INEQUALITIES OF MCCARTHY'S TYPE IN HERMITIAN UNITAL BANACH *-ALGEBRAS

S. S. DRAGOMIR 1,2

ABSTRACT. We establish in this paper some inequalities of McCarthy's type that hold for bounded linear operators on Hilbert spaces in the more general setting of Hermitian unital Banach *-algebra and positive linear functionals.

1. INTRODUCTION

Let A be a nonnegative operator on the complex Hilbert space $(H, \langle \cdot, \cdot \rangle)$, namely $\langle Ax, x \rangle \geq 0$ for any $x \in H$. We write this as $A \geq 0$.

By the use of the spectral resolution of A and the Hölder inequality, C. A. McCarthy [15] proved that

(1.1)
$$\langle Ax, x \rangle^p \le \langle A^p x, x \rangle, \ p \in (1, \infty)$$

and

(1.2)
$$\langle A^p x, x \rangle \leq \langle Ax, x \rangle^p, \ p \in (0, 1)$$

for any $x \in H$ with ||x|| = 1.

Let A be a selfadjoint operator on H with

$$(1.3) mI \le A \le MI,$$

where I is the *identity operator* and m, M are real numbers with m < M. In [9, Theorem 3] Fujii et al. obtained the following interesting ratio inequality that provides a reverse of the *Hölder-McCarthy inequality* (1.1) for an operator A that satisfy the condition (1.3) with m > 0

(1.4)
$$\langle A^{p}x,x\rangle \leq \left\{\frac{1}{p^{1/p}q^{1/q}}\frac{M^{p}-m^{p}}{(M-m)^{1/p}(mM^{p}-Mm^{p})^{1/q}}\right\}^{p}\langle Ax,x\rangle^{p},$$

for any $x \in H$ with ||x|| = 1, where q = p/(p-1), p > 1.

 $^{1991\} Mathematics\ Subject\ Classification.\ 47A63,\ 47A30,\ 15A60,\ 26D15,\ 26D10.$

Key words and phrases. Hermitian unital Banach *-algebra, Positive linear functionals, Inequalities for power function, McCarthy's type inequalities.

If A satisfies the condition (1.3) with $m \ge 0$, then we also have the additive reverse of (1.1) that has been obtained by the author in 2008, see [5]

(1.5)
$$0 \leq \langle A^{p}x, x \rangle - \langle Ax, x \rangle^{p} \\ \leq p \begin{cases} \frac{1}{2} (M-m) \left[\|A^{p-1}x\|^{2} - \langle A^{p-1}x, x \rangle^{2} \right]^{1/2} \\ \frac{1}{2} (M^{p-1} - m^{p-1}) \left[\|Ax\|^{2} - \langle Ax, x \rangle^{2} \right]^{1/2} \\ \leq \frac{1}{4} p (M-m) (M^{p-1} - m^{p-1}) , \end{cases}$$

for any $x \in H$ with ||x|| = 1, where p > 1.

For various related inequalities, see [8]-[10] and [14].

Motivated by the above results we establish in this paper some similar inequalities in the more general setting of Hermitian unital Banach *-algebra and positive linear functionals.

2. Some Facts on Hermitian *-Algebras

Let A be a unital Banach *-algebra with unit 1. An element $a \in A$ is called *selfadjoint* if $a^* = a$. A is called *Hermitian* if every selfadjoint element a in A has real spectrum $\sigma(a)$, namely $\sigma(a) \subset \mathbb{R}$.

In what follows we assume that A is a Hermitian unital Banach *-algebra.

We say that an element a is *nonnegative* and write this as $a \ge 0$ if $a^* = a$ and $\sigma(a) \subset [0, \infty)$. We say that a is *positive* and write a > 0 if $a \ge 0$ and $0 \notin \sigma(a)$. Thus a > 0 implies that its inverse a^{-1} exists. Denote the set of all invertible elements of A by Inv (A). If $a, b \in \text{Inv}(A)$, then $ab \in \text{Inv}(A)$ and $(ab)^{-1} = b^{-1}a^{-1}$. Also, saying that $a \ge b$ means that $a - b \ge 0$ and, similarly a > b means that a - b > 0.

The Shirali-Ford theorem asserts that [18] (see also [1, Theorem 41.5])

(SF)
$$a^*a \ge 0$$
 for every $a \in A$.

Based on this fact, Okayasu [17], Tanahashi and Uchiyama [20] proved the following fundamental properties (see also [7]):

(i) If $a, b \in A$, then $a \ge 0, b \ge 0$ imply $a + b \ge 0$ and $\alpha \ge 0$ implies $\alpha a \ge 0$;

- (ii) If $a, b \in A$, then $a > 0, b \ge 0$ imply a + b > 0;
- (iii) If $a, b \in A$, then either $a \ge b > 0$ or $a > b \ge 0$ imply a > 0;
- (iv) If a > 0, then $a^{-1} > 0$;
- (v) If c > 0, then 0 < b < a if and only if cbc < cac, also $0 < b \le a$ if and only if $cbc \le cac$;
- (vi) If 0 < a < 1, then $1 < a^{-1}$;
- (vii) If 0 < b < a, then $0 < a^{-1} < b^{-1}$, also if $0 < b \le a$, then $0 < a^{-1} \le b^{-1}$.

Okayasu [17] showed that the *Löwner-Heinz inequality* remains valid in a Hermitian unital Banach *-algebra with continuous involution, namely if $a, b \in A$ and $p \in [0, 1]$ then a > b ($a \ge b$) implies that $a^p > b^p$ ($a^p \ge b^p$).

In order to introduce the real power of a positive element, we need the following facts [1, Theorem 41.5].

Let $a \in A$ and a > 0, then $0 \notin \sigma(a)$ and the fact that $\sigma(a)$ is a compact subset of \mathbb{C} implies that $\inf\{z : z \in \sigma(a)\} > 0$ and $\sup\{z : z \in \sigma(a)\} < \infty$. Choose γ to be close rectifiable curve in {Re z > 0}, the right half open plane of the complex plane, such that $\sigma(a) \subset \operatorname{ins}(\gamma)$, the inside of γ . Let G be an open subset of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic, we define an element f(a) in A by

$$f(a) := \frac{1}{2\pi i} \int_{\gamma} f(z) (z-a)^{-1} dz.$$

It is well known (see for instance [2, pp. 201-204]) that f(a) does not depend on the choice of γ and the Spectral Mapping Theorem (SMT)

$$\sigma\left(f\left(a\right)\right) = f\left(\sigma\left(a\right)\right)$$

holds.

For any $\alpha \in \mathbb{R}$ we define for $a \in A$ and a > 0, the real power

$$a^{\alpha} := \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} \left(z - a \right)^{-1} dz,$$

where z^{α} is the principal α -power of z. Since A is a Banach *-algebra, then $a^{\alpha} \in A$. Moreover, since z^{α} is analytic in {Re z > 0}, then by (SMT) we have

$$\sigma(a^{\alpha}) = (\sigma(a))^{\alpha} = \{z^{\alpha} : z \in \sigma(a)\} \subset (0, \infty).$$

Following [7], we list below some important properties of real powers:

- (viii) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $a^{\alpha} \in A$ with $a^{\alpha} > 0$ and $(a^2)^{1/2} = a$, [20, Lemma 6];
 - (ix) If $0 < a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^{\alpha}a^{\beta} = a^{\alpha+\beta}$;
 - (x) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $(a^{\alpha})^{-1} = (a^{-1})^{\alpha} = a^{-\alpha}$;
 - (xi) If $0 < a, b \in A, \alpha, \beta \in \mathbb{R}$ and ab = ba, then $a^{\alpha}b^{\beta} = b^{\beta}a^{\alpha}$.

Now, assume that f(z) is analytic in the right half open plane {Re z > 0} and for the interval $I \subset (0, \infty)$ assume that $f(z) \ge 0$ for any $z \in I$. If $u \in A$ such that $\sigma(u) \subset I$, then by (SMT) we have

$$\sigma(f(u)) = f(\sigma(u)) \subset f(I) \subset [0,\infty)$$

meaning that $f(u) \ge 0$ in the order of A.

Therefore, we can state the following fact that will be used to establish various inequalities in A.

Lemma 1. Let f(z) and g(z) be analytic in the right half open plane {Re z > 0} and for the interval $I \subset (0, \infty)$ assume that $f(z) \ge g(z)$ for any $z \in I$. Then for any $u \in A$ with $\sigma(u) \subset I$ we have $f(u) \ge g(u)$ in the order of A.

Definition 1. Assume that A is a Hermitian unital Banach *-algebra. A linear functional $\psi : A \to \mathbb{C}$ is positive if for $a \ge 0$ we have $\psi(a) \ge 0$. We say that it is normalized if $\psi(1) = 1$.

We observe that the positive linear functional ψ preserves the order relation, namely if $a \ge b$ then $\psi(a) \ge \psi(b)$ and if $\beta \ge a \ge \alpha$ with α , β real numbers, then $\beta \ge \psi(a) \ge \alpha$.

3. McCarthy's Type Inequalities

We have the following result:

Theorem 1. Assume that A is a Hermitian unital Banach *-algebra and $\psi : A \to \mathbb{C}$ a positive normalized linear functional on A.

(i) If $p \in (0,1)$ and $a \ge 0$, then

(3.1)
$$\psi^p(a) \ge \psi(a^p) \ge 0;$$

(ii) If $q \ge 1$ and $b \ge 0$, then

(3.2)
$$\psi(b^q) \ge \psi^q(b) \ge 0$$

Proof. (i) Using the arithmetic mean-geometric mean inequality for positive real numbers, we have

$$(1-p)\alpha + p\beta \ge \alpha^{1-p}\beta^p$$

for any $\alpha, \beta \geq 0$.

Fix $p \in (0,1)$ and $\alpha \ge 0$ and apply Lemma 1 for $f(z) = (1-p)\alpha + pz$ and $g(z) = \alpha^{1-p} z^p$ to get in the order of A that

$$(3.3) \qquad (1-p)\,\alpha + pu \ge \alpha^{1-p}u^p$$

for any $u \in A$ with u > 0 and $p \in (0, 1)$, $\alpha \ge 0$.

If we take the functional ψ for u = a in (3.3) we get the scalar inequality

(3.4)
$$(1-p)\alpha + p\psi(a) \ge \alpha^{1-p}\psi(a^p)$$

for any $p \in (0, 1)$, $\alpha \ge 0$.

If $\psi(a) > 0$, then by taking $\alpha = \psi(a)$ we get $\psi(a) \ge \psi^{1-p}(a) \psi(a^p)$, which by dividing with $\psi^{1-p}(a) > 0$ produces

(3.5)
$$\psi^p(a) \ge \psi(a^p).$$

If $\psi(a) = 0$ then by (3.4) we get

(3.6)
$$(1-p)\alpha \ge \alpha^{1-p}\psi(a^p)$$

for any $\alpha > 0$. Dividing by $\alpha^{1-p} > 0$ we get $(1-p)\alpha^{\alpha} \ge \psi(a^p)$ for any $\alpha > 0$. By letting $\alpha \to 0+$ in this inequality, we get $0 \ge \psi(a^p)$ and since $\psi(a^p) \ge 0$ we conclude that $\psi(a^p) = 0$ and the inequality (3.1) is verified with equality.

Now, if $a \ge 0$ then for $\varepsilon > 0$ we have in the order of A that $a + \varepsilon 1 > 0$ and by (3.5)

(3.7)
$$\psi^p (a + \varepsilon 1) \ge \psi ((a + \varepsilon 1)^p) \ge 0;$$

for any for $\varepsilon > 0$.

By taking the limit over $\varepsilon \to 0+$ in (3.7) and using the continuity of the functional ψ and the power function, we recapture (3.1).

(ii) For q = 1 we have equality. If q > 1, then for $p = \frac{1}{q} \in (0, 1)$ and $a = b^q \ge 0$ for $b \ge 0$ we get from (3.1) that

$$\psi^{1/q}(b^q) \ge \psi\left((b^q)^{1/q}\right) = \psi(b) \ge 0$$

and by taking the power q in this inequality we get (3.2).

Remark 1. From (3.1) we have for p = 1/2, that

(3.8)
$$\psi^{1/2}(a) \ge \psi\left(a^{1/2}\right) \ge 0,$$

while from (3.2) for p = 2 that

(3.9)
$$\psi\left(b^{2}\right) \geq \psi^{2}\left(b\right) \geq 0,$$

for any $a, b \ge 0$.

Theorem 2. If r < 0, c > 0 and $\psi : A \to \mathbb{C}$ is a positive normalized linear functional on A with $\psi(c) > 0$, then

(3.10)
$$\psi(c^r) \ge \psi^r(c) > 0.$$

Proof. Using the gradient inequality for the convex function $f: (0, \infty) \to (0, \infty)$, $f(t) = t^r$, r < 0 we have

$$f(t) - f(s) \ge f'(s)(t - s),$$

for any t, s > 0, namely

$$t^r - s^r \ge rs^{r-1} \left(t - s\right)$$

for any t, s > 0, which, as above, gives the inequality in the order of A that

(3.11)
$$u^{r} - s^{r} \ge rs^{r-1} (u - s)$$

for any element $u \in A$ with u > 0 and positive real number s.

From (3.11) we then get

$$c^{r} - \psi^{r}(c) \ge r\psi^{r-1}(c)\left(c - \psi(c)\right),$$

and if we take in this inequality the functional ψ we get

$$\psi(c^{r}) - \psi^{r}(c) \ge r\psi^{r-1}(c)(\psi(c) - \psi(c)) = 0,$$

which proves the desired result (3.10).

Remark 2. The above technique based on the convexity of the power function can be employed to provide another proof of the inequalities (3.1) and (3.2).

From (3.10) we get for r = -1 that

(3.12)
$$\psi(c^{-1}) \ge \psi^{-1}(c) > 0,$$

where c > 0 and $\psi : A \to \mathbb{C}$ is a positive normalized linear functional on A with $\psi(c) > 0$.

4. Refinements and Reverses

We have the following refinement and reverse of the inequality (3.1):

Theorem 3. Assume that A is a Hermitian unital Banach *-algebra and $\psi : A \to \mathbb{C}$ a positive normalized linear functional on A. If $p \in (0,1)$ and $0 < c \in A$ with $\psi(c) > 0$, then

(4.1)
$$2r\psi^{p-1/2}(c)\left(\psi^{1/2}(c)-\psi(c^{1/2})\right) \leq \psi^{p}(c)-\psi(c^{p})$$

 $\leq 2r\psi^{p-1/2}(c)\left(\psi^{1/2}(c)-\psi(c^{1/2})\right),$

where $r := \min\{1 - p, p\}$ and $R := \max\{1 - p, p\}$.

Proof. We use the following double inequality obtained by Kittaneh and Manasrah [11], [12] that provide a refinement and an additive reverse for Young's inequality as follows:

(4.2)
$$r\left(\sqrt{\alpha} - \sqrt{\beta}\right)^2 \le (1-p)\alpha + p\beta - \alpha^{1-p}\beta^p \le R\left(\sqrt{\alpha} - \sqrt{\beta}\right)^2$$

where $\alpha, \beta \ge 0, p \in [0, 1], r = \min \left\{1 - p, p\right\}$ and $R = \max \left\{1 - p, p\right\}$.

This is equivalent to

(4.3)
$$r\left(\alpha - 2\sqrt{\alpha}\sqrt{\beta} + \beta\right) \le (1-p)\alpha + p\beta - \alpha^{1-p}\beta^p \le R\left(\alpha - 2\sqrt{\alpha}\sqrt{\beta} + \beta\right)$$

for any $\alpha, \beta \geq 0, p \in [0, 1]$.

Using Lemma 1 and a similar argument to the one in the proof of Theorem 1 we can state that

(4.4)
$$r\left(\alpha - 2\sqrt{\alpha}c^{1/2} + c\right) \le (1-p)\alpha + pc - \alpha^{1-p}c^p \le R\left(\alpha - 2\sqrt{\alpha}c^{1/2} + c\right)$$

for any $\alpha \ge 0$, $p \in [0, 1]$ and $c \in A$ with c > 0.

If we take the functional ψ in the inequality (4.4), then we get

(4.5)
$$r\left(\alpha - 2\sqrt{\alpha}\psi\left(c^{1/2}\right) + \psi\left(c\right)\right) \leq (1-p)\alpha + p\psi\left(c\right) - \alpha^{1-p}\psi\left(c^{p}\right)$$
$$\leq R\left(\alpha - 2\sqrt{\alpha}\psi\left(c^{1/2}\right) + \psi\left(c\right)\right)$$

for any $\alpha \ge 0$, $p \in [0, 1]$ and $c \in A$ with c > 0. If we take in (4.5) $\alpha = \psi(c)$, then we get

$$2r\psi^{1/2}(c)\left(\psi^{1/2}(c) - \psi\left(c^{1/2}\right)\right) \le \psi^{1-p}(c)\left(\psi^{p}(c) - \psi\left(c^{p}\right)\right)$$
$$\le 2R\psi^{1/2}(c)\left(\psi^{1/2}(c) - \psi\left(c^{1/2}\right)\right)$$

which, by division with $\psi^{1-p}(c) > 0$ is equivalent to the desired result (4.1).

Corollary 1. Assume that A is a Hermitian unital Banach *-algebra and $\psi : A \to \mathbb{C}$ a positive normalized linear functional on A. Suppose also that there exists the constant m, M > 0 and $c \in A$ such that

$$(4.6) M \ge c \ge m$$

in the order of A. (i) If $p \in (\frac{1}{2}, 1)$, then by (4.1) we have

$$(4.7) \quad 2(1-p) m^{p-\frac{1}{2}} \left(\psi^{1/2}(c) - \psi\left(c^{1/2}\right) \right) \\ \leq 2(1-p) \psi^{p-1/2}(c) \left(\psi^{1/2}(c) - \psi\left(c^{1/2}\right) \right) \leq \psi^{p}(c) - \psi(c^{p}) \\ \leq 2p\psi^{p-1/2}(c) \left(\psi^{1/2}(c) - \psi\left(c^{1/2}\right) \right) \leq 2pM^{p-\frac{1}{2}} \left(\psi^{1/2}(c) - \psi\left(c^{1/2}\right) \right)$$

(ii) If $p \in \left(0, \frac{1}{2}\right)$, then by (4.1) we have

(4.8)
$$2pM^{p-\frac{1}{2}} \left(\psi^{1/2} \left(c \right) - \psi \left(c^{1/2} \right) \right) \\ \leq 2p\psi^{p-1/2} \left(c \right) \left(\psi^{1/2} \left(c \right) - \psi \left(c^{1/2} \right) \right) \leq \psi^{p} \left(c \right) - \psi \left(c^{p} \right) \\ \leq 2 \left(1 - p \right) \psi^{p-1/2} \left(c \right) \left(\psi^{1/2} \left(c \right) - \psi \left(c^{1/2} \right) \right) \\ \leq 2 \left(1 - p \right) m^{p-\frac{1}{2}} \left(\psi^{1/2} \left(c \right) - \psi \left(c^{1/2} \right) \right).$$

The proof follows by (4.1) on observing that $M \ge \psi(c) \ge m > 0$.

 $\mathbf{6}$

We recall that *Specht's ratio* is defined by

$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty) \,, \\\\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function S is decreasing on (0, 1) and increasing on $(1, \infty)$.

Tominaga [21] had proved a reverse Young inequality with the Specht's ratio [19] as follows:

(4.9)
$$\left(\alpha^{1-\nu}\beta^{\nu}\leq\right)(1-\nu)\alpha+\nu\beta\leq S\left(\frac{\alpha}{\beta}\right)\alpha^{1-\nu}\beta^{\nu}$$

for any α , $\beta > 0$ and $\nu \in [0, 1]$. The following result also holds

The following result also holds:

Theorem 4. Assume that A is a Hermitian unital Banach *-algebra and $\psi : A \to \mathbb{C}$ a positive normalized linear functional on A. Suppose also that there exists the constant m, M > 0 and $c \in A$ such that the condition (4.6) is valid.

(i) If $p \in (0, 1)$, then

(4.10)
$$\psi^{p}(c) \leq S\left(\frac{M}{m}\right)\psi(c^{p}).$$

(ii) If
$$q \in (1, \infty)$$
, then

(4.11)
$$\psi(c^q) \le S^q\left(\left(\frac{M}{m}\right)^q\right)\psi^q(c)$$

Proof. (i) Assume that $p \in (0, 1)$. Let $\alpha, \beta \in [m, M] \subset (0, \infty)$, then $\frac{m}{M} \leq \frac{\alpha}{\beta} \leq \frac{M}{m}$ with $\frac{m}{M} < 1 < \frac{M}{m}$. If $\frac{\alpha}{\beta} \in [\frac{m}{M}, 1)$ then $S\left(\frac{\alpha}{\beta}\right) \leq S\left(\frac{m}{M}\right) = S\left(\frac{M}{m}\right)$. If $\frac{\alpha}{\beta} \in (1, \frac{M}{m}]$ then also $S\left(\frac{\alpha}{\beta}\right) \leq S\left(\frac{M}{m}\right)$. Therefore for any $\alpha, \beta \in [m, M]$ we have by (4.9) that

(4.12)
$$(1-p)\alpha + p\beta \le S\left(\frac{M}{m}\right)\alpha^{1-p}\beta^p$$

Using Lemma 1 , we have from (4.12) for $c \in A$ such that the condition (4.6) is valid, that

(4.13)
$$(1-p)\alpha + pc \le S\left(\frac{M}{m}\right)\alpha^{1-p}c^p$$

for any $\alpha \in [m, M]$ and $p \in (0, 1)$.

If we take the functional ψ in (4.13), then we get

$$(1-p)\alpha + p\psi(c) \le S\left(\frac{M}{m}\right)\alpha^{1-p}\psi(c^p)$$

which for $\alpha = \psi(c) \in [m, M]$ provides

$$\psi(c) \leq S\left(\frac{M}{m}\right)\psi^{1-p}(c)\psi(c^{p}).$$

If we divide this inequality by $\psi^{1-p}(c) > 0$, then we get (4.10).

(ii) From the condition (4.6) we have $0 < m^q \le c^q \le M^q$. If we write the inequality (4.10) for $p = \frac{1}{q}$ we have

$$\psi^{1/q}\left(c^{q}\right) \leq S\left(\left(\frac{M}{m}\right)^{q}\right)\psi\left(c^{qp}\right) = S\left(\left(\frac{M}{m}\right)^{q}\right)\psi\left(c\right)$$

and by taking the power q in this inequality we get the desired result (4.11). \Box

Remark 3. If we take p = 1/2 in (4.10), then we have

(4.14)
$$\psi^{1/2}(c) \le S\left(\frac{M}{m}\right)\psi\left(c^{1/2}\right)$$

We consider the Kantorovich's constant defined by

(4.15)
$$K(h) := \frac{(h+1)^2}{4h}, \ h > 0$$

The function K is decreasing on (0, 1) and increasing on $[1, \infty)$, $K(h) \ge 1$ for any h > 0 and $K(h) = K(\frac{1}{h})$ for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's constant holds

(4.16)
$$(1-\nu)\alpha + \nu\beta \le K^R\left(\frac{\alpha}{\beta}\right)\alpha^{1-\nu}\beta^{\nu},$$

where $\alpha, \beta > 0, \nu \in [0, 1]$ and $R = \max\{1 - \nu, \nu\}$.

This inequality has been obtained by Liao et al. in [13].

Theorem 5. Assume that A is a Hermitian unital Banach *-algebra and $\psi : A \to \mathbb{C}$ a positive normalized linear functional on A. Suppose also that there exists the constant m, M > 0 and $c \in A$ such that the condition (4.6) is valid.

(i) If $p \in (0, 1)$, then

(4.17)
$$\psi^{p}(c) \leq K^{R}\left(\frac{M}{m}\right)\psi(c^{p}),$$

where $R = \max\{p, 1-p\}$.

(ii) If $q \in (1, \infty)$, then

(4.18)
$$\psi(c^q) \le K^Q\left(\left(\frac{M}{m}\right)^q\right)\psi^q(c),$$

where $Q = \max\{q - 1, 1\}$.

Proof. (i) Assume that $p \in (0, 1)$ and put $R = \max\{1 - p, p\}$. Let $\alpha, \beta \in [m, M] \subset (0, \infty)$, then $\frac{m}{M} \leq \frac{\alpha}{\beta} \leq \frac{M}{m}$ with $\frac{m}{M} < 1 < \frac{M}{m}$. If $\frac{\alpha}{\beta} \in \left[\frac{m}{M}, 1\right)$ then $K^R\left(\frac{\alpha}{\beta}\right) \leq K^R\left(\frac{m}{M}\right) = K^R\left(\frac{M}{m}\right)$. If $\frac{\alpha}{\beta} \in (1, \frac{M}{m}]$ then also $K^R\left(\frac{\alpha}{\beta}\right) \leq K^R\left(\frac{M}{m}\right)$. Therefore for any $\alpha, \beta \in [m, M]$ we have by (4.16) that

(4.19)
$$(1-p)\alpha + p\beta \le K^R\left(\frac{M}{m}\right)\alpha^{1-p}\beta^p.$$

Now, on making use of a similar argument to the one from (i) in Theorem 4, we get (4.17).

(ii) Let $q \in (1,\infty)$. Then $\frac{1}{q} \in (0,1)$ and $\max\left\{1-\frac{1}{q},\frac{1}{q}\right\} = \frac{1}{q}\max\left\{q-1,1\right\} = \frac{1}{q}Q$. Since $m^q I \leq c^q \leq M^q I$ and by applying (4.17) we have

(4.20)
$$\psi^{1/q}\left(c^{q}\right) \leq K^{\frac{1}{q}Q}\left(\left(\frac{M}{m}\right)^{q}\right)\psi\left(c\right).$$

Now, by taking the power q > 1 in (4.20) we get the desired result (4.18).

Remark 4. If we take p = 1/2 in (4.17), then we have

(4.21)
$$\psi^{1/2}(c) \le K^{1/2}\left(\frac{M}{m}\right)\psi\left(c^{1/2}\right)$$

In the recent paper [3] we obtained the following reverses of Young's inequality as well:

(4.22)
$$1 \le \frac{(1-\nu)\alpha + \nu\beta}{\alpha^{1-\nu}\beta^{\nu}} \le \exp\left[4\nu\left(1-\nu\right)\left(K\left(\frac{\alpha}{\beta}\right) - 1\right)\right],$$

where $\alpha, \beta > 0, \nu \in [0, 1]$.

By a similar argument employed above, we can state:

Theorem 6. Under the assumptions of Theorem 5, we have: (i) If $p \in (0, 1)$, then

(4.23)
$$\psi^{p}(c) \leq \exp\left[4p\left(1-p\right)\left(K\left(\frac{M}{m}\right)-1\right)\right]\psi(c^{p}),$$

where $R = \max\{p, 1-p\}$. (ii) If $q \in (1, \infty)$, then

(4.24)
$$\psi(c^q) \le \exp\left[4\left(\frac{q-1}{q}\right)\left(K\left(\left(\frac{M}{m}\right)^q\right) - 1\right)\right]\psi^q(c).$$

Finally, by the use of the inequality [5]

(4.25)
$$\frac{(1-\nu)\alpha+\nu\beta}{\alpha^{1-\nu}\beta^{\nu}} \le \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\frac{\left(\beta-\alpha\right)^2}{\min^2\left\{\alpha,\beta\right\}}\right],$$

we also have:

Theorem 7. Under the assumptions of Theorem 5, we have: (i) If $p \in (0, 1)$, then

(4.26)
$$\psi^{p}(c) \leq \exp\left[\frac{1}{2}p\left(1-p\right)\left(\frac{M}{m}-1\right)^{2}\right]\psi(c^{p}).$$

(ii) If
$$q \in (1, \infty)$$
, then

(4.27)
$$\psi(c^q) \le \exp\left[\frac{q-1}{2q}\left(\left(\frac{M}{m}\right)^q - 1\right)^2\right]\psi^q(c).$$

S. S. $DRAGOMIR^{1,2}$

References

- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, 1973.
- [2] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [3] S. S. Dragomir, A note on Young's inequality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (to appear), DOI 10.1007/s13398-016-0300-8. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
- [4] S. S. Dragomir, A note on new refinements and reverses of Young's inequality, *Transylv. J. Math. Mech.* 8 (2016), no. 1, 45-49. Preprint *RGMIA Res. Rep. Coll.* 18 (2015), Art. 131. [http://rgmia.org/papers/v18/v18a131.pdf].
- [5] S. S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, J. Inequal. & Appl., Volume 2010, Article ID 496821, 15 pages doi:10.1155/2010/496821. Preprint RGMIA Res. Rep. Coll., 11 (2008), Supliment. Art. 15.
 [Online http://rgmia.org/papers/v11e/RevJensenOp.pdf].
- S. S. Dragomir, Quadratic weighted geometric mean in Hermitian unital Banach *-algebras, *RGMIA Res. Rep. Coll.* 19 (2016), Art. 162. [http://rgmia.org/papers/v19/v19a162.pdf].
- [7] B. Q. Feng, The geometric means in Banach *-algebra, J. Operator Theory 57 (2007), No. 2, 243-250.
- [8] M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality. *Nihonkai Math. J.* 5 (1994), no. 1, 61–67.
- [9] M. Fuji, S. Izumino, R. Nakamoto and Y. Seo, Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities, *Nihonkai Math. J.*, 8 (1997), 117-122.
- [10] T. Furuta, The Hölder-McCarthy and the Young inequalities are equivalent for Hilbert space operators. Amer. Math. Monthly 108 (2001), no. 1, 68–69.
- [11] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [12] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, *Linear Multilinear Algebra*, **59** (2011), 1031-1037.
- [13] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [14] C.-S. Lin and Y. J. Cho, On Hölder-McCarthy-type inequalities with powers. J. Korean Math. Soc. 39 (2002), no. 3, 351–361.
- [15] C. A. McCarthy, c_p, Israel J. Math. 5 (1967), 249–271.
- [16] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
- [17] T. Okayasu, The Löwner-Heinz inequality in Banach *-algebra, Glasgow Math. J. 42 (2000), 243-246.
- [18] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras, II. Duke Math. J. 37 (1970), 275-280.
- [19] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), pp. 91-98.
- [20] K. Tanahashi and A. Uchiyama, The Furuta inequality in Banach *-algebras, Proc. Amer. Math. Soc. 128 (2000), 1691-1695.
- [21] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA