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INEQUALITIES OF JENSEN’S TYPE FOR POSITIVE LINEAR
FUNCTIONALS ON HERMITIAN UNITAL BANACH
*~ALGEBRAS

S. S. DRAGOMIR!:2

ABSTRACT. We establish in this paper some inequalities of Jensen’s and Slater’s
type in the general setting of Hermitian unital Banach x-algebra, analytic con-
vex functions and positive normalized linear functionals.

1. INTRODUCTION

We need some preliminary concepts and facts about Banach x-algebras.

Let A be a unital Banach x-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0,00). We say that a is positive and write a > 0 if a > 0 and 0 ¢ o (a).
Thus a > 0 implies that its inverse a~' exists. Denote the set of all invertible
clements of A by Inv (A). If a,b € Inv (A), then ab € Inv (4) and (ab) ™" = b ta" L.
Also, saying that a > b means that a — b > 0 and, similarly ¢ > b means that
a—b>0.

The Shirali-Ford theorem asserts that if A is a unital Banach x-algebra [8] (see
also [1, Theorem 41.5]), then

(SF) a*a > 0 for every a € A.

Based on this fact, Okayasu [7], Tanahashi and Uchiyama [9] proved the following
fundamental properties (see also [5]):

(i) If a, b€ A, then ¢ >0, b > 0 imply a + b > 0 and « > 0 implies aa > 0;
(ii) If a, b € A, then a > 0, b > 0 imply a + b > 0;
(iii) If a, b € A, then either a > b >0 or a > b > 0 imply a > 0;
(iv) If a > 0, then a1 > 0;
(v) If ¢ >0, then 0 < b < a if and only if cbe < cac, also 0 < b < a if and only
if cbe < cac;
(vi) f0<a <1, then1 <a™}
(vii) f0<b<a,then0<a ' <b ! alsoif 0 <b<a,then0<a ! <b L

Okayasu [7] showed that the Léwner-Heinz inequality remains valid in a Her-
mitian unital Banach x-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (aP > bP).
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In order to introduce the real power of a positive element, we need the following
facts [1, Theorem 41.5].

Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € 0 (a)} > 0 and sup{z: z € o (a)} < co. Choose 7 to
be close rectifiable curve in {Rez > 0}, the right half open plane of the complex
plane, such that o (a) C ins (), the inside of 4. Let G be an open subset of C with
o(a) CG. If f: G — C is analytic, we define an element f (a) in A by

f@) =5 [ 1) -0 d

T 2mi
It is well known (see for instance [2, pp. 201-204]) that f (a) does not depend on
the choice of v and the Spectral Mapping Theorem (SMT)

o (f(a)) = f(o(a))
holds.
For any o € R we define for ¢ € A and a > 0, the real power

1 _
a®=— [ 2%(z—a) 1dz,
2mi J,
where z® is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z* is analytic in {Rez > 0}, then by (SMT) we have

o) =(o(a)*={2*:2€0(a)} C(0,0).
Following [5], we list below some important properties of real powers:

(viii) If 0 < a € A and o € R, then a® € A with ¢® > 0 and (a2)1/2 = a, [9,
Lemma 6];
(ix) If0 < a € A and «, B € R, then a®a® = a**+7;
(x) f0<a€ Aand a €R, then (a®)” ' = (@) =a™
(xi) If0 < a, b€ A, a, B€R and ab = ba, then a*b® = b7a®.
Now, assume that f (-) is analytic in G, an open subset of C and for the real
interval I C G assume that f(z) > 0 for any z € I. If u € A such that o (u) C I,
then by (SMT) we have

o (f(u)=f(o(w)c f)cC0,00)
meaning that f (u) > 0 in the order of A.

Therefore, we can state the following fact that will be used to establish various
inequalities in A, see also [3].

Lemma 1. Let f(z) and g(z) be analytic in G, an open subset of C and for the
real interval I C G, assume that f(z) > g(z) for any z € 1. Then for any u € A
with o (u) C I we have f (u) > g (u) in the order of A.

Definition 1. Assume that A is a Hermitian unital Banach *-algebra. A linear
functional ¢ : A — C is positive if for a > 0 we have ¥ (a) > 0. We say that it is
normalized if ¢ (1) = 1.

We observe that the positive linear functional v preserves the order relation,
namely if @ > b then ¢ (a) > ¢ (b) and if 8 > a > « with «, 8 real numbers, then
B=>1(a) > a.

In the recent paper [4] we established the following McCarthy type inequality:
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Theorem 1. Assume that A is a Hermitian unital Banach x-algebra and ) : A — C
a positive normalized linear functional on A.
(i) If p € (0,1) and a > 0, then

(1.1) PP (a) = 4 (a”) 2 0;
(i) If ¢ > 1 and b > 0, then

(1.2) ¥ (b7) = ¥ (b) = 0.

(iii) If r < 0, ¢ > 0 with ¢ (c) > 0, then

(1.3) P (") =" () > 0.

Motivated by these results we establish in this paper some inequalities for ana-
lytic and convex functions on an open interval and positive normalized functionals
defined on a Hermitian unital Banach x-algebra. Versions of Jensen’s and Slater’s
inequalities are provided. Some examples for particular convex functions of interest
are given as well.

2. JENSEN’S TYPE INEQUALITIES
We have the following result:

Theorem 2. Let f (z) be analytic in G, an open subset of C and the real interval
I C G If f is convex (in the usual sense) on the interval I and ¢ : A — C is a
positive normalized linear functional on A, then for any selfadjoint element c € A
with o (¢) C 1,

(2.1) Y(f(e) = f(s)+ [ (s) (¥ (c)—s)
for any s € 1.

In particular, we have the Jensen inequality
(2.2) Y (f(c) > f@(c)).

Moreover, if o (¢) C [m, M] C I, then

(2.3) w(f(C))Zf<mJ;M)+f'<m;M)<¢(c)_mJ;M)

(2.4)

[w (f () +

1 M
ZM—mAl“Q“

Proof. Since f is differentiable and convex on I we have by the gradient inequality
that

f (M) (M—w(C))Jrf(m)(w(C)—m)]
M—-m

N =

fFO=f(s)+(t=s)f(s)
for any ¢, s € 1.
Fix s € I and apply Lemma 1 for the analytic functions f(z) and gs (z) :=
f(s)+ f(s)(z—s) to get for ¢ € A with o (¢) C I that the following inequality
holds

(2.5) fle)=f(s)+f (s)(c—s)
in the order of A and for any s € I.
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If we take the functional 9 on (2.5) we get

b (f(e) Zv[f(s)+ [ (s) (c— )]
=f($)v D)+ 1 (5) (¢ (c) = sy (1))
=f(s)v+ 1 (s) (W (c) =)

and the inequality (2.1) is proved.

Since o (¢) is compact and o (¢) C I, then there exists the real numbers m,
M with o (¢) C [m,M] C I. This means that we have m < ¢ < M in the order
of A and by taking the functional i, we have m < 9 (¢) < M, meaning that
¥ (¢) € [m, M| C I. Therefore, by taking s = ¢ (¢) € [m, M] in (2.1) we get (2.2).

If we take s = M in (2.1), then we get (2.3).

Now, if we take the integral mean Mim ff:f in (2.1), then we get

1 M
(2.6) Y (f(c) > s)ds + ¢ () 77— m/ £ () ds
M
_Ml—m/ 1 (s) sds.
Since )
Mim f’(S)ds:f(A]Q:{n(m)
and

M M
Ml_m/ f,(s)sds:Ml_m[sf(snﬁf—/ f(t)dt]

_ Mf (M) —mf(m) 1 M
B M—-m 7M—m/m J(s)ds

hence by (2.6) we have
wirn = Oy g0 2 [

M—-—m M —

(Mf(M)nnzf Mm/f )

_ 2 " f (M) (M C)+f (¥ (c) —m)
- M-—-m f(s)ds = -m

m
that is equivalent to the second inequality in (2.4). |

We also have:

Theorem 3. Let f (z) be analytic in G, an open subset of C and the real interval
I C G. If f is convex on the interval I and ¢ : A — C is a positive normalized
linear functional on A, then for any selfadjoint element ¢ € A with o (¢) C I,

(2.7) U (f(e) < f(s)=sv(f () +¢(cf ()
SF)+ ()W (e) =)+ sup [(f" (&) = ' () (£ = 5)]

for any s € 1.
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In particular, we have the reverse of Jensen inequality
(2.8) U (f(e) < f@(e) +9(cf () =¥ (c) ¥ (f ()
<f@W(e)+ sup [(f" (@) = £ (@ () (t =2 ()]
Moreover, if o (c) C [m, M] C I, then
(2.9) @ (f(0) < f(s) = sv(f(c) + ¥ (cf (c)
< f(s)+ () (@ (c) = s)
+max {(f' (s) = f"(m)) (s = m), (f (M) = [ (s)) (M = s)},

for any s € 1.
In particular, we have

3
+
=

210) v @) < f(THH) ol @) - T (@)

<0 (m) e () (v )

{1 (52— o - (2524}

(¥ (e) + ¢ (cf (¢) =¥ () ¥ (f (c))
(¥ (c)) + max {(f" (¢ (¢)) = f" (m)) (¢ (¢) —m),
(f" (M) = f"(# () (M =4 (¢))}-

Proof. Since f is differentiable and convex on I we have by the gradient inequality
that

<f
<f

t=s)f )+ f(s)=f(t)
for any t, s € I.
With a similar approach to the one in the proof of Theorem 2 we obtain that

(2.12) cf (c) =sf' () + f(s)=(c=s) [ () + f(s) = f ()
for any s € I and ¢ € A with o (¢) C I, in the order of A.
If we take the functional ¢ on (2.12) we get

U (cf' (c) = st (f' () + f () =9 (f (c)),
or any s € I and ¢ € A with o (¢) C I, which proves the first inequality in (2.7).

We also have

F)+ =) f ) =F(s)+ [ (s)(t=5)+ (f () = /() (£ = 5)

f
F)+ 1 () (t—s)+ sup [(f" @) = f () (t = 3)]

IA

—~

for any t, s € I.
This inequality implies in the order of A that

(2.13) cf'(c) =sf' () + f(s) < f(s)+ ' (s)(c—s)+ sup [(f" (&) = ' () (£ = 5)]

for any s € I and ¢ € A with o (¢) C I.
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If we apply the functional 1 on (2.13) we get the second inequality in (2.7).
Now, for s € [m, M] C I consider the function ¢, : [m, M] — R defined by

Qs (t) = (f'(t) = f'(s)) (t = s).
The function ¢, is continuous on [m, M], differentiable on (m, M) and
()= f" )t =)+ f ()= f(s).

We observe that ¢’ (s) = 0 and since f is convex on [m, M], it follows that ¢, is
nonincreasing on [m, s] and nondecreasing on [s, M]. Therefore

e o, () = max g, (m) o, (A1)
= max {(' () = £ (m)) (s = m) , (' (M) = f' (5)) (M = 5)}

and the inequality (2.9) is obtained. g

Corollary 1. With the assumptions of Theorem 8 we have

2.14) ¢ (f(e))

< [ s ="M (@) v e @)
> M (M) (O = (6)) + f (m) (6 (&) —m)
sM_m/m f () ds - s
1
M
/ mac {( () — £ (m) (s — m) . (' (M) ~ f'(s)) (M — 5)} ds
and
1 (M) (O — 6 (6)) + f (m) (4 (&) —m)
215) 3l DET

<3 [ P s+ SO = 1 () 01 =),

Proof. If we take the integral mean in (2.9) we get

(2.16) ¥ (f(c)
_m+ M

M
< armm | T = T (@) + v ef ()

—m

M
< Mim/ [(s)ds+

M
— [ re@e -

M
/ max {(f' (s) = f'(m)) (s —m), (f' (M) = f' (5)) (M — s)} ds,
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and since
M
e [ e -
1 "o

S (M) (M =1 (c) + f(m) (¥ (c) —m)
/m f(s)ds— U —m ,

:M—m

hence the second inequality in (2.14) is proved.
Observe that, by the monotonicity of the derivative, we have

(2.17) max {(f" (s) = f"(m)) (s —m), (f" (M) = f"(s)) (M — s)}
< (f' (M) = f' (m)) max {s — m, M — s}

1
=700 = 1 ) (5 O ) + |5 -
and by taking the integral mean we get

fH(m) (s =m), (f' (M) = f' (s)) (M = 5)} ds
g( f(m)) max {s —m, M — s}

M
= (7' 0)— ' (m) <2<M—m>+M1_m/ - ds)

m+M>

= (7 01) = 7 ) (5 O =)+ § 1 =)
= 20 (M) — ' () (M —m)
Therefore

M -m
2 /f(s)ds_f(M)(M YD+ 1)) = m)

M —

m

ds—

i( 7 (M)~ () (M~ m).
and by (2.14) we get

¥ (f(9)
M —(c m c)—m
2 [ s L0 /) (0 =)
+ 207 () — 1 () (M —m)
that is equivalent to the desired result (2.15).

<

Corollary 2. With the assumptions of Theorem 8 and if ¥ (f' (c)) # 0 and

p(ef (@)
=0 h
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then we have the Slater’s type inequality
¥ (cf! (C)))
(2.19) v < s (S,

Remark 1. By the use of inequalities (2.4) and (2.15) and under the assumptions
of Theorem 3 we can get the following upper and lower bounds for ¥ (f (c)),

(2.19) 2 /Mfwﬁk_fU@UW—¢@D+fWﬂW%d—m)
M-m/, M—m
< (f(0)
2 M F(M) (M =% (c) + f (m) (¢ (c) — m)
SM—m/m f(s)ds— SV

£ 207 O~ 1 () (M —m).
¢) Cm,M]CI, f'(¢c) >0 and(f (c)) >0 then
el (@)

We also observe that if o (

S =M

and the inequality (2.18) holds true.

3. SOME EXAMPLES

Assume that 1) : A — C is a positive normalized linear functional on A.
For p > 1, consider the power function f, : (0,00) — (0,00) and 0 < ¢ € A which
is analytic and convex on (0, 00) . By using the inequalities (2.1) and (2.7) we have

(3.1) s +ps”TH (Y () —s) (M) <P —s(p— 1Y (PT) + (0~ 1Y (cP)

for any s > 0.

The first inequality can be written as
(3.2) (1 —p)sP +psP~ 1 (¢) < P (cP)
while the second as
(33) 2-p)¥ () <P +s(1—p)i ()
for any s > 0.

If p € [1,2) then we get the double inequality

1

B4 Q=P +p T Y@ < g [ Hs =P v (@)
for any s > 0.

For p > 2 we get by (3.3) that

(3.5) max{(l—p) sP 4+ psP~ e (c), [S’W—s(l—p)zﬁ(cplﬂ} < (cP)

2-p
for any s > 0.
If 0 < c€ A and for p > 1 we have ¢ (cp_l) > 0, then by the inequality (2.2)
and (2.18)
PP (cP)
P p
(3.6 WO S0 < S
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From this we get

PP ()P (PTH) S (P) P (7)< 9P (),

namely

(3.7) V(Y () vV (E) e (@) S ().
The second inequality in (3.7) is equivalent to

(3.8) WD () < gt P(er), p> 1

Similar results may be stated for p < 1 or for p € (0,1).
Assume that 0 < ¢ € A and there exist the constants 0 < m < M such that
o (¢) C [m, M]. Then by (2.10), we have for p > 1 that

B9 wlsr (mZM)plwc) T-p) (m;M)p

1
+§P(M_m)

p—1 p—1
xmax{(m_;M> —mp_l,Mp_l—(m_;M) }

and by (2.11) that

(3810) (") <v” (o)
+pmax (07 (¢) — mP 1) (4 (¢) — m) , (MP™" = 9P (¢)) (M — 9 ().

Consider the analytic convex function f : (0,00) — R, f(¢t) = —Int. By using
the inequalities (2.1) and (2.7) we have for 0 < ¢ € A that

(3.11) —sy (¢ ) +Ins+1<9¢(Inc)<t(c)s ' +Ins—1

for any s > 0.
By the inequality (2.2) and (2.18) we have

(3.12) ~In(y (c)) < (n(e) < (¥ (o),

provided 0 < c € A and ¢ (c), ¥ (™) > 0.
Assume that 0 < ¢ € A and there exist the constants 0 < m < M such that
o (¢) C [m, M]. Then by (2.10), we have

(3.13) @ (lnc) > <m_;M)_1¢(c)—|—ln (m;M> —;%—1

and by (2.11) that

c)—m 2 M_w<c)2
(3.14) Y (ne) >1In(¢(c)) — ﬁmax (¥ )m ) , ( i )

For any selfadjoint element ¢ € A we have
¥ (cexp (C)))

(3.15) exp (v (¢)) < ¢ (exp (¢)) < exp ( ¥ (exp (c))

for any 9 : A — C a positive normalized linear functional on A.
Assume that ¢ € A is a selfadjoint element and there exist the real constants
m < M such that o (¢) C [m, M]. Then by (2.10),
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(3.16) v (expc) < exp <m—;M) + exp <m+2M) <¢ (c) - m—gM)

+ = (M —m)

X max {exp (””QM) — exp (m) ,exp (M) — exp <m+2M>}

[N

and by (2.11)

(3.17) 4 (exp () < exp (¢ (¢)) + max {(exp (¢ (¢)) — exp (m)) (¢ (¢c) —m),
(exp (M) —exp (¢ (¢)) (M — ¢ ()},

for any 1 : A — C a positive normalized linear functional on A.
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