
INEQUALITIES OF JENSEN�S TYPE FOR POSITIVE LINEAR
FUNCTIONALS ON HERMITIAN UNITAL BANACH

�-ALGEBRAS
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Abstract. We establish in this paper some inequalities of Jensen�s and Slater�s
type in the general setting of Hermitian unital Banach �-algebra, analytic con-
vex functions and positive normalized linear functionals.

1. Introduction

We need some preliminary concepts and facts about Banach �-algebras.
Let A be a unital Banach �-algebra with unit 1. An element a 2 A is called

selfadjoint if a� = a: A is called Hermitian if every selfadjoint element a in A has
real spectrum � (a) ; namely � (a) � R.
We say that an element a is nonnegative and write this as a � 0 if a� = a and

� (a) � [0;1) : We say that a is positive and write a > 0 if a � 0 and 0 =2 � (a) :
Thus a > 0 implies that its inverse a�1 exists. Denote the set of all invertible
elements of A by Inv (A) : If a; b 2 Inv (A) ; then ab 2 Inv (A) and (ab)�1 = b�1a�1:
Also, saying that a � b means that a � b � 0 and, similarly a > b means that
a� b > 0:
The Shirali-Ford theorem asserts that if A is a unital Banach �-algebra [8] (see

also [1, Theorem 41.5]), then

(SF) a�a � 0 for every a 2 A:

Based on this fact, Okayasu [7], Tanahashi and Uchiyama [9] proved the following
fundamental properties (see also [5]):

(i) If a; b 2 A; then a � 0; b � 0 imply a+ b � 0 and � � 0 implies �a � 0;
(ii) If a; b 2 A; then a > 0; b � 0 imply a+ b > 0;
(iii) If a; b 2 A; then either a � b > 0 or a > b � 0 imply a > 0;
(iv) If a > 0; then a�1 > 0;
(v) If c > 0; then 0 < b < a if and only if cbc < cac; also 0 < b � a if and only

if cbc � cac;
(vi) If 0 < a < 1; then 1 < a�1;
(vii) If 0 < b < a; then 0 < a�1 < b�1; also if 0 < b � a; then 0 < a�1 � b�1:

Okayasu [7] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach �-algebra with continuous involution, namely if a; b 2 A and
p 2 [0; 1] then a > b (a � b) implies that ap > bp (ap � bp) :
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In order to introduce the real power of a positive element, we need the following
facts [1, Theorem 41.5].
Let a 2 A and a > 0; then 0 =2 � (a) and the fact that � (a) is a compact subset

of C implies that inffz : z 2 � (a)g > 0 and supfz : z 2 � (a)g < 1: Choose  to
be close recti�able curve in fRe z > 0g; the right half open plane of the complex
plane, such that � (a) � ins () ; the inside of : Let G be an open subset of C with
� (a) � G: If f : G! C is analytic, we de�ne an element f (a) in A by

f (a) :=
1

2�i

Z


f (z) (z � a)�1 dz:

It is well known (see for instance [2, pp. 201-204]) that f (a) does not depend on
the choice of  and the Spectral Mapping Theorem (SMT)

� (f (a)) = f (� (a))

holds.
For any � 2 R we de�ne for a 2 A and a > 0; the real power

a� :=
1

2�i

Z


z� (z � a)�1 dz;

where z� is the principal �-power of z: Since A is a Banach �-algebra, then a� 2 A:
Moreover, since z� is analytic in fRe z > 0g; then by (SMT) we have

� (a�) = (� (a))
�
= fz� : z 2 � (a)g � (0;1) :

Following [5], we list below some important properties of real powers:

(viii) If 0 < a 2 A and � 2 R, then a� 2 A with a� > 0 and
�
a2
�1=2

= a; [9,
Lemma 6];

(ix) If 0 < a 2 A and �; � 2 R, then a�a� = a�+� ;

(x) If 0 < a 2 A and � 2 R, then (a�)�1 =
�
a�1

��
= a��;

(xi) If 0 < a; b 2 A, �; � 2 R and ab = ba; then a�b� = b�a�:

Now, assume that f (�) is analytic in G, an open subset of C and for the real
interval I � G assume that f (z) � 0 for any z 2 I: If u 2 A such that � (u) � I;
then by (SMT) we have

� (f (u)) = f (� (u)) � f (I) � [0;1)
meaning that f (u) � 0 in the order of A:
Therefore, we can state the following fact that will be used to establish various

inequalities in A; see also [3].

Lemma 1. Let f (z) and g (z) be analytic in G, an open subset of C and for the
real interval I � G; assume that f (z) � g (z) for any z 2 I: Then for any u 2 A
with � (u) � I we have f (u) � g (u) in the order of A:

De�nition 1. Assume that A is a Hermitian unital Banach �-algebra. A linear
functional  : A ! C is positive if for a � 0 we have  (a) � 0: We say that it is
normalized if  (1) = 1:

We observe that the positive linear functional  preserves the order relation,
namely if a � b then  (a) �  (b) and if � � a � � with �; � real numbers, then
� �  (a) � �:
In the recent paper [4] we established the following McCarthy type inequality:



INEQUALITIES OF JENSEN�S TYPE 3

Theorem 1. Assume that A is a Hermitian unital Banach �-algebra and  : A! C
a positive normalized linear functional on A:
(i) If p 2 (0; 1) and a � 0; then

(1.1)  p (a) �  (ap) � 0;
(ii) If q � 1 and b � 0; then

(1.2)  (bq) �  q (b) � 0:
(iii) If r < 0; c > 0 with  (c) > 0; then

(1.3)  (cr) �  r (c) > 0:

Motivated by these results we establish in this paper some inequalities for ana-
lytic and convex functions on an open interval and positive normalized functionals
de�ned on a Hermitian unital Banach �-algebra. Versions of Jensen�s and Slater�s
inequalities are provided. Some examples for particular convex functions of interest
are given as well.

2. Jensen�s Type Inequalities

We have the following result:

Theorem 2. Let f (z) be analytic in G, an open subset of C and the real interval
I � G: If f is convex (in the usual sense) on the interval I and  : A ! C is a
positive normalized linear functional on A; then for any selfadjoint element c 2 A
with � (c) � I,

(2.1)  (f (c)) � f (s) + f 0 (s) ( (c)� s)
for any s 2 I:
In particular, we have the Jensen inequality

(2.2)  (f (c)) � f ( (c)) :

Moreover, if � (c) � [m;M ] � I; then

(2.3)  (f (c)) � f

�
m+M

2

�
+ f 0

�
m+M

2

��
 (c)� m+M

2

�
and

1

2

�
 (f (c)) +

f (M) (M �  (c)) + f (m) ( (c)�m)
M �m

�
(2.4)

� 1

M �m

Z M

m

f (s) ds:

Proof. Since f is di¤erentiable and convex on I we have by the gradient inequality
that

f (t) � f (s) + (t� s) f 0 (s)
for any t; s 2 I:
Fix s 2 I and apply Lemma 1 for the analytic functions f (z) and gs (z) :=

f (s) + f 0 (s) (z � s) to get for c 2 A with � (c) � I that the following inequality
holds

(2.5) f (c) � f (s) + f 0 (s) (c� s)
in the order of A and for any s 2 I:
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If we take the functional  on (2.5) we get

 (f (c)) �  [f (s) + f 0 (s) (c� s)]
= f (s) (1) + f 0 (s) ( (c)� s (1))
= f (s) + f 0 (s) ( (c)� s)

and the inequality (2.1) is proved.
Since � (c) is compact and � (c) � I; then there exists the real numbers m;

M with � (c) � [m;M ] � I: This means that we have m � c � M in the order
of A and by taking the functional  , we have m �  (c) � M; meaning that
 (c) 2 [m;M ] � I: Therefore, by taking s =  (c) 2 [m;M ] in (2.1) we get (2.2).
If we take s = m+M

2 in (2.1), then we get (2.3).

Now, if we take the integral mean 1
M�m

RM
m
in (2.1), then we get

 (f (c)) � 1

M �m

Z M

m

f (s) ds+  (c)
1

M �m

Z M

m

f 0 (s) ds(2.6)

� 1

M �m

Z M

m

f 0 (s) sds:

Since
1

M �m

Z M

m

f 0 (s) ds =
f (M)� f (m)

M �m
and

1

M �m

Z M

m

f 0 (s) sds =
1

M �m

"
sf (s)jMm �

Z M

m

f (t) dt

#

=
Mf (M)�mf (m)

M �m � 1

M �m

Z M

m

f (s) ds

hence by (2.6) we have

 (f (c)) � f (M)� f (m)
M �m  (c) +

1

M �m

Z M

m

f (s) ds

�
 
Mf (M)�mf (m)

M �m � 1

M �m

Z M

m

f (s) ds

!

=
2

M �m

Z M

m

f (s) ds� f (M) (M �  (c)) + f (m) ( (c)�m)
M �m

that is equivalent to the second inequality in (2.4). �

We also have:

Theorem 3. Let f (z) be analytic in G, an open subset of C and the real interval
I � G: If f is convex on the interval I and  : A ! C is a positive normalized
linear functional on A; then for any selfadjoint element c 2 A with � (c) � I,

 (f (c)) � f (s)� s (f 0 (c)) +  (cf 0 (c))(2.7)

� f (s) + f 0 (s) ( (c)� s) + sup
t2I

[(f 0 (t)� f 0 (s)) (t� s)]

for any s 2 I:
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In particular, we have the reverse of Jensen inequality

 (f (c)) � f ( (c)) +  (cf 0 (c))�  (c) (f 0 (c))(2.8)

� f ( (c)) + sup
t2I

[(f 0 (t)� f 0 ( (c))) (t�  (c))] :

Moreover, if � (c) � [m;M ] � I; then

 (f (c)) � f (s)� s (f 0 (c)) +  (cf 0 (c))(2.9)

� f (s) + f 0 (s) ( (c)� s)
+ max f(f 0 (s)� f 0 (m)) (s�m) ; (f 0 (M)� f 0 (s)) (M � s)g ;

for any s 2 I:
In particular, we have

 (f (c)) � f

�
m+M

2

�
+  (cf 0 (c))� m+M

2
 (f 0 (c))(2.10)

� f

�
m+M

2

�
+ f 0

�
m+M

2

��
 (c)� m+M

2

�
+
1

2
(M �m)

�max
�
f 0
�
m+M

2

�
� f 0 (m) ; f 0 (M)� f 0

�
m+M

2

��
and

 (f (c)) � f ( (c)) +  (cf 0 (c))�  (c) (f 0 (c))(2.11)

� f ( (c)) + max f(f 0 ( (c))� f 0 (m)) ( (c)�m) ;
(f 0 (M)� f 0 ( (c))) (M �  (c))g :

Proof. Since f is di¤erentiable and convex on I we have by the gradient inequality
that

(t� s) f 0 (t) + f (s) � f (t)

for any t; s 2 I:
With a similar approach to the one in the proof of Theorem 2 we obtain that

(2.12) cf 0 (c)� sf 0 (c) + f (s) = (c� s) f 0 (c) + f (s) � f (c)

for any s 2 I and c 2 A with � (c) � I, in the order of A:
If we take the functional  on (2.12) we get

 (cf 0 (c))� s (f 0 (c)) + f (s) �  (f (c)) ;

or any s 2 I and c 2 A with � (c) � I; which proves the �rst inequality in (2.7).
We also have

f (s) + (t� s) f 0 (t) = f (s) + f 0 (s) (t� s) + (f 0 (t)� f 0 (s)) (t� s)
� f (s) + f 0 (s) (t� s) + sup

t2I
[(f 0 (t)� f 0 (s)) (t� s)]

for any t; s 2 I:
This inequality implies in the order of A that

(2.13) cf 0 (c)� sf 0 (c) + f (s) � f (s) + f 0 (s) (c� s) + sup
t2I

[(f 0 (t)� f 0 (s)) (t� s)]

for any s 2 I and c 2 A with � (c) � I:



6 S. S. DRAGOMIR1;2

If we apply the functional  on (2.13) we get the second inequality in (2.7).
Now, for s 2 [m;M ] � I consider the function 's : [m;M ]! R de�ned by

's (t) := (f
0 (t)� f 0 (s)) (t� s) :

The function 's is continuous on [m;M ], di¤erentiable on (m;M) and

'0s (t) := f 00 (t) (t� s) + f 0 (t)� f 0 (s) :

We observe that '0s (s) = 0 and since f is convex on [m;M ] ; it follows that 's is
nonincreasing on [m; s] and nondecreasing on [s;M ] : Therefore

max
t2[m;M ]

's (t) = max f's (m) ; 's (M)g

= max f(f 0 (s)� f 0 (m)) (s�m) ; (f 0 (M)� f 0 (s)) (M � s)g

and the inequality (2.9) is obtained. �

Corollary 1. With the assumptions of Theorem 3 we have

 (f (c))(2.14)

� 1

M �m

Z M

m

f (s) ds� m+M

2
 (f 0 (c)) +  (cf 0 (c))

� 2

M �m

Z M

m

f (s) ds� f (M) (M �  (c)) + f (m) ( (c)�m)
M �m

+
1

M �m

�
Z M

m

max f(f 0 (s)� f 0 (m)) (s�m) ; (f 0 (M)� f 0 (s)) (M � s)g ds

and

1

2

�
 (f (c)) +

f (M) (M �  (c)) + f (m) ( (c)�m)
M �m

�
(2.15)

� 1

M �m

Z M

m

f (s) ds+
3

8
(f 0 (M)� f 0 (m)) (M �m) :

Proof. If we take the integral mean in (2.9) we get

 (f (c))(2.16)

� 1

M �m

Z M

m

f (s) ds� m+M

2
 (f 0 (c)) +  (cf 0 (c))

� 1

M �m

Z M

m

f (s) ds+
1

M �m

Z M

m

f 0 (s) ( (c)� s) ds

+
1

M �m

�
Z M

m

max f(f 0 (s)� f 0 (m)) (s�m) ; (f 0 (M)� f 0 (s)) (M � s)g ds;
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and since

1

M �m

Z M

m

f 0 (s) ( (c)� s) ds

=
1

M �m

Z M

m

f (s) ds� f (M) (M �  (c)) + f (m) ( (c)�m)
M �m ;

hence the second inequality in (2.14) is proved.
Observe that, by the monotonicity of the derivative, we have

max f(f 0 (s)� f 0 (m)) (s�m) ; (f 0 (M)� f 0 (s)) (M � s)g(2.17)

� (f 0 (M)� f 0 (m))max fs�m;M � sg

= (f 0 (M)� f 0 (m))
�
1

2
(M �m) +

����s� m+M

2

�����
and by taking the integral mean we get

1

M �m

Z M

m

max f(f 0 (s)� f 0 (m)) (s�m) ; (f 0 (M)� f 0 (s)) (M � s)g ds

� (f 0 (M)� f 0 (m))max fs�m;M � sg

= (f 0 (M)� f 0 (m))
 
1

2
(M �m) + 1

M �m

Z M

m

����s� m+M

2

���� ds
!

= (f 0 (M)� f 0 (m))
�
1

2
(M �m) + 1

4
(M �m)

�
=
3

4
(f 0 (M)� f 0 (m)) (M �m) :

Therefore

2

M �m

Z M

m

f (s) ds� f (M) (M �  (c)) + f (m) ( (c)�m)
M �m

+
1

M �m

Z M

m

max f(f 0 (s)� f 0 (m)) (s�m) ; (f 0 (M)� f 0 (s)) (M � s)g ds

� 2

M �m

Z M

m

f (s) ds� f (M) (M �  (c)) + f (m) ( (c)�m)
M �m

+
3

4
(f 0 (M)� f 0 (m)) (M �m) :

and by (2.14) we get

 (f (c))

� 2

M �m

Z M

m

f (s) ds� f (M) (M �  (c)) + f (m) ( (c)�m)
M �m

+
3

4
(f 0 (M)� f 0 (m)) (M �m)

that is equivalent to the desired result (2.15). �

Corollary 2. With the assumptions of Theorem 3 and if  (f 0 (c)) 6= 0 and

s =
 (cf 0 (c))

 (f 0 (c))
2 I;
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then we have the Slater�s type inequality

(2.18)  (f (c)) � f

�
 (cf 0 (c))

 (f 0 (c))

�
:

Remark 1. By the use of inequalities (2.4) and (2.15) and under the assumptions
of Theorem 3 we can get the following upper and lower bounds for  (f (c)) ;

2

M �m

Z M

m

f (s) ds� f (M) (M �  (c)) + f (m) ( (c)�m)
M �m(2.19)

�  (f (c))

� 2

M �m

Z M

m

f (s) ds� f (M) (M �  (c)) + f (m) ( (c)�m)
M �m

+
3

4
(f 0 (M)� f 0 (m)) (M �m) :

We also observe that if � (c) � [m;M ] � I, f 0 (c) > 0 and  (f 0 (c)) > 0 then

m �  (cf 0 (c))

 (f 0 (c))
�M

and the inequality (2.18) holds true.

3. Some Examples

Assume that  : A! C is a positive normalized linear functional on A:
For p � 1; consider the power function fp : (0;1)! (0;1) and 0 < c 2 A which

is analytic and convex on (0;1) : By using the inequalities (2.1) and (2.7) we have
(3.1) sp + psp�1 ( (c)� s) �  (cp) � sp � s (p� 1) 

�
cp�1

�
+ (p� 1) (cp)

for any s > 0:
The �rst inequality can be written as

(3.2) (1� p) sp + psp�1 (c) �  (cp)

while the second as

(3.3) (2� p) (cp) � sp + s (1� p) 
�
cp�1

�
for any s > 0:
If p 2 [1; 2) then we get the double inequality

(3.4) (1� p) sp + psp�1 (c) �  (cp) � 1

2� p
�
sp + s (1� p) 

�
cp�1

��
for any s > 0:
For p > 2 we get by (3.3) that

(3.5) max

�
(1� p) sp + psp�1 (c) ; 1

2� p
�
sp + s (1� p) 

�
cp�1

���
�  (cp)

for any s > 0:
If 0 < c 2 A and for p � 1 we have  

�
cp�1

�
> 0, then by the inequality (2.2)

and (2.18)

(3.6)  p (c) �  (cp) �  p (cp)

 p (cp�1)
:
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From this we get

 p (c) p
�
cp�1

�
�  (cp) p

�
cp�1

�
�  p (cp) ;

namely

(3.7)  (c) 
�
cp�1

�
�  1=p (cp) 

�
cp�1

�
�  (cp) :

The second inequality in (3.7) is equivalent to

(3.8)  1=(p�1)
�
cp�1

�
�  1=p (cp) ; p > 1:

Similar results may be stated for p < 1 or for p 2 (0; 1) :
Assume that 0 < c 2 A and there exist the constants 0 < m < M such that

� (c) � [m;M ] : Then by (2.10), we have for p > 1 that

 (cp) � p

�
m+M

2

�p�1
 (c) + (1� p)

�
m+M

2

�p
(3.9)

+
1

2
p (M �m)

�max
(�

m+M

2

�p�1
�mp�1;Mp�1 �

�
m+M

2

�p�1)
and by (2.11) that

(3.10)  (cp) �  p (c)

+ pmax
�
 p�1 (c)�mp�1� ( (c)�m) ; �Mp�1 �  p�1 (c)

�
(M �  (c)) :

Consider the analytic convex function f : (0;1) ! R, f (t) = � ln t: By using
the inequalities (2.1) and (2.7) we have for 0 < c 2 A that
(3.11) �s 

�
c�1
�
+ ln s+ 1 �  (ln c) �  (c) s�1 + ln s� 1

for any s > 0:
By the inequality (2.2) and (2.18) we have

(3.12) � ln
�
 
�
c�1
��
�  (ln (c)) � ln ( (c)) ;

provided 0 < c 2 A and  (c) ;  
�
c�1
�
> 0:

Assume that 0 < c 2 A and there exist the constants 0 < m < M such that
� (c) � [m;M ] : Then by (2.10), we have

(3.13)  (ln c) �
�
m+M

2

��1
 (c) + ln

�
m+M

2

�
� 1
2

(M �m)2

m (m+M)
� 1

and by (2.11) that

(3.14)  (ln c) � ln ( (c))� 1

 (c)
max

8<: ( (c)�m)2m
;

�
M �  (c)2

�
M

9=; :

For any selfadjoint element c 2 A we have

(3.15) exp ( (c)) �  (exp (c)) � exp
�
 (c exp (c))

 (exp (c))

�
for any  : A! C a positive normalized linear functional on A:
Assume that c 2 A is a selfadjoint element and there exist the real constants

m < M such that � (c) � [m;M ] : Then by (2.10),
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 (exp c) � exp
�
m+M

2

�
+ exp

�
m+M

2

��
 (c)� m+M

2

�
(3.16)

+
1

2
(M �m)

�max
�
exp

�
m+M

2

�
� exp (m) ; exp (M)� exp

�
m+M

2

��
and by (2.11)

 (exp (c)) � exp ( (c)) + max f(exp ( (c))� exp (m)) ( (c)�m) ;(3.17)

(exp (M)� exp ( (c))) (M �  (c))g ;
for any  : A! C a positive normalized linear functional on A:
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