λ))
(m+1)ν−1

(
D

(m+1)ν
g(M)−

(
f ◦ g−1

))
(g (s)) g′ (s) ds

)
dEλ.

(93)

Proof. Use of (92).

Note 41 From now on in this article let p, q > 1 : 1
p + 1

q = 1.

We make
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Remark 42 (to Theorems 1, 2) Assume f (k) (m) = 0, for k = 0, 1, ..., n − 1,

then
(
f ◦ g−1

)(k)
(g (m)) = 0, all k = 0, 1, ..., n− 1, and

f (λ) =
1

(n− 1)!

∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt, (94)

∀ λ ∈ [m,M ]. Hence, if g (λ) ≥ g (m), we have

|f (λ)| ≤ 1

(n− 1)!

∫ g(λ)

g(m)

(g (λ)− t)n−1
∣∣∣(f ◦ g−1)(n) (t)

∣∣∣ dt
≤ 1

(n− 1)!

(∫ g(λ)

g(m)

(g (λ)− t)p(n−1) dt

) 1
p
(∫ g(λ)

g(m)

∣∣∣(f ◦ g−1)(n) (t)
∣∣∣q dt) 1

q

=
1

(n− 1)!

(g (λ)− g (m))
(n−1)+ 1

p

(p (n− 1) + 1)
1
p

(∫ g(λ)

g(m)

∣∣∣(f ◦ g−1)(n) (t)
∣∣∣q dt) 1

q

=

1

(n− 1)!

(g (λ)− g (m))
n− 1

q

(p (n− 1) + 1)
1
p

∥∥∥(f ◦ g−1)(n)∥∥∥
q,[g(m),g(λ)]

. (95)

We have proved that (if g (λ) ≥ g (m))∣∣∣∣∣
∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt

∣∣∣∣∣ ≤
(g (λ)− g (m))

n− 1
q

(p (n− 1) + 1)
1
p

∥∥∥(f ◦ g−1)(n)∥∥∥
q,[g(m),g(λ)]

. (96)

Next, if g (λ) ≤ g (m), then

|f (λ)| = 1

(n− 1)!

∣∣∣∣∣
∫ g(m)

g(λ)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt

∣∣∣∣∣ (97)

≤ 1

(n− 1)!

∫ g(m)

g(λ)

(t− g (λ))
n−1

∣∣∣(f ◦ g−1)(n) (t)
∣∣∣ dt

≤ 1

(n− 1)!

(∫ g(m)

g(λ)

(t− g (λ))
p(n−1)

dt

) 1
p
(∫ g(m)

g(λ)

∣∣∣(f ◦ g−1)(n) (t)
∣∣∣q dt) 1

q

(98)

=
1

(n− 1)!

(g (m)− g (λ))
n− 1

q

(p (n− 1) + 1)
1
p

∥∥∥(f ◦ g−1)(n)∥∥∥
q,[g(λ),g(m)]

.

We have proved that (if g (λ) ≤ g (m))∣∣∣∣∣
∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt

∣∣∣∣∣ ≤
21



(g (m)− g (λ))
n− 1

q

(p (n− 1) + 1)
1
p

∥∥∥(f ◦ g−1)(n)∥∥∥
q,[g(λ),g(m)]

. (99)

Conclusion: it holds∣∣∣∣∣
∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt

∣∣∣∣∣ ≤
|g (m)− g (λ)|n−

1
q

(p (n− 1) + 1)
1
p

∥∥∥(f ◦ g−1)(n)∥∥∥
q,g([m,M ])

, . (100)

∀ λ ∈ [m,M ] .

By Note 3, we have

f (A) =
1

(n− 1)!

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt

)
dEλ, (101)

which means

〈f (A)x, x〉 =
1

(n− 1)!

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt

)
d 〈Eλx, x〉 ,

(102)

∀ x ∈ H.
It is well known that ([10]) gx (λ) := 〈Eλx, x〉 is nondecreasing and right

continuous in λ on [m,M ] .

Therefore it holds

|〈f (A)x, x〉|
(102)

≤ 1

(n− 1)!

∫ M

m−0

∣∣∣∣∣
∫ g(λ)

g(m)

(g (λ)− t)n−1
(
f ◦ g−1

)(n)
(t) dt

∣∣∣∣∣ d 〈Eλx, x〉
(100)

≤ 1

(n− 1)!

∫ M

m−0

|g (m)− g (λ)|n−
1
q

(p (n− 1) + 1)
1
p

∥∥∥(f ◦ g−1)(n)∥∥∥
q,g([m,M ])

d 〈Eλx, x〉

(103)

=

∥∥∥(f ◦ g−1)(n)∥∥∥
q,g([m,M ])

(n− 1)! (p (n− 1) + 1)
1
p

(∫ M

m−0
|g (m)− g (λ)|n−

1
q d 〈Eλx, x〉

)

=

∥∥∥(f ◦ g−1)(n)∥∥∥
q,g([m,M ])

(n− 1)! (p (n− 1) + 1)
1
p

〈
|g (m) 1H − g (A)|n−

1
q x, x

〉
, (104)

∀ x ∈ H.

We have proved
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Theorem 43 Here all as in Theorem 2, with f (k) (m) = 0, k = 0, 1, ..., n − 1.

Then

|〈f (A)x, x〉| ≤

∥∥∥(f ◦ g−1)(n)∥∥∥
q,g([m,M ])

(n− 1)! (p (n− 1) + 1)
1
p

〈
|g (m) 1H − g (A)|n−

1
q x, x

〉
, (105)

∀ x ∈ H.
Inequality (105) means that

‖f (A)‖ ≤

∥∥∥(f ◦ g−1)(n)∥∥∥
q,g([m,M ])

(n− 1)! (p (n− 1) + 1)
1
p

∥∥∥|g (m) 1H − g (A)|n−
1
q

∥∥∥ , (106)

and in particular,

f (A) ≤

∥∥∥(f ◦ g−1)(n)∥∥∥
q,g([m,M ])

(n− 1)! (p (n− 1) + 1)
1
p

|g (m) 1H − g (A)|n−
1
q . (107)

Remark 44 (to Theorems 5, 6) Let α > 0, dαe = n, α /∈ N.
If
(
f ◦ g−1

)(k)
(g (m)) = 0, for k = 0, 1, ..., n− 1, then

f (λ) =
1

Γ (α)

∫ g(λ)

g(m)

(g (λ)− z)α−1
((
Dα
m+;gf

)
◦ g−1

)
(z) dz, (108)

∀ λ ∈ [m,M ] .

Hence we have

|f (λ)| ≤ 1

Γ (α)

∫ g(λ)

g(m)

(g (λ)− z)α−1
∣∣((Dα

m+;gf
)
◦ g−1

)
(z)
∣∣ dz ≤

1

Γ (α)

(∫ g(λ)

g(m)

(g (λ)− z)p(α−1) dz

) 1
p
(∫ g(λ)

g(m)

∣∣((Dα
m+;gf

)
◦ g−1

)
(z)
∣∣q dz) 1

q

≤

1

Γ (α)

(g (λ)− g (m))
(p(α−1)+1)

p

(p (α− 1) + 1)
1
p

∥∥(Dα
m+;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

. (109)

We have proved that∣∣∣∣∣
∫ g(λ)

g(m)

(g (λ)− z)α−1
((
Dα
m+;gf

)
◦ g−1

)
(z) dz

∣∣∣∣∣ ≤ (110)

(g (λ)− g (m))
α− 1

q

(p (α− 1) + 1)
1
p

∥∥(Dα
m+;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

,

∀ λ ∈ [m,M ], with α > 1
q .
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By Note 7 we have

f (A) =
1

Γ (α)

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− z)α−1
((
Dα
m+;gf

)
◦ g−1

)
(z) dz

)
dEλ,

(111)

which means

〈f (A)x, x〉 =

1

Γ (α)

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− z)α−1
((
Dα
m+;gf

)
◦ g−1

)
(z) dz

)
d 〈Eλx, x〉 , (112)

∀ x ∈ H.
Therefore it holds

|〈f (A)x, x〉|
(112)

≤

1

Γ (α)

∫ M

m−0

∣∣∣∣∣
∫ g(λ)

g(m)

(g (λ)− z)α−1
((
Dα
m+;gf

)
◦ g−1

)
(z) dz

∣∣∣∣∣ d 〈Eλx, x〉 (110)≤
1

Γ (α)

∫ M

m−0

(g (λ)− g (m))
α− 1

q

(p (α− 1) + 1)
1
p

∥∥(Dα
m+;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

d 〈Eλx, x〉 =∥∥(Dα
m+;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

Γ (α) (p (α− 1) + 1)
1
p

∫ M

m−0
(g (λ)− g (m))

α− 1
q d 〈Eλx, x〉 =∥∥(Dα

m+;gf
)
◦ g−1

∥∥
q,[g(m),g(M)]

Γ (α) (p (α− 1) + 1)
1
p

〈
(g (A)− g (m) 1H)

α− 1
q x, x

〉
, (113)

∀ x ∈ H.

We have proved

Theorem 45 Here all as in Theorem 6, with
(
f ◦ g−1

)(k)
(g (m)) = 0, for k =

0, 1, ..., n− 1, α > 1
q , α /∈ N. Then

|〈f (A)x, x〉| ≤

∥∥(Dα
m+;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

Γ (α) (p (α− 1) + 1)
1
p

〈
(g (A)− g (m) 1H)

α− 1
q x, x

〉
,

(114)

∀ x ∈ H.
Inequality (114) means that

‖f (A)‖ ≤

∥∥(Dα
m+;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

Γ (α) (p (α− 1) + 1)
1
p

∥∥∥(g (A)− g (m) 1H)
α− 1

q

∥∥∥ , (115)

and in particular

f (A) ≤

∥∥(Dα
m+;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

Γ (α) (p (α− 1) + 1)
1
p

(g (A)− g (m) 1H)
α− 1

q . (116)
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We also present

Theorem 46 Here all as in Theorem 10, with
(
f ◦ g−1

)(k)
(g (M)) = 0, for

k = 0, 1, ..., n− 1, α > 1
q , α /∈ N. Then

|〈f (A)x, x〉| ≤

∥∥(Dα
M−;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

Γ (α) (p (α− 1) + 1)
1
p

〈
(g (M) 1H − g (A))

α− 1
q x, x

〉
,

(117)

∀ x ∈ H.
Inequality (117) means that

‖f (A)‖ ≤

∥∥(Dα
M−;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

Γ (α) (p (α− 1) + 1)
1
p

∥∥∥(g (M) 1H − g (A))
α− 1

q

∥∥∥ , (118)

and in particular

f (A) ≤

∥∥(Dα
M−;gf

)
◦ g−1

∥∥
q,[g(m),g(M)]

Γ (α) (p (α− 1) + 1)
1
p

(g (M) 1H − g (A))
α− 1

q . (119)

Proof. Similar to Theorem 45.

We give

Theorem 47 Here all as in Theorem 14.

If ν ≥ 1, we assume that
(
f ◦ g−1

)(k)
(g (m)) = 0, k = 0, 1, ..., [ν] − 1, and

always ν > 1
q . Then

|〈f (A)x, x〉| ≤

∥∥∥Dν
g(m)

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ (ν) (p (ν − 1) + 1)
1
p

〈
(g (A)− g (m) 1H)

ν− 1
q x, x

〉
,

(120)

∀ x ∈ H.
Inequality (120) means that

‖f (A)‖ ≤

∥∥∥Dν
g(m)

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ (ν) (p (ν − 1) + 1)
1
p

∥∥∥(g (A)− g (m) 1H)
ν− 1

q

∥∥∥ , (121)

and in particular

f (A) ≤

∥∥∥Dν
g(m)

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ (ν) (p (ν − 1) + 1)
1
p

(g (A)− g (m) 1H)
ν− 1

q . (122)

Proof. Similar to Theorem 45.

We give
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Theorem 48 Here all as in Theorem 18.

If ν ≥ 1, we assume that
(
f ◦ g−1

)(k)
(g (M)) = 0, k = 0, 1, ..., [ν] − 1, and

always ν > 1
q . Then

|〈f (A)x, x〉| ≤

∥∥∥Dν
g(M)−

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ (ν) (p (ν − 1) + 1)
1
p

〈
(g (M) 1H − g (A))

ν− 1
q x, x

〉
,

(123)

∀ x ∈ H.
Inequality (123) means that

‖f (A)‖ ≤

∥∥∥Dν
g(M)−

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ (ν) (p (ν − 1) + 1)
1
p

∥∥∥(g (M) 1H − g (A))
ν− 1

q

∥∥∥ , (124)

and in particular

f (A) ≤

∥∥∥Dν
g(M)−

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ (ν) (p (ν − 1) + 1)
1
p

(g (M) 1H − g (A))
ν− 1

q . (125)

Proof. Similar to Theorem 45.

We make

Remark 49 (to Theorem 21) Assume
(
Diα
∗mf

)
(m) = 0, i = 0, 1, ..., n, then

f (λ) =
1

Γ ((n+ 1)α)

∫ λ

m

(λ− t)(n+1)α−1
(
D

(n+1)α
∗m f

)
(t) dt, (126)

∀ λ ∈ [m,M ] .

We obtain

|f (λ)| ≤ 1

Γ ((n+ 1)α)

∫ λ

m

(λ− t)(n+1)α−1
∣∣∣(D(n+1)α

∗m f
)

(t)
∣∣∣ dt ≤ (127)

1

Γ ((n+ 1)α)

(∫ λ

m

(λ− t)p((n+1)α−1)
dt

) 1
p
(∫ λ

m

∣∣∣(D(n+1)α
∗m f

)
(t)
∣∣∣q dt) 1

q

≤

1

Γ ((n+ 1)α)

(λ−m)
(p((n+1)α−1)+1)

p

(p ((n+ 1)α− 1) + 1)
1
p

∥∥∥D(n+1)α
∗m f

∥∥∥
q,[m,M ]

. (128)

We have proved that∣∣∣∣∣
∫ λ

m

(λ− t)(n+1)α−1
(
D

(n+1)α
∗m f

)
(t) dt

∣∣∣∣∣ ≤

26



(λ−m)
(n+1)α− 1

q

(p ((n+ 1)α− 1) + 1)
1
p

∥∥∥D(n+1)α
∗m f

∥∥∥
q,[m,M ]

, (129)

∀ λ ∈ [m,M ] , under α > 1
q(n+1) .

By Note 22 we have

〈f (A)x, x〉 =
1

Γ ((n+ 1)α)
·

∫ M

m−0

(∫ λ

m

(λ− t)(n+1)α−1
(
D

(n+1)α
∗m f

)
(t) dt

)
d 〈Eλx, x〉 , (130)

∀ x ∈ H.

Therefore

〈f (A)x, x〉
(129)

≤

1

Γ ((n+ 1)α)

∫ M

m−0

∥∥∥D(n+1)α
∗m f

∥∥∥
q,[m,M ]

(p ((n+ 1)α− 1) + 1)
1
p

(λ−m)
(n+1)α− 1

q d 〈Eλx, x〉 =

(131)∥∥∥D(n+1)α
∗m f

∥∥∥
q,[m,M ]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

〈
(A−m1H)

(n+1)α− 1
q x, x

〉
,

∀ x ∈ H.

We have proved:

Theorem 50 Here all as in Theorem 21, with
(
Diα
∗mf

)
(m) = 0, i = 0, 1, ..., n.

Then

|〈f (A)x, x〉| ≤

∥∥∥D(n+1)α
∗m f

∥∥∥
q,[m,M ]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

〈
(A−m1H)

(n+1)α− 1
q x, x

〉
,

(132)

∀ x ∈ H.

Inequality (132) means that

‖f (A)‖ ≤

∥∥∥D(n+1)α
∗m f

∥∥∥
q,[m,M ]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

∥∥∥(A−m1H)
(n+1)α− 1

q

∥∥∥ ,
(133)

and in particular,

f (A) ≤

∥∥∥D(n+1)α
∗m f

∥∥∥
q,[m,M ]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

(A−m1H)
(n+1)α− 1

q , (134)

all inequalities here under α > 1
(n+1)q .
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It follows

Theorem 51 Here all as in Theorem 25, with
(
Diα
M−f

)
(M) = 0, i = 0, 1, ..., n.

Then

|〈f (A)x, x〉| ≤

∥∥∥D(n+1)α
M− f

∥∥∥
q,[m,M ]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

〈
(M1H −A)

(n+1)α− 1
q x, x

〉
,

(135)

∀ x ∈ H.

Inequality (135) means that

‖f (A)‖ ≤

∥∥∥D(n+1)α
M− f

∥∥∥
q,[m,M ]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

∥∥∥(M1H −A)
(n+1)α− 1

q

∥∥∥ ,
(136)

and in particular,

f (A) ≤

∥∥∥D(n+1)α
M− f

∥∥∥
q,[m,M ]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

(M1H −A)
(n+1)α− 1

q , (137)

all here under α > 1
(n+1)q .

Proof. As in Theorem 50.

We make

Remark 52 (to Theorem 29) Assume
(
Diα
m+;gf

)
(m) = 0, i = 0, 1, ..., n, then

we have that

f (λ) =
1

Γ ((n+ 1)α)

∫ λ

m

(g (λ)− g (t))
(n+1)α−1

g′ (t)
(
D

(n+1)α
m+;g f

)
(t) dt

(by [13])
=

1

Γ ((n+ 1)α)

∫ g(λ)

g(m)

(g (λ)− z)(n+1)α−1
((
D

(n+1)α
m+;g f

)
◦ g−1

)
(z) dz, (138)

∀ λ ∈ [m,M ] .

Hence it holds (with α > 1
q(n+1))

|f (λ)| ≤ 1

Γ ((n+ 1)α)

(∫ g(λ)

g(m)

(g (λ)− z)p((n+1)α−1)
dz

) 1
p

·

(∫ g(λ)

g(m)

∣∣∣((D(n+1)α
m+;g f

)
◦ g−1

)
(z)
∣∣∣q dz) 1

q

≤

1

Γ ((n+ 1)α)

(g (λ)− g (m))
(n+1)α− 1

q

(p ((n+ 1)α− 1) + 1)
1
p

∥∥∥(D(n+1)α
m+;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

, (139)
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∀ λ ∈ [m,M ] .

By Note 30, we have

〈f (A)x, x〉 =
1

Γ ((n+ 1)α)
·

∫ M

m−0

(∫ g(λ)

g(m)

(g (λ)− z)(n+1)α−1
((
D

(n+1)α
m+;g f

)
◦ g−1

)
(z) dz

)
d 〈Eλx, x〉 ,

(140)

∀ x ∈ H.
Therefore we get

|〈f (A)x, x〉|
(139)

≤ 1

Γ ((n+ 1)α)
·

∫ M

m−0

[
(g (λ)− g (m))

(n+1)α− 1
q

(p ((n+ 1)α− 1) + 1)
1
p

∥∥∥(D(n+1)α
m+;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

]
d 〈Eλx, x〉

(141)

=

∥∥∥(D(n+1)α
m+;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

〈
(g (A)− g (m) 1H)

(n+1)α− 1
q x, x

〉
,

∀ x ∈ H.

We have proved:

Theorem 53 Here all as in Theorem 29, with
(
Diα
m+;gf

)
(m) = 0, i = 0, 1, ..., n.

Then

|〈f (A)x, x〉| ≤∥∥∥(D(n+1)α
m+;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

〈
(g (A)− g (m) 1H)

(n+1)α− 1
q x, x

〉
,

(142)

∀ x ∈ H.
Inequality (142) means that

‖f (A)‖ ≤

∥∥∥(D(n+1)α
m+;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

∥∥∥(g (A)− g (m) 1H)
(n+1)α− 1

q

∥∥∥ ,
(143)

and in particular,

f (A) ≤

∥∥∥(D(n+1)α
m+;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

(g (A)− g (m) 1H)
(n+1)α− 1

q ,

(144)

all inequalities here under α > 1
(n+1)q .
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It follows

Theorem 54 Here all as in Theorem 33, with
(
Diα
M−;gf

)
(M) = 0, i = 0, 1, ..., n.

Then

|〈f (A)x, x〉| ≤∥∥∥(D(n+1)α
M−;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

〈
(g (M) 1H − g (A))

(n+1)α− 1
q x, x

〉
,

(145)

∀ x ∈ H.
Inequality (145) means that

‖f (A)‖ ≤

∥∥∥(D(n+1)α
M−;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

∥∥∥(g (M) 1H − g (A))
(n+1)α− 1

q

∥∥∥ ,
(146)

and in particular,

f (A) ≤

∥∥∥(D(n+1)α
M−;g f

)
◦ g−1

∥∥∥
q,[g(m),g(M)]

Γ ((n+ 1)α) (p ((n+ 1)α− 1) + 1)
1
p

(g (M) 1H − g (A))
(n+1)α− 1

q ,

(147)

all inequalities here under α > 1
(n+1)q .

Proof. As in Theorem 53.

We give

Theorem 55 Here all as in Theorem 37 with ν > 1
q(m+1) . Then

|〈f (A)x, x〉| ≤∥∥∥D(m+1)ν
g(m)

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

〈
(g (A)− g (m) 1H)

(m+1)ν− 1
q x, x

〉
,

(148)

∀ x ∈ H.
Inequality (148) means that

‖f (A)‖ ≤

∥∥∥D(m+1)ν
g(m)

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

∥∥∥(g (A)− g (m) 1H)
(m+1)ν− 1

q

∥∥∥ ,
(149)

and in particular,

f (A) ≤

∥∥∥D(m+1)ν
g(m)

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

(g (A)− g (m) 1H)
(m+1)ν− 1

q .

(150)
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Proof. As in Theorem 53.

It follows

Theorem 56 Here all as in Theorem 40 with ν > 1
q(m+1) . Then

|〈f (A)x, x〉| ≤∥∥∥D(m+1)ν
g(M)−

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

〈
(g (M) 1H − g (A))

(m+1)ν− 1
q x, x

〉
,

(151)

∀ x ∈ H.
Inequality (151) means that

‖f (A)‖ ≤

∥∥∥D(m+1)ν
g(M)−

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

∥∥∥(g (M) 1H − g (A))
(m+1)ν− 1

q

∥∥∥ ,
(152)

and in particular,

f (A) ≤

∥∥∥D(m+1)ν
g(M)−

(
f ◦ g−1

)∥∥∥
q,[g(m),g(M)]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

(g (M) 1H − g (A))
(m+1)ν− 1

q .

(153)

Proof. As in Theorem 53.

We need

Definition 57 Let the real valued function f ∈ C ([m,M ]), and we consider

g (t) =

∫ t

m

f (z) dz, ∀ t ∈ [m,M ] , (154)

then g ∈ C ([m,M ]) .

We denote by ∫ A

m1H

f := Φ (g) = g (A) . (155)

We understand and write that (r > 0)

gr (A) = Φ (gr) =:

(∫ A

m1H

f

)r
. (156)

Clearly
(∫ A

m1H
f
)r

is a self adjoint operator on H, for any r > 0.
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Definition 58 Let f : [m,M ]→ R be continuous. We consider

g (t) =

∫ M

t

f (z) dz, ∀ t ∈ [m,M ] , (157)

then g ∈ C ([m,M ]) .

We denote by ∫ M1H

A

f := Φ (g) = g (A) . (158)

We denote also

gr (A) = Φ (gr) =:

(∫ M1H

A

f

)r
, r > 0. (159)

Clearly
(∫M1H

A
f
)r

is a self adjoint operator on H, for any r > 0.

We mention a left fractional Poincaré type inequality:

Theorem 59 (by [7], pp. 385-386) Let g ∈ C1 ([m,M ]) and strictly increasing.

Suppose that Fρ := Dρα
m+;gf , for ρ = 0, 1, ..., n + 1, n ∈ N, fulfill: Fρ ◦ g−1 ∈

AC ([g (m) , g (M)]) and
(
Fρ ◦ g−1

)′ ◦ g ∈ L∞ ([m,M ]), where α as in (160)

next.

Assume that
(
Diα
m+;gf

)
(m) = 0, i = 0, 1, ..., n. Let γ > 0 with dγe = m, and

p, q > 1 : 1
p + 1

q = 1. We further assume that

1 ≥ α > max

(
m+ (k − 1) γ

n+ 1
,
kγq + 1

(n+ 1) q

)
, (160)

where k ∈ N.

Then∫ λ

m

∣∣∣Dkγ
m+;gf (t)

∣∣∣q dt ≤ (g (λ)− g (m))
q((n+1)α−kγ−1)+ q

p (λ−m)

(Γ ((n+ 1)α− kγ))
q

(p ((n+ 1)α− kγ − 1) + 1)
q
p

·

(∫ g(λ)

g(m)

∣∣∣((D(n+1)α
m+;g f

)
◦ g−1

)
(z)
∣∣∣q dz) (161)

=
(g (λ)− g (m))

q((n+1)α−kγ−1)+ q
p (λ−m)

(Γ ((n+ 1)α− kγ))
q

(p ((n+ 1)α− kγ − 1) + 1)
q
p

·

(∫ λ

m

∣∣∣(D(n+1)α
m+;g f

)
(t)
∣∣∣q g′ (t) dt) ,

∀ λ ∈ [m,M ] .

Here we have that
(
Dkγ
m+;gf

)
,
(
D

(n+1)α
m+;g f

)
∈ C ([m,M ]) .

32



Using (161) and properties (P) and (ii), we derive the operator left fractional

Poincaré inequality:

Theorem 60 All as in Theorem 59. Then∫ A

m1H

∣∣∣Dkγ
m+;gf

∣∣∣q ≤
(g (A)− g (m) 1H)

q((n+1)α−kγ−1)+ q
p (A−m1H)

(Γ ((n+ 1)α− kγ))
q

(p ((n+ 1)α− kγ − 1) + 1)
q
p

(∫ A

m1H

∣∣∣D(n+1)α
m+;g f

∣∣∣q g′) .
(162)

We mention a right fractionalPoincaré type inequality:

Theorem 61 (by [7], p. 387) Let g ∈ C1 ([m,M ]) and strictly increasing.

Suppose that Fρ := Dρα
M−;gf , for ρ = 0, 1, ..., n + 1, n ∈ N, fulfill: Fρ ◦ g−1 ∈

AC ([g (m) , g (M)]) and
(
Fρ ◦ g−1

)′ ◦ g ∈ L∞ ([m,M ]), where α as in (163)

next. Assume that
(
Diα
M−;gf

)
(M) = 0, i = 0, 1, ..., n. Let γ > 0 with dγe = m,

and p, q > 1 : 1
p + 1

q = 1. We further assume that

1 ≥ α > max

(
m+ (k − 1) γ

n+ 1
,
kγq + 1

(n+ 1) q

)
, (163)

where k ∈ N. Then∫ M

λ

∣∣∣Dkγ
M−;gf (t)

∣∣∣q dt ≤ (g (M)− g (λ))
q((n+1)α−kγ−1)+ q

p (M − λ)

(Γ ((n+ 1)α− kγ))
q

(p ((n+ 1)α− kγ − 1) + 1)
q
p

·

(164)(∫ g(M)

g(λ)

∣∣∣((D(n+1)α
M−;g f

)
◦ g−1

)
(z)
∣∣∣q dz)

=
(g (M)− g (λ))

q((n+1)α−kγ−1)+ q
p (M − λ)

(Γ ((n+ 1)α− kγ))
q

(p ((n+ 1)α− kγ − 1) + 1)
q
p

·

(∫ M

λ

∣∣∣(D(n+1)α
M−;g f

)
(t)
∣∣∣q g′ (t) dt) ,

∀ λ ∈ [m,M ] .

Here we have that
(
Dkγ
M−;gf

)
,
(
D

(n+1)α
M−;g f

)
∈ C ([m,M ]) .

Using (164) and properties (P) and (ii), we derive the operator right frac-

tional Poincaré inequality:
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Theorem 62 All as in Theorem 61. Then∫ M1H

A

∣∣∣Dkγ
M−;gf

∣∣∣q ≤
(g (M) 1H − g (A))

q((n+1)α−kγ−1)+ q
p (M1H −A)

(Γ ((n+ 1)α− kγ))
q

(p ((n+ 1)α− kγ − 1) + 1)
q
p

(∫ M1H

A

∣∣∣D(n+1)α
M−;g f

∣∣∣q g′) .
(165)

We mention the following Sobolev type left fractional inequality:

Theorem 63 (by [6], pp. 493-495) Let 0 < α < 1, f : [m,M ] → R such that

f ′ ∈ L∞ ([m,M ]). Assume that Dkα
∗mf ∈ C ([m,M ]), k = 0, 1, ..., n + 1; n ∈ N.

Suppose that
(
Diα
∗mf

)
(m) = 0, for i = 0, 2, 3, ..., n. Let γ > 0 with dγe = m,

and p, q > 1 : 1
p + 1

q = 1. We further assume that (k ∈ N)

1 > α > max

(
m+ (k − 1) γ

n+ 1
,
kγq + 1

(n+ 1) q

)
, (166)

Let r ≥ 1. Then(∫ λ

m

∣∣(Dkγ
∗mf

)
(t)
∣∣r dt) 1

r

≤ 1

Γ ((n+ 1)α− kγ)
·

(λ−m)
(n+1)α−kγ− 1

q+
1
r

(p ((n+ 1)α− kγ − 1) + 1)
1
p

[
r
(

(n+ 1)α− kγ − 1
q

)
+ 1
] 1
r

·

(∫ λ

m

∣∣∣(D(n+1)α
∗m f

)
(t)
∣∣∣q dt) 1

q

, (167)

∀ λ ∈ [m,M ] .

Here
(
Dkγ
∗mf

)
∈ C ([m,M ]) .

Applying (167), using properties (P) and (ii), we get the following operator

left fractional Sobolev type inequality:

Theorem 64 All as in Theorem 63. Then(∫ A

m1H

∣∣Dkγ
∗mf

∣∣r) 1
r

≤ 1

Γ ((n+ 1)α− kγ)
·

(A−m1H)
(n+1)α−kγ− 1

q+
1
r

(p ((n+ 1)α− kγ − 1) + 1)
1
p

[
r
(

(n+ 1)α− kγ − 1
q

)
+ 1
] 1
r

·

(∫ A

m1H

∣∣∣D(n+1)α
∗m f

∣∣∣q) 1
q

. (168)
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We mention the following Sobolev type right fractional inequality:

Theorem 65 (by [6], p. 496) Let 0 < α < 1, f : [m,M ] → R such that

f ′ ∈ L∞ ([m,M ]). Assume that Dkα
M−f ∈ C ([m,M ]), k = 0, 1, ..., n+ 1; n ∈ N.

Suppose that
(
Diα
M−f

)
(M) = 0, for i = 0, 2, 3, ..., n. Let γ > 0 with dγe = m,

and p, q > 1 : 1
p + 1

q = 1. We further assume that (k ∈ N)

1 > α > max

(
m+ (k − 1) γ

n+ 1
,
kγq + 1

(n+ 1) q

)
, (169)

Let r ≥ 1. Then(∫ M

λ

∣∣∣(Dkγ
M−f

)
(t)
∣∣∣r dt) 1

r

≤ 1

Γ ((n+ 1)α− kγ)
·

(M − λ)
(n+1)α−kγ− 1

q+
1
r

(p ((n+ 1)α− kγ − 1) + 1)
1
p

[
r
(

(n+ 1)α− kγ − 1
q

)
+ 1
] 1
r

· (170)

(∫ M

λ

∣∣∣(D(n+1)α
M− f

)
(t)
∣∣∣q dt) 1

q

,

∀ λ ∈ [m,M ] .

Here
(
Dkγ
M−f

)
∈ C ([m,M ]) .

Applying (170), using properties (P) and (ii), we get the following operator

right fractional Sobolev type inequality:

Theorem 66 All as in Theorem 65. Then(∫ M1H

A

∣∣∣Dkγ
M−f

∣∣∣r) 1
r

≤ 1

Γ ((n+ 1)α− kγ)
·

(M1H −A)
(n+1)α−kγ− 1

q+
1
r

(p ((n+ 1)α− kγ − 1) + 1)
1
p

[
r
(

(n+ 1)α− kγ − 1
q

)
+ 1
] 1
r

·

(∫ M1H

A

∣∣∣D(n+1)α
M− f

∣∣∣q) 1
q

. (171)

We need the following left fractional Poincaré type inequality:
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Theorem 67 Let α > 0, dαe = n, α /∈ N. Let p, q > 1 : 1
p + 1

q = 1,

with α > 1
q , and g be strictly increasing with g ∈ C1 ([m,M ]). We assume

that
(
f ◦ g−1

)
∈ ACn ([g (m) , g (M)]) and

(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([m,M ]), and(
f ◦ g−1

)(k)
(g (m)) = 0, k = 0, 1, ..., n− 1. Then∫ λ

m

|f (t)|q dt ≤
‖g‖qα−1∞,[m,M ] (λ−m)

qα

(Γ (α))
q

(p (α− 1) + 1)
q−1

qα

(∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) ,

(172)

∀ λ ∈ [m,M ].

Proof. By Theorem 5, since
(
f ◦ g−1

)(k)
(g (m)) = 0, for k = 0, 1, ..., n− 1,

we get that

f (λ1) =
1

Γ (α)

∫ g(λ1)

g(m)

(g (λ1)− z)α−1
((
Dα
m+;gf

)
◦ g−1

)
(z) dz, (173)

∀ λ1 ∈ [m,M ]. Let m ≤ λ1 ≤ λ ≤M . Hence we have

|f (λ1)| ≤ 1

Γ (α)

∫ g(λ1)

g(m)

(g (λ1)− z)α−1
∣∣((Dα

m+;gf
)
◦ g−1

)
(z)
∣∣ dz ≤

1

Γ (α)

(∫ g(λ1)

g(m)

(g (λ1)− z)p(α−1) dz

) 1
p
(∫ g(λ1)

g(m)

∣∣((Dα
m+;gf

)
◦ g−1

)
(z)
∣∣q dz) 1

q

≤

1

Γ (α)

(g (λ1)− g (m))
(p(α−1)+1)

p

(p (α− 1) + 1)
1
p

(∫ g(λ)

g(m)

∣∣((Dα
m+;gf

)
◦ g−1

)
(z)
∣∣q dz) 1

q

≤

1

Γ (α)

‖g‖α−
1
q

∞,[m,M ] (λ1 −m)
α− 1

q

(p (α− 1) + 1)
1
p

(∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) 1

q

. (174)

We have proved that

|f (λ1)|q ≤
‖g‖qα−1∞,[m,M ] (λ1 −m)

qα−1

(Γ (α))
q

(p (α− 1) + 1)
q−1

(∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) . (175)

Consequently, by integration of (175), we obtain∫ λ

m

|f (λ1)|q dλ1 ≤
‖g‖qα−1∞,[m,M ] (λ−m)

qα−1

(Γ (α))
q

(p (α− 1) + 1)
q−1

qα

(∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) ,

(176)

proving the claim.

Using (172), and properties (P) and (ii), we obtain the following operator

Poincaré type left fractional inequality:
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Theorem 68 All as in Theorem 67. Then(∫ A

m1H

|f |q
)
≤

‖g‖qα−1∞,[m,M ]

(Γ (α))
q

(p (α− 1) + 1)
q−1

qα
(A−m1H)

qα

(∫ A

m1H

∣∣Dα
m+;gf

∣∣q g′) . (177)

We need the following left fractional Sobolev type inequality:

Theorem 69 All as in Theorem 67 and r ≥ 1. Then(∫ λ

m

|f (t)|r dt

) 1
r

≤

‖g‖(α−
1
q )

∞,[m,M ] (λ−m)(
α− 1

q+
1
r )

Γ (α) (p (α− 1) + 1)
1
p

(
r
(
α− 1

q

)
+ 1
) 1
r

(∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) 1

q

,

(178)

∀ λ ∈ [m,M ] .

Proof. As in the proof of Theorem 67 we find that (m ≤ λ1 ≤ λ ≤M)

|f (λ1)| ≤
‖g‖α−

1
q

∞,[m,M ] (λ1 −m)
α− 1

q

Γ (α) (p (α− 1) + 1)
1
p

(∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) 1

q

. (179)

Hence, by r ≥ 1, we obtain

|f (λ1)|r ≤
‖g‖r(α−

1
q )

∞,[m,M ] (λ1 −m)
r(α− 1

q )

(Γ (α))
r

(p (α− 1) + 1)
r
p

(∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) r

q

.

(180)

Consequently, it holds ∫ λ

m

|f (λ1)|r dλ1 ≤

‖g‖r(α−
1
q )

∞,[m,M ] (λ−m)
r(α− 1

q )+1

(Γ (α))
r

(p (α− 1) + 1)
r
p

(
r
(
a− 1

q

)
+ 1
) (∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) r

q

.

(181)

So that proving (∫ λ

m

|f (λ1)|r dλ1

) 1
r

≤
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‖g‖(α−
1
q )

∞,[m,M ] (λ−m)(
α− 1

q+
1
r )

Γ (α) (p (α− 1) + 1)
1
p

(
r
(
a− 1

q

)
+ 1
) 1
r

(∫ λ

m

∣∣(Dα
m+;gf

)
(t)
∣∣q g′ (t) dt) 1

q

.

(182)

Using (178), and properties (P) and (ii), we obtain the following operator

Sobolev type left fractional inequality:

Theorem 70 All as in Theorem 69. Then(∫ A

m1H

|f |r
) 1
r

≤
‖g‖(α−

1
q )

∞,[m,M ]

Γ (α) (p (α− 1) + 1)
1
p

(
r
(
α− 1

q

)
+ 1
) 1
r

·

(A−m1H)(
α− 1

q+
1
r )

(∫ A

m1H

∣∣(Dα
m+;gf

)∣∣q g′) 1
q

. (183)

We need the following right fractional Poincaré type inequality:

Theorem 71 Let α > 0, dαe = n, α /∈ N. Let p, q > 1 : 1
p + 1

q = 1,

with α > 1
q , and g be strictly increasing with g ∈ C1 ([m,M ]). We assume

that
(
f ◦ g−1

)
∈ ACn ([g (m) , g (M)]) and

(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([m,M ]), and(
f ◦ g−1

)(k)
(g (M)) = 0, k = 0, 1, ..., n− 1. Then

∫ M

λ

|f (t)|q dt ≤
‖g‖qα−1∞,[m,M ] (M − λ)

qα

(Γ (α))
q

(p (α− 1) + 1)
q−1

qα

(∫ M

λ

∣∣(Dα
M−;gf

)
(t)
∣∣q g′ (t) dt) ,

(184)

∀ λ ∈ [m,M ].

Proof. Similar to Theorem 67.

We derive the following Poincaré type right fractional inequality:

Theorem 72 All as in Theorem 71. Then(∫ M1H

A

|f |q
)
≤

‖g‖qα−1∞,[m,M ]

(Γ (α))
q

(p (α− 1) + 1)
q−1

qα
(M1H −A)

qα

(∫ M1H

A

∣∣Dα
M−;gf

∣∣q g′) . (185)

We need the following right fractional Sobolev type inequality:
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Theorem 73 All as in Theorem 71, r ≥ 1. Then(∫ M

λ

|f (t)|r dt

) 1
r

≤

‖g‖(α−
1
q )

∞,[m,M ] (M − λ)(
α− 1

q+
1
r )

Γ (α) (p (α− 1) + 1)
1
p

(
r
(
α− 1

q

)
+ 1
) 1
r

(∫ M

λ

∣∣(Dα
M−;gf

)
(t)
∣∣q g′ (t) dt) 1

q

,

(186)

∀ λ ∈ [m,M ] .

Proof. Similar to Theorem 69.

We derive the following operator Sobolev type right fractional inequality:

Theorem 74 All as in Theorem 73. Then(∫ M1H

A

|f |r
) 1
r

≤
‖g‖(α−

1
q )

∞,[m,M ]

Γ (α) (p (α− 1) + 1)
1
p

(
r
(
α− 1

q

)
+ 1
) 1
r

·

(M1H −A)(
α− 1

q+
1
r )

(∫ M1H

A

∣∣(Dα
M−;gf

)∣∣q g′) 1
q

. (187)

We give the following left fractional Poincaré type inequality:

Theorem 75 Here n ∈ N with n = [ν], ν > 0. Assume that g : [m,M ] → R
is strictly increasing function, f ∈ Cn ([m,M ]), g ∈ C1 ([m,M ]), and g−1 ∈
Cn ([g (m) , g (M)]). Suppose also that f◦g−1 ∈ Cνg(m) ([g (m) , g (M)]). If ν ≥ 1,

we assume that f (k) (m) = 0, all k = 0, 1, ..., [ν] − 1. Let p, q > 1 : 1
p + 1

q = 1,

ν > 1
q . Then ∫ λ

m

|f (t)|q dt ≤ (188)

‖g‖qν−1∞,[m,M ] (λ−m)
qν

(Γ (ν))
q

(p (ν − 1) + 1)
q−1

qν

(∫ λ

m

∣∣∣(Dν
g(m)

(
f ◦ g−1

))
(g (s))

∣∣∣q g′ (t) dt) ,
∀ λ ∈ [m,M ] .

Proof. Similar to Theorem 67.

We give the following operator Poincaré type left fractional inequality:

Theorem 76 All as in Theorem 75. Then(∫ A

m1H

|f |q
)
≤
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‖g‖qν−1∞,[m,M ]

(Γ (ν))
q

(p (ν − 1) + 1)
q−1

qν
(A−m1H)

qν

(∫ A

m1H

∣∣∣(Dν
g(m)

(
f ◦ g−1

))
◦ g
∣∣∣q g′) .
(189)

We need the following left fractional Sobolev type inequality:

Theorem 77 All as in Theorem 75 and r ≥ 1. Then(∫ λ

m

|f (t)|r dt

) 1
r

≤
‖g‖(ν−

1
q )

∞,[m,M ] (λ−m)(
ν− 1

q+
1
r )

Γ (ν) (p (ν − 1) + 1)
1
p

(
r
(
ν − 1

q

)
+ 1
) 1
r

·

(∫ λ

m

∣∣∣(Dν
g(m)

(
f ◦ g−1

))
(g (s))

∣∣∣q g′ (t) dt) 1
q

, (190)

∀ λ ∈ [m,M ] .

Proof. Similar to Theorem 69.

We give the corresponding operator Sobolev type left fractional inequality:

Theorem 78 All as in Theorem 77. Then(∫ A

m1H

|f |r
) 1
r

≤
‖g‖(ν−

1
q )

∞,[m,M ]

Γ (ν) (p (ν − 1) + 1)
1
p

(
r
(
ν − 1

q

)
+ 1
) 1
r

·

(A−m1H)(
ν− 1

q+
1
r )

(∫ A

m1H

∣∣∣(Dν
g(m)

(
f ◦ g−1

))
◦ g
∣∣∣q g′) 1

q

. (191)

Proof. Using (190).

We give the following right fractional Poincaré type inequality:

Theorem 79 Here n ∈ N with n = [ν], ν > 0. Assume that g : [m,M ] → R
is strictly increasing function, f ∈ Cn ([m,M ]), g ∈ C1 ([m,M ]), and g−1 ∈
Cn ([g (m) , g (M)]). Suppose also that f ◦ g−1 ∈ Cνg(M)− ([g (m) , g (M)]). If

ν ≥ 1, we assume that f (k) (M) = 0, all k = 0, 1, ..., [ν] − 1. Let p, q > 1 :
1
p + 1

q = 1, ν > 1
q . Then

∫ M

λ

|f (t)|q dt ≤
‖g‖qν−1∞,[m,M ] (M − λ)

qν

(Γ (ν))
q

(p (ν − 1) + 1)
q−1

qν
· (192)

(∫ M

λ

∣∣∣(Dν
g(M)−

(
f ◦ g−1

))
(g (s))

∣∣∣q g′ (t) dt) ,
∀ λ ∈ [m,M ] .
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Proof. Similar to Theorem 67.

We give the following operator Poincaré type right fractional inequality:

Theorem 80 All as in Theorem 79. Then(∫ M1H

A

|f |q
)
≤

‖g‖qν−1∞,[m,M ]

(Γ (ν))
q

(p (ν − 1) + 1)
q−1

qν
· (193)

(M1H −A)
qν

(∫ M1H

A

∣∣∣(Dν
g(M)−

(
f ◦ g−1

))
◦ g
∣∣∣q g′) .

We need the following right fractional Sobolev type inequality:

Theorem 81 All as in Theorem 79, r ≥ 1. Then(∫ M

λ

|f (t)|r dt

) 1
r

≤
‖g‖(ν−

1
q )

∞,[m,M ] (M − λ)(
ν− 1

q+
1
r )

Γ (ν) (p (ν − 1) + 1)
1
p

(
r
(
ν − 1

q

)
+ 1
) 1
r

·

(∫ M

λ

∣∣∣(Dν
g(M)−

(
f ◦ g−1

))
(g (s))

∣∣∣q g′ (t) dt) 1
q

, (194)

∀ λ ∈ [m,M ] .

Proof. Similar to Theorem 69.

We give the corresponding operator Sobolev type right fractional inequality:

Theorem 82 All as in Theorem 81. Then(∫ M1H

A

|f |r
) 1
r

≤
‖g‖(ν−

1
q )

∞,[m,M ]

Γ (ν) (p (ν − 1) + 1)
1
p

(
r
(
ν − 1

q

)
+ 1
) 1
r

·

(M1H −A)(
ν− 1

q+
1
r )

(∫ M1H

A

∣∣∣(Dν
g(M)−

(
f ◦ g−1

))
◦ g
∣∣∣q g′) 1

q

. (195)

Proof. Using (194).

We give the following Poincaré type left fractional inequality:

Theorem 83 Let g : [m,M ] → R be strictly increasing, f ∈ C1 ([m,M ]),

g ∈ C1 ([m,M ]), and g−1 ∈ C1 ([g (m) , g (M)]), 0 < ν < 1. Suppose that(
Diν
g(m)

(
f ◦ g−1

))
∈ Cνg(m) ([g (m) , g (M)]), i = 0, 1, ...,m, and

(
D

(m+1)ν
g(m)

(
f ◦ g−1

))
∈ C ([g (m) , g (M)]). Let p, q > 1 : 1

p + 1
q = 1, with ν > 1

(m+1)q . Then

∫ λ

m

|f (t)|q dt ≤
‖g‖q(m+1)ν−1
∞,[m,M ]

(Γ ((m+ 1) ν))
q

(p ((m+ 1) ν − 1) + 1)
q−1

q (m+ 1) ν
· (196)
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(λ−m)
q(m+1)ν

(∫ λ

m

∣∣∣(D(m+1)ν
g(m)

(
f ◦ g−1

))
(g (s))

∣∣∣q g′ (t) dt) ,
∀ λ ∈ [m,M ] .

Proof. Similar to Theorem 67.

We give the corresponding operator Poincaré type left fractional inequality:

Theorem 84 All as in Theorem 83. Then(∫ A

m1H

|f |q
)
≤

‖g‖q(m+1)ν−1
∞,[m,M ]

(Γ ((m+ 1) ν))
q

(p ((m+ 1) ν − 1) + 1)
q−1

q (m+ 1) ν
·

(A−m1H)
q(m+1)ν

(∫ A

m1H

∣∣∣D(m+1)ν
g(m)

(
f ◦ g−1

)
◦ g
∣∣∣q g′) . (197)

We need the following left fractional Sobolev type inequality:

Theorem 85 All as in Theorem 83, and r ≥ 1. Then(∫ λ

m

|f (t)|r dt

) 1
r

≤ (198)

‖g‖(m+1)ν− 1
q

∞,[m,M ] (λ−m)(
(m+1)ν− 1

q+
1
r )

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

(
r
(

(m+ 1) ν − 1
q

)
+ 1
) 1
r

·

(∫ λ

m

∣∣∣(D(m+1)ν
g(m)

(
f ◦ g−1

))
(g (s))

∣∣∣q g′ (t) dt) 1
q

,

∀ λ ∈ [m,M ] .

Proof. Similar to Theorem 69.

We give the corresponding operator Sobolev type left fractional inequality:

Theorem 86 All as in Theorem 85. Then(∫ A

m1H

|f |r
) 1
r

≤

‖g‖(m+1)ν− 1
q

∞,[m,M ]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

(
r
(

(m+ 1) ν − 1
q

)
+ 1
) 1
r

·

(A−m1H)(
(m+1)ν− 1

q+
1
r )

(∫ A

m1H

∣∣∣(D(m+1)ν
g(m)

(
f ◦ g−1

))
◦ g
∣∣∣q g′) 1

q

. (199)
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Proof. Using (198).

We give the following Poincaré type right fractional inequality:

Theorem 87 Let g : [m,M ] → R be strictly increasing, f ∈ C1 ([m,M ]),

g ∈ C1 ([m,M ]), and g−1 ∈ C1 ([g (m) , g (M)]), 0 < ν < 1. Suppose that(
Diν
g(M)−

(
f ◦ g−1

))
∈ Cνg(M)− ([g (m) , g (M)]), i = 0, 1, ...,m, and

(
D

(m+1)ν
g(M)−

(
f ◦ g−1

))
∈ C ([g (m) , g (M)]). Let p, q > 1 : 1

p + 1
q = 1, with ν > 1

(m+1)q . Then

∫ M

λ

|f (t)|q dt ≤
‖g‖q(m+1)ν−1
∞,[m,M ]

(Γ ((m+ 1) ν))
q

(p ((m+ 1) ν − 1) + 1)
q−1

q (m+ 1) ν
· (200)

(M − λ)
q(m+1)ν

(∫ M

λ

∣∣∣(D(m+1)ν
g(M)−

(
f ◦ g−1

))
(g (s))

∣∣∣q g′ (t) dt) ,
∀ λ ∈ [m,M ] .

Proof. Similar to Theorem 67.

We give the corresponding operator Poincaré type right fractional inequality:

Theorem 88 All as in Theorem 87. Then(∫ M1H

A

|f |q
)
≤

‖g‖q(m+1)ν−1
∞,[m,M ]

(Γ ((m+ 1) ν))
q

(p ((m+ 1) ν − 1) + 1)
q−1

q (m+ 1) ν
·

(M1H −A)
q(m+1)ν

(∫ M1H

A

∣∣∣D(m+1)ν
g(M)−

(
f ◦ g−1

)
◦ g
∣∣∣q g′) . (201)

We need the following right fractional Sobolev type inequality:

Theorem 89 All as in Theorem 87, r ≥ 1. Then(∫ M

λ

|f (t)|r dt

) 1
r

≤

‖g‖(m+1)ν− 1
q

∞,[m,M ]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

(
r
(

(m+ 1) ν − 1
q

)
+ 1
) 1
r

·

(M − λ)(
(m+1)ν− 1

q+
1
r )

(∫ M

λ

∣∣∣(D(m+1)ν
g(M)−

(
f ◦ g−1

))
(g (s))

∣∣∣q g′ (t) dt) 1
q

, (202)

∀ λ ∈ [m,M ] .
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Proof. Similar to Theorem 69.

We finish with the corresponding operator Sobolev type right fractional in-

equality:

Theorem 90 All as in Theorem 89. Then(∫ M1H

A

|f |r
) 1
r

≤

‖g‖(m+1)ν− 1
q

∞,[m,M ]

Γ ((m+ 1) ν) (p ((m+ 1) ν − 1) + 1)
1
p

(
r
(

(m+ 1) ν − 1
q

)
+ 1
) 1
r

·

(M1H −A)(
(m+1)ν− 1

q+
1
r )

(∫ M1H

A

∣∣∣(D(m+1)ν
g(M)−

(
f ◦ g−1

))
◦ g
∣∣∣q g′) 1

q

. (203)

Proof. Using (202).
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