INEQUALITIES OF JENSEN'S TYPE FOR POSITIVE LINEAR FUNCTIONALS ON HERMITIAN UNITAL BANACH *-ALGEBRAS

S. S. DRAGOMIR^{1,2}

ABSTRACT. We establish in this paper some inequalities of Jensen's and Slater's type in the general setting of Hermitian unital Banach *-algebra, analytic convex functions and positive normalized linear functionals.

1. INTRODUCTION

We need some preliminary concepts and facts about Banach *-algebras.

Let A be a unital Banach *-algebra with unit 1. An element $a \in A$ is called *selfadjoint* if $a^* = a$. A is called *Hermitian* if every selfadjoint element a in A has real spectrum $\sigma(a)$, namely $\sigma(a) \subset \mathbb{R}$.

We say that an element a is nonnegative and write this as $a \ge 0$ if $a^* = a$ and $\sigma(a) \subset [0, \infty)$. We say that a is positive and write a > 0 if $a \ge 0$ and $0 \notin \sigma(a)$. Thus a > 0 implies that its inverse a^{-1} exists. Denote the set of all invertible elements of A by Inv (A). If $a, b \in \text{Inv}(A)$, then $ab \in \text{Inv}(A)$ and $(ab)^{-1} = b^{-1}a^{-1}$. Also, saying that $a \ge b$ means that $a - b \ge 0$ and, similarly a > b means that a - b > 0.

The *Shirali-Ford theorem* asserts that if A is a unital Banach *-algebra [8] (see also [1, Theorem 41.5]), then

(SF)
$$a^*a \ge 0$$
 for every $a \in A$.

Based on this fact, Okayasu [7], Tanahashi and Uchiyama [9] proved the following fundamental properties (see also [5]):

- (i) If $a, b \in A$, then $a \ge 0, b \ge 0$ imply $a + b \ge 0$ and $\alpha \ge 0$ implies $\alpha a \ge 0$;
- (ii) If $a, b \in A$, then $a > 0, b \ge 0$ imply a + b > 0;
- (iii) If $a, b \in A$, then either $a \ge b > 0$ or $a > b \ge 0$ imply a > 0;
- (iv) If a > 0, then $a^{-1} > 0$;
- (v) If c > 0, then 0 < b < a if and only if cbc < cac, also $0 < b \le a$ if and only if $cbc \le cac$;
- (vi) If 0 < a < 1, then $1 < a^{-1}$;
- (vii) If 0 < b < a, then $0 < a^{-1} < b^{-1}$, also if $0 < b \le a$, then $0 < a^{-1} \le b^{-1}$.

Okayasu [7] showed that the *Löwner-Heinz inequality* remains valid in a Hermitian unital Banach *-algebra with continuous involution, namely if $a, b \in A$ and $p \in [0, 1]$ then a > b ($a \ge b$) implies that $a^p > b^p$ ($a^p \ge b^p$).

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A30, 15A60, 26D15, 26D10.

Key words and phrases. Hermitian unital Banach *-algebra, Positive linear functionals, Inequalities for power function, Jensen's type inequalities.

In order to introduce the real power of a positive element, we need the following facts [1, Theorem 41.5].

Let $a \in A$ and a > 0, then $0 \notin \sigma(a)$ and the fact that $\sigma(a)$ is a compact subset of \mathbb{C} implies that $\inf\{z : z \in \sigma(a)\} > 0$ and $\sup\{z : z \in \sigma(a)\} < \infty$. Choose γ to be close rectifiable curve in $\{\operatorname{Re} z > 0\}$, the right half open plane of the complex plane, such that $\sigma(a) \subset \operatorname{ins}(\gamma)$, the inside of γ . Let G be an open subset of \mathbb{C} with $\sigma(a) \subset G$. If $f : G \to \mathbb{C}$ is analytic, we define an element f(a) in A by

$$f(a) := \frac{1}{2\pi i} \int_{\gamma} f(z) (z-a)^{-1} dz.$$

It is well known (see for instance [2, pp. 201-204]) that f(a) does not depend on the choice of γ and the Spectral Mapping Theorem (SMT)

$$\sigma\left(f\left(a\right)\right) = f\left(\sigma\left(a\right)\right)$$

holds.

For any $\alpha \in \mathbb{R}$ we define for $a \in A$ and a > 0, the real power

$$a^{\alpha} := \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} \left(z - a \right)^{-1} dz,$$

where z^{α} is the principal α -power of z. Since A is a Banach *-algebra, then $a^{\alpha} \in A$. Moreover, since z^{α} is analytic in {Re z > 0}, then by (SMT) we have

$$\sigma(a^{\alpha}) = (\sigma(a))^{\alpha} = \{z^{\alpha} : z \in \sigma(a)\} \subset (0, \infty).$$

Following [5], we list below some important properties of real powers:

- (viii) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $a^{\alpha} \in A$ with $a^{\alpha} > 0$ and $(a^2)^{1/2} = a$, [9, Lemma 6];
- (ix) If $0 < a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^{\alpha}a^{\beta} = a^{\alpha+\beta}$;
- (x) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $(a^{\alpha})^{-1} = (a^{-1})^{\alpha} = a^{-\alpha}$;
- (xi) If $0 < a, b \in A, \alpha, \beta \in \mathbb{R}$ and ab = ba, then $a^{\alpha}b^{\beta} = b^{\beta}a^{\alpha}$.

Now, assume that $f(\cdot)$ is analytic in G, an open subset of \mathbb{C} and for the real interval $I \subset G$ assume that $f(z) \geq 0$ for any $z \in I$. If $u \in A$ such that $\sigma(u) \subset I$, then by (SMT) we have

$$\sigma(f(u)) = f(\sigma(u)) \subset f(I) \subset [0,\infty)$$

meaning that $f(u) \ge 0$ in the order of A.

Therefore, we can state the following fact that will be used to establish various inequalities in A, see also [3].

Lemma 1. Let f(z) and g(z) be analytic in G, an open subset of \mathbb{C} and for the real interval $I \subset G$, assume that $f(z) \ge g(z)$ for any $z \in I$. Then for any $u \in A$ with $\sigma(u) \subset I$ we have $f(u) \ge g(u)$ in the order of A.

Definition 1. Assume that A is a Hermitian unital Banach *-algebra. A linear functional $\psi : A \to \mathbb{C}$ is positive if for $a \ge 0$ we have $\psi(a) \ge 0$. We say that it is normalized if $\psi(1) = 1$.

We observe that the positive linear functional ψ preserves the order relation, namely if $a \ge b$ then $\psi(a) \ge \psi(b)$ and if $\beta \ge a \ge \alpha$ with α , β real numbers, then $\beta \ge \psi(a) \ge \alpha$.

In the recent paper [4] we established the following McCarthy type inequality:

Theorem 1. Assume that A is a Hermitian unital Banach *-algebra and $\psi : A \to \mathbb{C}$ a positive normalized linear functional on A.

(i) If
$$p \in (0, 1)$$
 and $a \ge 0$, then
(1.1) $\psi^{p}(a) \ge \psi(a^{p}) \ge 0$;
(ii) If $q \ge 1$ and $b \ge 0$, then

(1.2)
$$\psi(b^q) \ge \psi^q(b) \ge 0.$$

(iii) If
$$r < 0, c > 0$$
 with $\psi(c) > 0$, then
(1.3) $\psi(c^r) \ge \psi^r(c) > 0$.

Motivated by these results we establish in this paper some inequalities for analytic and convex functions on an open interval and positive normalized functionals defined on a Hermitian unital Banach *-algebra. Versions of Jensen's and Slater's inequalities are provided. Some examples for particular convex functions of interest are given as well.

2. JENSEN'S TYPE INEQUALITIES

We have the following result:

Theorem 2. Let f(z) be analytic in G, an open subset of \mathbb{C} and the real interval $I \subset G$. If f is convex (in the usual sense) on the interval I and $\psi : A \to \mathbb{C}$ is a positive normalized linear functional on A, then for any selfadjoint element $c \in A$ with $\sigma(c) \subset I$,

(2.1)
$$\psi(f(c)) \ge f(s) + f'(s)(\psi(c) - s)$$

for any $s \in I$.

In particular, we have the Jensen inequality

(2.2)
$$\psi(f(c)) \ge f(\psi(c)).$$

Moreover, if $\sigma(c) \subseteq [m, M] \subset I$, then

(2.3)
$$\psi(f(c)) \ge f\left(\frac{m+M}{2}\right) + f'\left(\frac{m+M}{2}\right)\left(\psi(c) - \frac{m+M}{2}\right)$$

and

(2.4)
$$\frac{1}{2} \left[\psi(f(c)) + \frac{f(M)(M - \psi(c)) + f(m)(\psi(c) - m)}{M - m} \right] \\ \ge \frac{1}{M - m} \int_{m}^{M} f(s) \, ds.$$

Proof. Since f is differentiable and convex on I we have by the gradient inequality that

$$f(t) \ge f(s) + (t-s) f'(s)$$

for any $t, s \in I$.

Fix $s \in I$ and apply Lemma 1 for the analytic functions f(z) and $g_s(z) :=$ f(s) + f'(s)(z-s) to get for $c \in A$ with $\sigma(c) \subset I$ that the following inequality holds

(2.5)
$$f(c) \ge f(s) + f'(s)(c-s)$$

in the order of A and for any $s \in I$.

If we take the functional ψ on (2.5) we get

$$\psi(f(c)) \ge \psi[f(s) + f'(s)(c - s)]$$

= $f(s) \psi(1) + f'(s)(\psi(c) - s\psi(1))$
= $f(s) \psi + f'(s)(\psi(c) - s)$

and the inequality (2.1) is proved.

Since $\sigma(c)$ is compact and $\sigma(c) \subset I$, then there exists the real numbers m, M with $\sigma(c) \subseteq [m, M] \subset I$. This means that we have $m \leq c \leq M$ in the order of A and by taking the functional ψ , we have $m \leq \psi(c) \leq M$, meaning that $\psi(c) \in [m, M] \subset I$. Therefore, by taking $s = \psi(c) \in [m, M]$ in (2.1) we get (2.2).

If we take $s = \frac{m+M}{2}$ in (2.1), then we get (2.3). Now, if we take the integral mean $\frac{1}{M-m} \int_m^M$ in (2.1), then we get

(2.6)
$$\psi(f(c)) \ge \frac{1}{M-m} \int_{m}^{M} f(s) \, ds + \psi(c) \frac{1}{M-m} \int_{m}^{M} f'(s) \, ds$$

 $- \frac{1}{M-m} \int_{m}^{M} f'(s) \, s \, ds.$

Since

$$\frac{1}{M-m}\int_{m}^{M}f'\left(s\right)ds = \frac{f\left(M\right) - f\left(m\right)}{M-m}$$

and

$$\frac{1}{M-m} \int_{m}^{M} f'(s) \, sds = \frac{1}{M-m} \left[sf(s) |_{m}^{M} - \int_{m}^{M} f(t) \, dt \right]$$
$$= \frac{Mf(M) - mf(m)}{M-m} - \frac{1}{M-m} \int_{m}^{M} f(s) \, ds$$

hence by (2.6) we have

$$\begin{split} \psi\left(f\left(c\right)\right) &\geq \frac{f\left(M\right) - f\left(m\right)}{M - m}\psi\left(c\right) + \frac{1}{M - m}\int_{m}^{M}f\left(s\right)ds \\ &- \left(\frac{Mf\left(M\right) - mf\left(m\right)}{M - m} - \frac{1}{M - m}\int_{m}^{M}f\left(s\right)ds\right) \\ &= \frac{2}{M - m}\int_{m}^{M}f\left(s\right)ds - \frac{f\left(M\right)\left(M - \psi\left(c\right)\right) + f\left(m\right)\left(\psi\left(c\right) - m\right)}{M - m} \end{split}$$

that is equivalent to the second inequality in (2.4).

We also have:

Theorem 3. Let f(z) be analytic in G, an open subset of \mathbb{C} and the real interval $I \subset G$. If f is convex on the interval I and $\psi : A \to \mathbb{C}$ is a positive normalized linear functional on A, then for any selfadjoint element $c \in A$ with $\sigma(c) \subset I$,

(2.7)
$$\psi(f(c)) \le f(s) - s\psi(f'(c)) + \psi(cf'(c)) \\ \le f(s) + f'(s)(\psi(c) - s) + \sup_{t \in I} \left[(f'(t) - f'(s))(t - s) \right]$$

for any $s \in I$.

In particular, we have the reverse of Jensen inequality

(2.8)
$$\psi(f(c)) \le f(\psi(c)) + \psi(cf'(c)) - \psi(c)\psi(f'(c)) \\ \le f(\psi(c)) + \sup_{t \in I} \left[(f'(t) - f'(\psi(c)))(t - \psi(c)) \right].$$

Moreover, if $\sigma(c) \subseteq [m, M] \subset I$, then

(2.9)
$$\psi(f(c)) \leq f(s) - s\psi(f'(c)) + \psi(cf'(c)) \\ \leq f(s) + f'(s)(\psi(c) - s) \\ + \max\{(f'(s) - f'(m))(s - m), (f'(M) - f'(s))(M - s)\},\$$

for any $s \in I$.

In particular, we have

$$(2.10) \qquad \psi(f(c)) \leq f\left(\frac{m+M}{2}\right) + \psi(cf'(c)) - \frac{m+M}{2}\psi(f'(c))$$
$$\leq f\left(\frac{m+M}{2}\right) + f'\left(\frac{m+M}{2}\right)\left(\psi(c) - \frac{m+M}{2}\right)$$
$$+ \frac{1}{2}\left(M - m\right)$$
$$\times \max\left\{f'\left(\frac{m+M}{2}\right) - f'(m), f'(M) - f'\left(\frac{m+M}{2}\right)\right\}$$

and

(2.11)
$$\psi(f(c)) \leq f(\psi(c)) + \psi(cf'(c)) - \psi(c)\psi(f'(c)) \\ \leq f(\psi(c)) + \max\{(f'(\psi(c)) - f'(m))(\psi(c) - m), \\ (f'(M) - f'(\psi(c)))(M - \psi(c))\}.$$

 $\mathit{Proof.}$ Since f is differentiable and convex on I we have by the gradient inequality that

$$(t-s) f'(t) + f(s) \ge f(t)$$

for any $t, s \in I$.

With a similar approach to the one in the proof of Theorem 2 we obtain that

(2.12)
$$cf'(c) - sf'(c) + f(s) = (c - s)f'(c) + f(s) \ge f(c)$$

for any $s \in I$ and $c \in A$ with $\sigma(c) \subset I$, in the order of A.

If we take the functional ψ on (2.12) we get

$$\psi\left(cf'\left(c\right)\right) - s\psi\left(f'\left(c\right)\right) + f\left(s\right) \ge \psi\left(f\left(c\right)\right),$$

or any $s \in I$ and $c \in A$ with $\sigma(c) \subset I$, which proves the first inequality in (2.7). We also have

$$f(s) + (t-s) f'(t) = f(s) + f'(s) (t-s) + (f'(t) - f'(s)) (t-s)$$

$$\leq f(s) + f'(s) (t-s) + \sup_{t \in I} [(f'(t) - f'(s)) (t-s)]$$

for any $t, s \in I$.

This inequality implies in the order of A that

$$(2.13) \ cf'(c) - sf'(c) + f(s) \le f(s) + f'(s)(c-s) + \sup_{t \in I} \left[(f'(t) - f'(s))(t-s) \right]$$

for any $s \in I$ and $c \in A$ with $\sigma(c) \subset I$.

If we apply the functional ψ on (2.13) we get the second inequality in (2.7). Now, for $s \in [m, M] \subset I$ consider the function $\varphi_s : [m, M] \to \mathbb{R}$ defined by

$$\varphi_{s}(t) := \left(f'(t) - f'(s)\right)(t - s).$$

The function φ_s is continuous on [m,M], differentiable on (m,M) and

$$\varphi'_{s}(t) := f''(t)(t-s) + f'(t) - f'(s)$$

We observe that $\varphi'_s(s) = 0$ and since f is convex on [m, M], it follows that φ_s is nonincreasing on [m, s] and nondecreasing on [s, M]. Therefore

$$\max_{t \in [m,M]} \varphi_s(t) = \max \left\{ \varphi_s(m), \varphi_s(M) \right\}$$
$$= \max \left\{ \left(f'(s) - f'(m) \right) (s - m), \left(f'(M) - f'(s) \right) (M - s) \right\}$$

and the inequality (2.9) is obtained.

Corollary 1. With the assumptions of Theorem 3 we have

$$(2.14) \qquad \psi(f(c)) \\ \leq \frac{1}{M-m} \int_{m}^{M} f(s) \, ds - \frac{m+M}{2} \psi(f'(c)) + \psi(cf'(c)) \\ \leq \frac{2}{M-m} \int_{m}^{M} f(s) \, ds - \frac{f(M) \left(M - \psi(c)\right) + f(m) \left(\psi(c) - m\right)}{M-m} \\ + \frac{1}{M-m} \\ \times \int_{m}^{M} \max\left\{ \left(f'(s) - f'(m)\right) \left(s - m\right), \left(f'(M) - f'(s)\right) \left(M - s\right) \right\} ds$$

and

(2.15)
$$\frac{1}{2} \left[\psi(f(c)) + \frac{f(M)(M - \psi(c)) + f(m)(\psi(c) - m)}{M - m} \right]$$
$$\leq \frac{1}{M - m} \int_{m}^{M} f(s) \, ds + \frac{3}{8} \left(f'(M) - f'(m) \right) (M - m) \, .$$

Proof. If we take the integral mean in (2.9) we get

$$(2.16) \qquad \psi(f(c)) \\ \leq \frac{1}{M-m} \int_{m}^{M} f(s) \, ds - \frac{m+M}{2} \psi(f'(c)) + \psi(cf'(c)) \\ \leq \frac{1}{M-m} \int_{m}^{M} f(s) \, ds + \frac{1}{M-m} \int_{m}^{M} f'(s) \left(\psi(c) - s\right) ds \\ + \frac{1}{M-m} \\ \times \int_{m}^{M} \max\left\{ \left(f'(s) - f'(m)\right)(s-m), \left(f'(M) - f'(s)\right)(M-s) \right\} ds, \end{cases}$$

6

and since

$$\frac{1}{M-m} \int_{m}^{M} f'(s) \left(\psi(c) - s\right) ds = \frac{1}{M-m} \int_{m}^{M} f(s) ds - \frac{f(M) \left(M - \psi(c)\right) + f(m) \left(\psi(c) - m\right)}{M-m},$$

hence the second inequality in (2.14) is proved.

Observe that, by the monotonicity of the derivative, we have

(2.17)
$$\max \left\{ (f'(s) - f'(m))(s - m), (f'(M) - f'(s))(M - s) \right\} \\ \leq (f'(M) - f'(m)) \max \left\{ s - m, M - s \right\} \\ = (f'(M) - f'(m)) \left(\frac{1}{2} (M - m) + \left| s - \frac{m + M}{2} \right| \right)$$

and by taking the integral mean we get

$$\frac{1}{M-m} \int_{m}^{M} \max\left\{ \left(f'(s) - f'(m)\right)(s - m), \left(f'(M) - f'(s)\right)(M - s) \right\} ds
\leq \left(f'(M) - f'(m)\right) \max\left\{s - m, M - s\right\}
= \left(f'(M) - f'(m)\right) \left(\frac{1}{2}(M - m) + \frac{1}{M-m} \int_{m}^{M} \left|s - \frac{m + M}{2}\right| ds\right)
= \left(f'(M) - f'(m)\right) \left(\frac{1}{2}(M - m) + \frac{1}{4}(M - m)\right)
= \frac{3}{4} \left(f'(M) - f'(m)\right)(M - m).$$

Therefore

$$\frac{2}{M-m} \int_{m}^{M} f(s) \, ds - \frac{f(M) \left(M - \psi(c)\right) + f(m) \left(\psi(c) - m\right)}{M-m} \\ + \frac{1}{M-m} \int_{m}^{M} \max\left\{ \left(f'(s) - f'(m)\right) \left(s - m\right), \left(f'(M) - f'(s)\right) \left(M - s\right) \right\} ds \\ \le \frac{2}{M-m} \int_{m}^{M} f(s) \, ds - \frac{f(M) \left(M - \psi(c)\right) + f(m) \left(\psi(c) - m\right)}{M-m} \\ + \frac{3}{4} \left(f'(M) - f'(m)\right) \left(M - m\right).$$

and by (2.14) we get

$$\begin{split} \psi \left(f \left(c \right) \right) \\ &\leq \frac{2}{M-m} \int_{m}^{M} f \left(s \right) ds - \frac{f \left(M \right) \left(M - \psi \left(c \right) \right) + f \left(m \right) \left(\psi \left(c \right) - m \right)}{M-m} \\ &+ \frac{3}{4} \left(f' \left(M \right) - f' \left(m \right) \right) \left(M - m \right) \end{split}$$

that is equivalent to the desired result (2.15).

Corollary 2. With the assumptions of Theorem 3 and if $\psi(f'(c)) \neq 0$ and

$$s = \frac{\psi\left(cf'\left(c\right)\right)}{\psi\left(f'\left(c\right)\right)} \in I,$$

then we have the Slater's type inequality

(2.18)
$$\psi(f(c)) \le f\left(\frac{\psi(cf'(c))}{\psi(f'(c))}\right).$$

Remark 1. By the use of inequalities (2.4) and (2.15) and under the assumptions of Theorem 3 we can get the following upper and lower bounds for $\psi(f(c))$,

(2.19)
$$\frac{2}{M-m} \int_{m}^{M} f(s) \, ds - \frac{f(M) \left(M - \psi(c)\right) + f(m) \left(\psi(c) - m\right)}{M-m} \\ \leq \psi(f(c)) \\ \leq \frac{2}{M-m} \int_{m}^{M} f(s) \, ds - \frac{f(M) \left(M - \psi(c)\right) + f(m) \left(\psi(c) - m\right)}{M-m} \\ + \frac{3}{4} \left(f'(M) - f'(m)\right) \left(M - m\right).$$

We also observe that if $\sigma(c) \subseteq [m, M] \subset I$, f'(c) > 0 and $\psi(f'(c)) > 0$ then

$$m \leq \frac{\psi\left(cf'\left(c\right)\right)}{\psi\left(f'\left(c\right)\right)} \leq M$$

and the inequality (2.18) holds true.

3. Some Examples

Assume that $\psi: A \to \mathbb{C}$ is a positive normalized linear functional on A.

For $p \ge 1$, consider the power function $f_p : (0, \infty) \to (0, \infty)$ and $0 < c \in A$ which is analytic and convex on $(0, \infty)$. By using the inequalities (2.1) and (2.7) we have

(3.1)
$$s^{p} + ps^{p-1}(\psi(c) - s) \le \psi(c^{p}) \le s^{p} - s(p-1)\psi(c^{p-1}) + (p-1)\psi(c^{p})$$

for any s > 0.

(3.

The first inequality can be written as

2)
$$(1-p) s^{p} + p s^{p-1} \psi(c) \le \psi(c^{p})$$

while the second as

(3.3)
$$(2-p)\psi(c^{p}) \le s^{p} + s(1-p)\psi(c^{p-1})$$

for any s > 0.

If $p \in [1,2)$ then we get the double inequality

(3.4)
$$(1-p) s^{p} + p s^{p-1} \psi(c) \le \psi(c^{p}) \le \frac{1}{2-p} \left[s^{p} + s (1-p) \psi(c^{p-1}) \right]$$

for any s > 0.

For p > 2 we get by (3.3) that

(3.5)
$$\max\left\{ (1-p) s^{p} + p s^{p-1} \psi(c), \frac{1}{2-p} \left[s^{p} + s (1-p) \psi(c^{p-1}) \right] \right\} \leq \psi(c^{p})$$

for any s > 0.

If $0 < c \in A$ and for $p \ge 1$ we have $\psi(c^{p-1}) > 0$, then by the inequality (2.2) and (2.18)

(3.6)
$$\psi^p(c) \le \psi(c^p) \le \frac{\psi^p(c^p)}{\psi^p(c^{p-1})}.$$

From this we get

$$\psi^{p}(c)\psi^{p}(c^{p-1}) \leq \psi(c^{p})\psi^{p}(c^{p-1}) \leq \psi^{p}(c^{p}),$$

namely

(3.7)
$$\psi(c)\psi(c^{p-1}) \leq \psi^{1/p}(c^p)\psi(c^{p-1}) \leq \psi(c^p).$$

The second inequality in (3.7) is equivalent to

(3.8)
$$\psi^{1/(p-1)}(c^{p-1}) \le \psi^{1/p}(c^p), \ p > 1.$$

Similar results may be stated for p < 1 or for $p \in (0, 1)$.

Assume that $0 < c \in A$ and there exist the constants 0 < m < M such that $\sigma(c) \subseteq [m, M]$. Then by (2.10), we have for p > 1 that

(3.9)
$$\psi(c^{p}) \leq p\left(\frac{m+M}{2}\right)^{p-1}\psi(c) + (1-p)\left(\frac{m+M}{2}\right)^{p} + \frac{1}{2}p\left(M-m\right) \times \max\left\{\left(\frac{m+M}{2}\right)^{p-1} - m^{p-1}, M^{p-1} - \left(\frac{m+M}{2}\right)^{p-1}\right\}$$

and by (2.11) that

(3.10)
$$\psi(c^{p}) \leq \psi^{p}(c)$$

+ $p \max(\psi^{p-1}(c) - m^{p-1})(\psi(c) - m), (M^{p-1} - \psi^{p-1}(c))(M - \psi(c)).$

Consider the analytic convex function $f : (0, \infty) \to \mathbb{R}$, $f(t) = -\ln t$. By using the inequalities (2.1) and (2.7) we have for $0 < c \in A$ that

(3.11)
$$-s\psi(c^{-1}) + \ln s + 1 \le \psi(\ln c) \le \psi(c) s^{-1} + \ln s - 1$$

for any s > 0.

By the inequality (2.2) and (2.18) we have

$$(3.12) -\ln\left(\psi\left(c^{-1}\right)\right) \le \psi\left(\ln\left(c\right)\right) \le \ln\left(\psi\left(c\right)\right),$$

provided $0 < c \in A$ and $\psi(c), \psi(c^{-1}) > 0$.

Assume that $0 < c \in A$ and there exist the constants 0 < m < M such that $\sigma(c) \subseteq [m, M]$. Then by (2.10), we have

(3.13)
$$\psi(\ln c) \ge \left(\frac{m+M}{2}\right)^{-1}\psi(c) + \ln\left(\frac{m+M}{2}\right) - \frac{1}{2}\frac{(M-m)^2}{m(m+M)} - 1$$

and by (2.11) that

(3.14)
$$\psi(\ln c) \ge \ln(\psi(c)) - \frac{1}{\psi(c)} \max\left\{\frac{(\psi(c) - m)^2}{m}, \frac{\left(M - \psi(c)^2\right)}{M}\right\}$$

For any selfadjoint element $c \in A$ we have

(3.15)
$$\exp\left(\psi\left(c\right)\right) \le \psi\left(\exp\left(c\right)\right) \le \exp\left(\frac{\psi\left(c\exp\left(c\right)\right)}{\psi\left(\exp\left(c\right)\right)}\right)$$

for any $\psi: A \to \mathbb{C}$ a positive normalized linear functional on A.

Assume that $c \in A$ is a selfadjoint element and there exist the real constants m < M such that $\sigma(c) \subseteq [m, M]$. Then by (2.10),

$$(3.16) \quad \psi(\exp c) \le \exp\left(\frac{m+M}{2}\right) + \exp\left(\frac{m+M}{2}\right) \left(\psi(c) - \frac{m+M}{2}\right) \\ + \frac{1}{2}\left(M - m\right) \\ \times \max\left\{\exp\left(\frac{m+M}{2}\right) - \exp\left(m\right), \exp\left(M\right) - \exp\left(\frac{m+M}{2}\right)\right\}$$

and by (2.11)

(3.17)
$$\psi(\exp(c)) \le \exp(\psi(c)) + \max\{(\exp(\psi(c)) - \exp(m))(\psi(c) - m), (\exp(M) - \exp(\psi(c)))(M - \psi(c))\},\$$

for any $\psi: A \to \mathbb{C}$ a positive normalized linear functional on A.

References

- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, 1973.
- [2] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [3] S. S. Dragomir, Quadratic weighted geometric mean in Hermitian unital Banach *-algebras, RGMIA Res. Rep. Coll. 19 (2016), Art. 162. [http://rgmia.org/papers/v19/v19a162.pdf].
- [4] S. S. Dragomir, Inequalities of McCarthy's type in Hermitian unital Banach *-algebras, RGMIA Res. Rep. Coll. 19 (2016), Art. 171. [http://rgmia.org/papers/v19/v19a171.pdf].
- [5] B. Q. Feng, The geometric means in Banach *-algebra, J. Operator Theory 57 (2007), No. 2, 243-250.
- [6] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
- [7] T. Okayasu, The Löwner-Heinz inequality in Banach *-algebra, Glasgow Math. J. 42 (2000), 243-246.
- [8] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras, II. Duke Math. J. 37 (1970), 275-280.
- [9] K. Tanahashi and A. Uchiyama, The Furuta inequality in Banach *-algebras, Proc. Amer. Math. Soc. 128 (2000), 1691-1695.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

 $^2\mathrm{DST}\text{-}\mathrm{NRF}$ Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa