
INEQUALITIES OF MCCARTHY�S TYPE IN HERMITIAN
UNITAL BANACH �-ALGEBRAS

S. S. DRAGOMIR1;2

Abstract. We establish in this paper some inequalities of McCarthy�s type
that hold for bounded linear operators on Hilbert spaces in the more general
setting of Hermitian unital Banach �-algebra and positive linear functionals.

1. Introduction

Let A be a nonnegative operator on the complex Hilbert space (H; h�; �i), namely
hAx; xi � 0 for any x 2 H: We write this as A � 0:
By the use of the spectral resolution of A and the Hölder inequality, C. A.

McCarthy [15] proved that

(1.1) hAx; xip � hApx; xi ; p 2 (1;1)

and

(1.2) hApx; xi � hAx; xip ; p 2 (0; 1)

for any x 2 H with kxk = 1:
Let A be a selfadjoint operator on H with

(1.3) mI � A �MI;

where I is the identity operator and m; M are real numbers with m < M: In
[9, Theorem 3] Fujii et al. obtained the following interesting ratio inequality that
provides a reverse of the Hölder-McCarthy inequality (1.1) for an operator A that
satisfy the condition (1.3) with m > 0

(1.4) hApx; xi �
(

1

p1=pq1=q
Mp �mp

(M �m)1=p (mMp �Mmp)
1=q

)p
hAx; xip ;

for any x 2 H with kxk = 1; where q = p=(p� 1); p > 1:
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If A satis�es the condition (1.3) with m � 0; then we also have the additive
reverse of (1.1) that has been obtained by the author in 2008, see [5]

0 � hApx; xi � hAx; xip(1.5)

� p

8>>><>>>:
1
2 (M �m)

hAp�1x2 � 
Ap�1x; x�2i1=2
1
2

�
Mp�1 �mp�1� hkAxk2 � hAx; xi2i1=2

� 1

4
p (M �m)

�
Mp�1 �mp�1� ;

for any x 2 H with kxk = 1; where p > 1:
For various related inequalities, see [8]-[10] and [14].
Motivated by the above results we establish in this paper some similar inequalities

in the more general setting of Hermitian unital Banach �-algebra and positive linear
functionals.

2. Some Facts on Hermitian �-Algebras

Let A be a unital Banach �-algebra with unit 1. An element a 2 A is called
selfadjoint if a� = a: A is called Hermitian if every selfadjoint element a in A has
real spectrum � (a) ; namely � (a) � R.
In what follows we assume that A is a Hermitian unital Banach �-algebra.
We say that an element a is nonnegative and write this as a � 0 if a� = a and

� (a) � [0;1) : We say that a is positive and write a > 0 if a � 0 and 0 =2 � (a) :
Thus a > 0 implies that its inverse a�1 exists. Denote the set of all invertible
elements of A by Inv (A) : If a; b 2 Inv (A) ; then ab 2 Inv (A) and (ab)�1 = b�1a�1:
Also, saying that a � b means that a � b � 0 and, similarly a > b means that
a� b > 0:
The Shirali-Ford theorem asserts that [18] (see also [1, Theorem 41.5])

(SF) a�a � 0 for every a 2 A:

Based on this fact, Okayasu [17], Tanahashi and Uchiyama [20] proved the following
fundamental properties (see also [7]):

(i) If a; b 2 A; then a � 0; b � 0 imply a+ b � 0 and � � 0 implies �a � 0;
(ii) If a; b 2 A; then a > 0; b � 0 imply a+ b > 0;
(iii) If a; b 2 A; then either a � b > 0 or a > b � 0 imply a > 0;
(iv) If a > 0; then a�1 > 0;
(v) If c > 0; then 0 < b < a if and only if cbc < cac; also 0 < b � a if and only

if cbc � cac;
(vi) If 0 < a < 1; then 1 < a�1;
(vii) If 0 < b < a; then 0 < a�1 < b�1; also if 0 < b � a; then 0 < a�1 � b�1:

Okayasu [17] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach �-algebra with continuous involution, namely if a; b 2 A and
p 2 [0; 1] then a > b (a � b) implies that ap > bp (ap � bp) :
In order to introduce the real power of a positive element, we need the following

facts [1, Theorem 41.5].
Let a 2 A and a > 0; then 0 =2 � (a) and the fact that � (a) is a compact subset

of C implies that inffz : z 2 � (a)g > 0 and supfz : z 2 � (a)g < 1: Choose  to
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be close recti�able curve in fRe z > 0g; the right half open plane of the complex
plane, such that � (a) � ins () ; the inside of : Let G be an open subset of C with
� (a) � G: If f : G! C is analytic, we de�ne an element f (a) in A by

f (a) :=
1

2�i

Z


f (z) (z � a)�1 dz:

It is well known (see for instance [2, pp. 201-204]) that f (a) does not depend on
the choice of  and the Spectral Mapping Theorem (SMT)

� (f (a)) = f (� (a))

holds.
For any � 2 R we de�ne for a 2 A and a > 0; the real power

a� :=
1

2�i

Z


z� (z � a)�1 dz;

where z� is the principal �-power of z: Since A is a Banach �-algebra, then a� 2 A:
Moreover, since z� is analytic in fRe z > 0g; then by (SMT) we have

� (a�) = (� (a))
�
= fz� : z 2 � (a)g � (0;1) :

Following [7], we list below some important properties of real powers:

(viii) If 0 < a 2 A and � 2 R, then a� 2 A with a� > 0 and
�
a2
�1=2

= a; [20,
Lemma 6];

(ix) If 0 < a 2 A and �; � 2 R, then a�a� = a�+� ;

(x) If 0 < a 2 A and � 2 R, then (a�)�1 =
�
a�1

��
= a��;

(xi) If 0 < a; b 2 A, �; � 2 R and ab = ba; then a�b� = b�a�:

Now, assume that f (z) is analytic in the right half open plane fRe z > 0g and
for the interval I � (0;1) assume that f (z) � 0 for any z 2 I: If u 2 A such that
� (u) � I; then by (SMT) we have

� (f (u)) = f (� (u)) � f (I) � [0;1)

meaning that f (u) � 0 in the order of A:
Therefore, we can state the following fact that will be used to establish various

inequalities in A:

Lemma 1. Let f (z) and g (z) be analytic in the right half open plane fRe z > 0g
and for the interval I � (0;1) assume that f (z) � g (z) for any z 2 I: Then for
any u 2 A with � (u) � I we have f (u) � g (u) in the order of A:

De�nition 1. Assume that A is a Hermitian unital Banach �-algebra. A linear
functional  : A ! C is positive if for a � 0 we have  (a) � 0: We say that it is
normalized if  (1) = 1:

We observe that the positive linear functional  preserves the order relation,
namely if a � b then  (a) �  (b) and if � � a � � with �; � real numbers, then
� �  (a) � �:

3. McCarthy�s Type Inequalities

We have the following result:



4 S. S. DRAGOMIR1;2

Theorem 1. Assume that A is a Hermitian unital Banach �-algebra and  : A! C
a positive normalized linear functional on A:
(i) If p 2 (0; 1) and a � 0; then

(3.1)  p (a) �  (ap) � 0;
(ii) If q � 1 and b � 0; then

(3.2)  (bq) �  q (b) � 0:

Proof. (i) Using the arithmetic mean-geometric mean inequality for positive real
numbers, we have

(1� p)�+ p� � �1�p�p

for any �; � � 0:
Fix p 2 (0; 1) and � � 0 and apply Lemma 1 for f (z) = (1� p)� + pz and

g (z) = �1�pzp to get in the order of A that

(3.3) (1� p)�+ pu � �1�pup

for any u 2 A with u > 0 and p 2 (0; 1), � � 0:
If we take the functional  for u = a in (3.3) we get the scalar inequality

(3.4) (1� p)�+ p (a) � �1�p (ap)

for any p 2 (0; 1), � � 0:
If  (a) > 0; then by taking � =  (a) we get  (a) �  1�p (a) (ap), which by

dividing with  1�p (a) > 0 produces

(3.5)  p (a) �  (ap) :

If  (a) = 0 then by (3.4) we get

(3.6) (1� p)� � �1�p (ap)

for any � > 0: Dividing by �1�p > 0 we get (1� p)�� �  (ap) for any � > 0:
By letting � ! 0+ in this inequality, we get 0 �  (ap) and since  (ap) � 0 we
conclude that  (ap) = 0 and the inequality (3.1) is veri�ed with equality.
Now, if a � 0 then for " > 0 we have in the order of A that a + "1 > 0 and by

(3.5)

(3.7)  p (a+ "1) �  ((a+ "1)
p
) � 0;

for any for " > 0:
By taking the limit over "! 0+ in (3.7) and using the continuity of the functional

 and the power function, we recapture (3.1).
(ii) For q = 1 we have equality. If q > 1; then for p = 1

q 2 (0; 1) and a = bq � 0
for b � 0 we get from (3.1) that

 1=q (bq) �  
�
(bq)

1=q
�
=  (b) � 0

and by taking the power q in this inequality we get (3.2). �

Remark 1. From (3.1) we have for p = 1=2; that

(3.8)  1=2 (a) �  
�
a1=2

�
� 0;

while from (3.2) for p = 2 that

(3.9)  
�
b2
�
�  2 (b) � 0;
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for any a; b � 0:

Theorem 2. If r < 0; c > 0 and  : A ! C is a positive normalized linear
functional on A with  (c) > 0; then

(3.10)  (cr) �  r (c) > 0:

Proof. Using the gradient inequality for the convex function f : (0;1) ! (0;1),
f (t) = tr; r < 0 we have

f (t)� f (s) � f 0 (s) (t� s) ;
for any t; s > 0; namely

tr � sr � rsr�1 (t� s) ;
for any t; s > 0; which, as above, gives the inequality in the order of A that

(3.11) ur � sr � rsr�1 (u� s) ;
for any element u 2 A with u > 0 and positive real number s:
From (3.11) we then get

cr �  r (c) � r r�1 (c) (c�  (c)) ;
and if we take in this inequality the functional  we get

 (cr)�  r (c) � r r�1 (c) ( (c)�  (c)) = 0;
which proves the desired result (3.10). �

Remark 2. The above technique based on the convexity of the power function can
be employed to provide another proof of the inequalities (3.1) and (3.2).
From (3.10) we get for r = �1 that

(3.12)  
�
c�1

�
�  �1 (c) > 0;

where c > 0 and  : A ! C is a positive normalized linear functional on A with
 (c) > 0:

4. Refinements and Reverses

We have the following re�nement and reverse of the inequality (3.1):

Theorem 3. Assume that A is a Hermitian unital Banach �-algebra and  : A! C
a positive normalized linear functional on A: If p 2 (0; 1) and 0 < c 2 A with
 (c) > 0; then

2r p�1=2 (c)
�
 1=2 (c)�  

�
c1=2

��
�  p (c)�  (cp)(4.1)

� 2r p�1=2 (c)
�
 1=2 (c)�  

�
c1=2

��
;

where r := min f1� p; pg and R := max f1� p; pg :

Proof. We use the following double inequality obtained by Kittaneh and Manasrah
[11], [12] that provide a re�nement and an additive reverse for Young�s inequality
as follows:

(4.2) r
�p

��
p
�
�2
� (1� p)�+ p� � �1�p�p � R

�p
��

p
�
�2

where �; � � 0, p 2 [0; 1]; r = min f1� p; pg and R = max f1� p; pg :
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This is equivalent to

(4.3) r
�
�� 2

p
�
p
� + �

�
� (1� p)�+ p� � �1�p�p � R

�
�� 2

p
�
p
� + �

�
for any �; � � 0, p 2 [0; 1]:
Using Lemma 1 and a similar argument to the one in the proof of Theorem 1 we

can state that

(4.4) r
�
�� 2

p
�c1=2 + c

�
� (1� p)�+ pc� �1�pcp � R

�
�� 2

p
�c1=2 + c

�
for any � � 0, p 2 [0; 1] and c 2 A with c > 0:
If we take the functional  in the inequality (4.4), then we get

r
�
�� 2

p
� 
�
c1=2

�
+  (c)

�
� (1� p)�+ p (c)� �1�p (cp)(4.5)

� R
�
�� 2

p
� 
�
c1=2

�
+  (c)

�
for any � � 0, p 2 [0; 1] and c 2 A with c > 0:
If we take in (4.5) � =  (c) ; then we get

2r 1=2 (c)
�
 1=2 (c)�  

�
c1=2

��
�  1�p (c) ( p (c)�  (cp))

� 2R 1=2 (c)
�
 1=2 (c)�  

�
c1=2

��
;

which, by division with  1�p (c) > 0 is equivalent to the desired result (4.1). �

Corollary 1. Assume that A is a Hermitian unital Banach �-algebra and  : A!
C a positive normalized linear functional on A: Suppose also that there exists the
constant m; M > 0 and c 2 A such that

(4.6) M � c � m

in the order of A:
(i) If p 2

�
1
2 ; 1
�
; then by (4.1) we have

2 (1� p)mp� 1
2

�
 1=2 (c)�  

�
c1=2

��
(4.7)

� 2 (1� p) p�1=2 (c)
�
 1=2 (c)�  

�
c1=2

��
�  p (c)�  (cp)

� 2p p�1=2 (c)
�
 1=2 (c)�  

�
c1=2

��
� 2pMp� 1

2

�
 1=2 (c)�  

�
c1=2

��
:

(ii) If p 2
�
0; 12

�
; then by (4.1) we have

2pMp� 1
2

�
 1=2 (c)�  

�
c1=2

��
(4.8)

� 2p p�1=2 (c)
�
 1=2 (c)�  

�
c1=2

��
�  p (c)�  (cp)

� 2 (1� p) p�1=2 (c)
�
 1=2 (c)�  

�
c1=2

��
� 2 (1� p)mp� 1

2

�
 1=2 (c)�  

�
c1=2

��
:

The proof follows by (4.1) on observing that M �  (c) � m > 0:
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We recall that Specht�s ratio is de�ned by

S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function S is decreasing on (0; 1) and increasing on (1;1) :
Tominaga [21] had proved a reverse Young inequality with the Specht�s ratio [19]

as follows:

(4.9)
�
�1���� �

�
(1� �)�+ �� � S

�
�

�

�
�1����

for any �; � > 0 and � 2 [0; 1] :
The following result also holds:

Theorem 4. Assume that A is a Hermitian unital Banach �-algebra and  : A! C
a positive normalized linear functional on A: Suppose also that there exists the
constant m; M > 0 and c 2 A such that the condition (4.6) is valid.
(i) If p 2 (0; 1), then

(4.10)  p (c) � S

�
M

m

�
 (cp) :

(ii) If q 2 (1;1), then

(4.11)  (cq) � Sq
��

M

m

�q�
 q (c) :

Proof. (i) Assume that p 2 (0; 1) : Let �; � 2 [m;M ] � (0;1), then m
M � �

� �
M
m

with m
M < 1 < M

m : If
�
� 2

�
m
M ; 1

�
then S

�
�
�

�
� S

�
m
M

�
= S

�
M
m

�
. If �� 2

�
1; Mm

�
then also S

�
�
�

�
� S

�
M
m

�
: Therefore for any �; � 2 [m;M ] we have by (4.9) that

(4.12) (1� p)�+ p� � S

�
M

m

�
�1�p�p:

Using Lemma 1 , we have from (4.12) for c 2 A such that the condition (4.6) is
valid, that

(4.13) (1� p)�+ pc � S

�
M

m

�
�1�pcp

for any � 2 [m;M ] and p 2 (0; 1) :
If we take the functional  in (4.13), then we get

(1� p)�+ p (c) � S

�
M

m

�
�1�p (cp)

which for � =  (c) 2 [m;M ] provides

 (c) � S

�
M

m

�
 1�p (c) (cp) :

If we divide this inequality by  1�p (c) > 0; then we get (4.10).
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(ii) From the condition (4.6) we have 0 < mq � cq � Mq: If we write the
inequality (4.10) for p = 1

q we have

 1=q (cq) � S

��
M

m

�q�
 (cqp) = S

��
M

m

�q�
 (c)

and by taking the power q in this inequality we get the desired result (4.11). �

Remark 3. If we take p = 1=2 in (4.10), then we have

(4.14)  1=2 (c) � S

�
M

m

�
 
�
c1=2

�
:

We consider the Kantorovich�s constant de�ned by

(4.15) K (h) :=
(h+ 1)

2

4h
; h > 0:

The function K is decreasing on (0; 1) and increasing on [1;1) ; K (h) � 1 for any
h > 0 and K (h) = K

�
1
h

�
for any h > 0:

The following multiplicative re�nement and reverse of Young inequality in terms
of Kantorovich�s constant holds

(4.16) (1� �)�+ �� � KR

�
�

�

�
�1���� ;

where �; � > 0, � 2 [0; 1] and R = max f1� �; �g :
This inequality has been obtained by Liao et al. in [13].

Theorem 5. Assume that A is a Hermitian unital Banach �-algebra and  : A! C
a positive normalized linear functional on A: Suppose also that there exists the
constant m; M > 0 and c 2 A such that the condition (4.6) is valid.
(i) If p 2 (0; 1), then

(4.17)  p (c) � KR

�
M

m

�
 (cp) ;

where R = max fp; 1� pg :
(ii) If q 2 (1;1), then

(4.18)  (cq) � KQ

��
M

m

�q�
 q (c) ;

where Q = max fq � 1; 1g :

Proof. (i) Assume that p 2 (0; 1) and put R = max f1� p; pg : Let �; � 2 [m;M ] �
(0;1), then m

M � �
� � M

m with m
M < 1 < M

m : If
�
� 2

�
m
M ; 1

�
then KR

�
�
�

�
�

KR
�
m
M

�
= KR

�
M
m

�
. If �� 2

�
1; Mm

�
then also KR

�
�
�

�
� KR

�
M
m

�
: Therefore for

any �; � 2 [m;M ] we have by (4.16) that

(4.19) (1� p)�+ p� � KR

�
M

m

�
�1�p�p:

Now, on making use of a similar argument to the one from (i) in Theorem 4, we
get (4.17).
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(ii) Let q 2 (1;1) : Then 1
q 2 (0; 1) and max

n
1� 1

q ;
1
q

o
= 1

q max fq � 1; 1g =
1
qQ: Since m

qI � cq �MqI and by applying (4.17) we have

(4.20)  1=q (cq) � K
1
qQ

��
M

m

�q�
 (c) :

Now, by taking the power q > 1 in (4.20) we get the desired result (4.18). �

Remark 4. If we take p = 1=2 in (4.17), then we have

(4.21)  1=2 (c) � K1=2

�
M

m

�
 
�
c1=2

�
:

In the recent paper [3] we obtained the following reverses of Young�s inequality
as well:

(4.22) 1 � (1� �)�+ ��
�1����

� exp
�
4� (1� �)

�
K

�
�

�

�
� 1
��

;

where �; � > 0, � 2 [0; 1]:
By a similar argument employed above, we can state:

Theorem 6. Under the assumptions of Theorem 5, we have:
(i) If p 2 (0; 1), then

(4.23)  p (c) � exp
�
4p (1� p)

�
K

�
M

m

�
� 1
��

 (cp) ;

where R = max fp; 1� pg :
(ii) If q 2 (1;1), then

(4.24)  (cq) � exp
�
4

�
q � 1
q

��
K

��
M

m

�q�
� 1
��

 q (c) :

Finally, by the use of the inequality [5]

(4.25)
(1� �)�+ ��

�1����
� exp

"
1

2
� (1� �) (� � �)2

min2 f�; �g

#
;

we also have:

Theorem 7. Under the assumptions of Theorem 5, we have:
(i) If p 2 (0; 1), then

(4.26)  p (c) � exp
"
1

2
p (1� p)

�
M

m
� 1
�2#

 (cp) :

(ii) If q 2 (1;1), then

(4.27)  (cq) � exp
"
q � 1
2q

��
M

m

�q
� 1
�2#

 q (c) :
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