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INEQUALITIES OF GRUSS’ TYPE FOR POSITIVE LINEAR
FUNCTIONALS ON HERMITIAN UNITAL BANACH
*~ALGEBRAS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we establish some inequalities of Griiss’ type for el-
ements in a Hermitian unital Banach x-algebra and for positive normalized
linear functionals on such algebras. Applications for convex functions of self-
adjoint elements that provide reverses of Jensen’s inequality and examples for
some fundamental convex functions such as the power, logarithmic and expo-
nential functions are given as well.

1. INTRODUCTION

In 1935, G. Griiss [11] proved the following integral inequality which gives an
approximation of the integral mean of the product in terms of the product of the
integrals means as follows:

o s@oa i [wae 2 [
1

where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition
(1.2) ¢<f(2) <P y<g(x)<T

for each = € [a,b] , where ¢, ®, v, T are given real constants.

Moreover, the constant i is sharp in the sense that it cannot be replaced by a
smaller one.

In [5], in order to generalize the above result in abstract structures the author
has proved the following Griiss’ type inequality in real or complex inner product
spaces.

(1.1)

Theorem 1. Let (H,(.,.)) be an inner product space over K (K=R, C) ande € H,
llell = 1. If v, v, @, T are real or complex numbers and x, y are vectors in H such
that the conditions

(1.3) Re(®Pe —z,2 — pe) > 0 and Re (Te —y,y —ye) >0

hold, then we have the inequality

(14) 2,3} = (2 €) (e, < 712 = gl T =1,
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The constant % is best possible in the sense that it can not be replaced by a smaller
quantity.

For other results of this type, see the recent monograph [6] and the references
therein. For Griiss’ type inequalities for positive maps, see [2], [12] and [14].

We need some preliminary concepts and facts about Banach x-algebras.

Let A be a unital Banach *-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0,00) . We say that a is positive and write a > 0ifa > 0and 0 ¢ o (a) . Thus
a > 0 implies that its inverse a~! exists. Denote the set of all invertible elements
of A by Inv(A).If a, b € Inv(A), then ab € Inv (A) and (ab)™" = b~ a~L. Also,
saying that ¢ > b means that a — b > 0 and, similarly a > b means that a — b > 0.

The Shirali-Ford theorem asserts that if A is a unital Banach *-algebra [16] (see
also [3, Theorem 41.5]), then

(SF) la|* := a*a > 0 for every a € A.

Based on this fact, Okayasu [15], Tanahashi and Uchiyama [17] proved the following
fundamental properties (see also [10]):

(i) If a, b€ A, then a > 0, b > 0 imply a + b > 0 and « > 0 implies aa > 0;
(ii) If a, b € A, then a > 0, b > 0 imply a + b > 0;
(iii) If a, b € A, then either a > b >0 or a > b > 0 imply a > 0;
(iv) If a > 0, then a=! > 0;
(v) If ¢> 0, then 0 < b < a if and only if cbe < cac, also 0 < b < a if and only
if cbe < cac;

(vi) f 0 <a <1, then 1 <a™ %

(vii) f0<b<a,then0<a ! <b ! alsoif 0 <b<a,then0<a ! <b L

Okayasu [15] showed that the Lowner-Heinz inequality remains valid in a Her-
mitian unital Banach #-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (a? > bP).

In order to introduce the real power of a positive element, we need the following
facts [3, Theorem 41.5].

Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € 0 (a)} > 0 and sup{z: z € o (a)} < co. Choose 7 to
be close rectifiable curve in {Rez > 0}, the right half open plane of the complex
plane, such that o (a) C ins (), the inside of . Let G be an open subset of C with
o(a) CG. If f: G — C is analytic, we define an element f (a) in A by

1 -1
F@ =g [fOGE—a e

It is well known (see for instance [4, pp. 201-204]) that f (a) does not depend on
the choice of v and the Spectral Mapping Theorem (SMT)

o (f(a)) = f(o(a))
holds.
For any o € R we define for ¢ € A and a > 0, the real power
1

a® = 3 2% (z—a)_1 dz,
¥
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where 2z is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z* is analytic in {Re z > 0}, then by (SMT) we have

o(a®) = (o(a)*={2*:2€0(a)} C(0,0).
Following [10], we list below some important properties of real powers:

(viii) f 0 < @ € A and « € R, then a* € A with a®* > 0 and (a2)1/2 = a, [17,
Lemma 6];
(ix) If0 < a € A and o, B € R, then a®a® = a**+7;
(x) f0<a€ Aand a€R, then (a*)”" = (@) =a™
(xi) If0 < a, b€ A, a, B €R and ab = ba, then a®b® = b7a.
Now, assume that f(-) is analytic in G, an open subset of C and for the real
interval I C G assume that f(z) > 0 for any z € I. If u € A such that o (u) C I,
then by (SMT) we have

o (f () = f(o(uw)) C f{I) C[0,00)
meaning that f (u) > 0 in the order of A.

Therefore, we can state the following fact that will be used to establish various
inequalities in A, see also [7].

Lemma 1. Let f(z) and g(z) be analytic in G, an open subset of C and for the
real interval I C G, assume that f(z) > g(z) for any z € 1. Then for any u € A
with o (u) C I we have f (u) > g (u) in the order of A.

Definition 1. Assume that A is a Hermitian unital Banach *-algebra. A linear
functional ¢ : A — C is positive if for a > 0 we have ¥ (a) > 0. We say that it is
normalized if ¢ (1) = 1.

We observe that the positive linear functional 1 preserves the order relation,
namely if a > b then ¢ (a) > 9 (b) and if 8 > a > « with «, § real numbers, then
B2¢(a)2a

In the recent paper [8] we established the following McCarthy type inequality:

Theorem 2. Assume that A is a Hermitian unital Banach x-algebra and ¢ : A — C
a positive normalized linear functional on A.
(i) If p € (0,1) and a > 0, then

(1.5) PP (a) > (aP) > 0;
(i) If g > 1 and b > 0, then

(1.6) P (b7) = (b) = 05

(#ii) If r < 0, ¢ > 0 with ¢ (c) > 0, then

(1.7) ¥ (c") =" (c) > 0.

In [9] we obtained the following result for analytic convex functions:

Theorem 3. Let f (z) be analytic in G, an open subset of C and the real interval
I C G. If f is convex (in the usual sense) on the interval I and p : A — C is a
positive normalized linear functional on A, then for any selfadjoint element c € A
with o (¢) C I, we have

(1.8) F@(e) <4 (f(e) < @ () + 2 (cf () =¥ ()¢ (f'(0)-
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Motivated by the above results, we establish in this paper some inequalities of
Griiss’ type for elements in a Hermitian unital Banach *-algebra and for positive
normalized linear functionals on such algebras. Applications for convex functions
of selfadjoint elements that provide reverses of Jensen’s inequality and examples for
some fundamental convex functions such as the power, logarithmic and exponential
functions are given as well.

2. GRUSS’ TYPE INEQUALITIES
We have the following facts:

Lemma 2. Assume that A is a Hermitian unital Banach *-algebra and ¢ : A — C
a positive normalized linear functional on A. The functional (-, ~>w :AxA—-C
defined by

(2.1) (a,b), =1 (b%a)
satisfies the following properties:
(i) llal2, = (a,a), > 0 for any a € A;
(ii) {aa + Be, b>w = (a,b)w + 8 {c, b)w and (a,ozb>w =a/a, b)¢
for any a, 8 € C and a, b, c € A;
(i1i) (b,a),, = (a,b), for anya, b € A;
namely, (-, ~>w 18 a positive semi-definite Hermite sesquilinear form.
We have the equality
(2:2) laa +l1%, = laf* llal}, + 2Re [a (a,0),,| + 6]

for any o € C and a, b € A;
We have the Schwarz inequality

2 2 12
(2.3) (), < Nl 1007
and the triangle inequality
(2.4) lla+0ll, <lal, + loll,

for any a, b € A;
The functional |||, is a seminorm on A;
In particular

(2:5) [ (@) <o (laf*) = llal,

for any a € A.

Proof. For a proof in the case of C*-algebras and states, see for instance [1, pp.
17-18].

In a similar way, we can give a proof for a Hermitian unital Banach *-algebra A
and 1 : A — C a positive normalized linear functional. This is as follows.

(i) Follows by the positivity of ;

(ii) Follows by the linearity of v;

(iii) For any o € C and a, b € A we have

2 20112 _ 2
(2.6) 0 < [laa +bll, = [ llally, + o (a, b}, + @ (b, a), + [Ib], -
This implies that

(2.7) Im (a (a,b), +a(b, a>¢) =0
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for any o € C.
If we take in (2.7) a = 1, then we get Im (b,a),, = —Im(a,b),, . If we take in
(2.7) a =i, then we get Re (b,a),, = Re(a,b),, , which implies that (iii) is valid.
The equality (2.2) follows by (2.6).
Assume that ||aHi = 0. If we assume that (a, ), # 0 then by taking v =¢

with ¢t € R in (2.2) we get

‘ <avb>w ‘
<a7b>w

(2.8) 0.<2¢ |(a,b), | + ol

for any t € R. By taking negative t with large |¢| in (2.8) we obtain a contradiction.
Therefore we conclude that (a, b),, = 0 and the inequality (2.3) is valid with equality.

If we assume that [|a|? # 0 and take in (2.2) a = —w, then we get
Y llall
»
el G N N [COW
ab [CROM N
29) ”b—< T ] P A R
lally I, llally, lally

2
Al Nl = [(a.B) |

2
llally

and the inequality (2.3) is thus satisfied.
By (2.2) we have

lo+bll5, = llall}, + 2Re [(a,b),] + ol)}

2 2
< llall}, +2 |{a. b | + 1817

2
2 2
< Jlall}, + 2llall, 18l + 1615 < (llall, + ],

implying the desired result (2.4).
The inequality (2.5) follows by (2.3) for b = 1. O

For an element ¢ € A we define the selfadjoint elements

1 1
Re(c):=-(c"+¢) and Im(c) :== — (¢ —¢).
2 27
We have the Cartesian decomposition ¢ = Re (¢)+iIm (¢) and ¢* = Re (¢)—iIm (c).
Lemma 3. Assume that A is a Hermitian Banach *-algebra.
If a, b€ A, then

1
(2.10) Re(a'b) = 7 |la+ b —Ja— b|2] .
If c,d€ A and v, I € C then
1 r 2
1) Re(le - 7)) = {7~ - e~ T

If ¢, d € A, and ~, T’ € C then, the following inequalities are equivalent

_IT+ty
2

2
1
(2.12) \ d < tirp
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and
(2.13) Re ((¢* —7d*) (T'd — ¢)) > 0.
Proof. The identity (2.10) follows by the equalities
la+b)° = |a]* + a*b £ b*a + |b]?
that hold for any a, b € A.
The equality (2.11) follow by (2.10) for a = ¢ — vd and b =T'd — c.

The equivalence of the inequalities (2.12) and (2.13) follow by the identity (2.11).
O

We have the following result:

Theorem 4. Assume that A is a Hermitian unital Banach *-algebra and ¢ : A — C
a positive normalized linear functional on A. If ¢, d € A, then

@14) o< () v (d?) - @l < v (1d?) v (|l - ad?)
for any o € C.

Proof. If ¢ (|d\2) = 0 the inequality is trivial.

If ¥ (|d|2> > 0, then by the properties of the functional v, we have for any

complex number a € C that

— c?) — Y (d*c) 0) — o (¢ a7/)(d*c) 2
= (Ief) w(|d|2)¢(d )~ ath (¢"d) + w(wﬁ)w('d )
— (|c|2) _ [ (d*e |2 — atp (c*d) + ap (@)

Ll
= [ ———




INEQUALITIES OF GRUSS’ TYPE 7

Using the Schwarz inequality we have

(2.16) ‘¢ ((c _ pla) d*) (c— ad)) |
v (14)

-

c 2 d] (c—ad)
( ")

< ¢1/2 (c ¢)

< 2
for any a € C.

d
Al
Y (d
|
. _ (d*e)
If we take in (2.15) a = w(ar) e also have

(2.17) " (C v(de) 2) ) 0 (|c\2) P (|d|2) _ W(Cl*c)|2.
(] (|d|2) » (|d|2)
By (2.15)-(2.17) we get
(0 (IcIQ) (0 (\dlg) — [y (d*¢)|?
<)
2 2 T
. (w (1ef) v (1*) = o (ae)| ) o).

v (14°)
1/2

(¢(|c| )wic(zdl) 1 (dc)| ) <92 (- adP),

0 <o (lef) v (1) v (@) < v (|a?) v (le - ad?)
for any o € C. O

2
d ) P12 (|c - ad|2) :

v (14F)

(2.18)

which implies that

namely

Corollary 1. Assume that A is a Hermitian unital Banach x-algebra and v : A —
C a positive normalized linear functional on A. If ¢, d € A, and v, I' € C are such
that, either of the conditions (2.12) or (2.13) is valid, then
2 2 wy2 L 2 2 ()2
. < - < -I'— .
219) 0= (1) v (1) = (@) < 710 =P (1dP)

Proof. If we take in (2.14) a = %, then we have

(2.20) o<w(wﬁw0ﬂﬁ—wmwaﬁ<w0aﬂw<k—F;7d

)
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By taking the functional ¢ in (2.12) we get
T+7 | 1 2 2
. S <-|r- .
(221) w(] . d>_4r Ao (1d?)

Utilising (2.20) and (2.21) we get (2.19). O

Corollary 2. Assume that A is a Hermitian unital Banach x-algebra and v : A —
C a positive normalized linear functional on A. If c € A and v, T' € C are such
that, either of the conditions

(2.22) ‘c - % < i IT —~]?
or
(2.23) Re((¢*=7)(I'=¢)) =0
is valid, then
1
(2:24) 09 () = [ (@) < 71T =P

We say that the element ¢ € A satisfies the accretive property (v,T) for some ~,
I' € C if either of the conditions (2.22) or (2.23) is valid.
We have:

Corollary 3. Assume that A is a Hermitian unital Banach *-algebra and ¢ : A —
C a positive normalized linear functional on A. If ¢ € A is a selfadjoint element
and m, M are real numbers such that

(2.25) m < c< M,
then
(2.26) 0< () — w2 (c) < i (M —m)?.

The proof follows by Corollary 2 on observing that the condition (2.25) implies
the fact that

M\? 1
(2.27) PR i I VS
2 2
Indeed, if z € [m, M] then (z — #)2 <3I(M- m)” and by using Lemma 1 for

the selfadjoint element ¢ with o (¢) C [m, M| we obtain (2.27).

Remark 1. Let ¢ : A — C be a positive normalized linear functional on A. If we
take the functional v in the equality (2.11), then we get

¢ Fgﬂd’ ) = i It =~y (|d|2> — 4 [Re ((¢" —7d*) (Td — c))] .

(2.28) (
By utilising (2.20) we get the inequality

1
@29 0=y (el*)w (1) - v (@) < 70 —F ¥ ()

— v (|d*) @ [Re (" = 5d°) (Td = o)),
for any v, T' € C.
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If
(2.30) ¢ [Re((¢" =7d") (Td - ¢))] = 0,

which is a weaker condition than (2.13, then the inequality (2.19) also holds.
In particular, for d =1 we get

@31 0<9 (1) - e < {7 = ~ ¢ [Re (¢ ~7) (T =)

for any v, T € C.
Therefore a weaker condition for the inequality (2.24) to hold is that

¢ [Re((c"=7) (T =¢))] 2 0.
We have the following Griiss’ type inequalities:

Theorem 5. Assume that A is a Hermitian unital Banach x-algebra and ¢ : A — C
a positive normalized linear functional on A. Then for any ¢, d € A and o € C we
have

(2.32) 1 (d*6) — o () ()] < 12 (\d—a|2> (w (|c‘2) _ |¢(C)‘2>1/2.

In particular, for o =1 (d) we have

(2.33) [ (d"¢) — o (d") 0 (0)] < (¢ <|d|2) _ |¢(d)|2)1/2 (w (|C‘2) _ |w(c)|2)1/2.

Proof. For any o € C we have

(2.34) U ((d=a) (c=¢ () =¢ ((d" —a) (c—¢(c)))
(de—d¢(c)) —a(c—9(c))

d
(d*c) =4 (d) ¥ (c) .

(G
(4
(G

Using Schwarz’s inequality we have

¥ (dc) = (d) 9 (c)] = [¢ ((d — )" (c = ¥ (0)))]

for any o € C. This proves (2.32). O
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Corollary 4. Assume that A is a Hermitian unital Banach *-algebra and ¢ : A —
C a positive normalized linear functional on A. Then for any ¢, d € A and v, T, 4,
A € C we have

(235) [0 (@e) - @) v @ < (v (1e?) = @F) " (v (1a?) - w@p) "
< (§I0 - = wlRe(@ =) - o))

x (i A =8 — g [Re (@ — 8) (A —d))]) .
The proof follows by (2.33) and (2.31).

Corollary 5. Assume that A is a Hermitian unital Banach *-algebra and ¢ : A —
C a positive normalized linear functional on A. If the element ¢ € A satisfies the
accretive property (v,T') for somey, I' € C and d € A satisfies the accretive property
(6,A) for some §, A € C then we have

(2.36) ¢ (d"c) = (d7) P ()|

< (1) =l @P) " (v (198) - 1w @F)”
< (i It —~* =9 [Re ((¢* —7) (T — c>>])

x (i A= 3" = [Re (4"~ 3) (A~ d>>]>

<30 —l1a 4

— 2 [Re ((¢" =7) (T = )] /2 [Re ((d" = §) (A — d))]
1
< —T'—=~|A-4].
<70 =11a -4
Proof. We must prove only the third inequality. This follows by the elementary

inequality

(m2 _ nz) (p2 _ q2) < mp—ngq

where m >n > 0 and p > ¢ > 0 on choosing
1 «  —
m=3|I'=1l, n=¢"?Re((c" —7) (I - )]

and

p= LA 0. g= v [Re (@ - 5) (A )]

We have:

Corollary 6. Assume that A is a Hermitian unital Banach x-algebra and ¢ : A —
C a positive normalized linear functional on A. If ¢, d € A are selfadjoint elements
and m, M, n, N are real numbers such that

(2.37) m<c<Mandn<d<N,
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then

(2.38)  [o (de) — @< (¥ () - )”2 (0 (2) — v* (@)
< (FO0-m? = v ((e—m) (01 o))
< (G070t = va-m (v - a))
siuw m) (N — n)
— V2 (e — m) (M — &) 2 ((d — ) (N — d))
i(M m) (N —n).

Remark 2. For applications, the following inequalities may be useful

5 (M —m) (¥ (&?) = ¥* (d))

1/2

(2.39) 9 (de) = (d) ¥ (c)| < 1/2

(N =n) (¢ () —*(c)
<£(M—m)(N—n)7

provided that b : A — C is a positive normalized linear functional on A, ¢, d € A
are selfadjoint elements and m, M, n, N are real numbers such that the condition
(2.87) holds.

3. APPLICATIONS FOR CONVEX FUNCTIONS

Let f (z) be analytic in G, an open subset of C and the real interval I C G. If f
is convex on the interval I and ¥ : A — C is a positive normalized linear functional
on A, then for any selfadjoint element ¢ € A with o (¢) C I, we have (see Theorem
3)

(3.1) 0<9(f(c) = f(e)) =v(cf () =¥ (c)v(f (c).

If bounds for the spectrum o (c) are known, then further simpler bounds may be
provided.

Theorem 6. With the assumptions of Theorem 3, then for any selfadjoint element
c € A with o (c) C [m, M) C I for some real numbers m < M,

(3-2) 0<¥(f(e) = f®(e) < (cf () =¥ (e)¥ (f (c)

sr—m) o (1r @F) - v (7 )]

IN

1/2

3L (M) = f (m)] (¥ () = ¢* ()

IN

1 O —m) [ (M) = ' ().
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The proof follows by (3.1) and the Griiss’ type inequality (2.39).

Using (3.2) we can provide the following reverses of McCarthy inequalities from
Theorem 2.

Assume that the selfadjoint element ¢ € A satisfies the condition o (¢) C [m, M| C
[0,00). Then for any ¢ > 1 we have

(3.3) 0 < (b%) — 7 (b) < q v () = () ("))
Lg(M = m) [ip (2la=D) — 2 (ea-1)] /2
<
Lg (M1 = mi1) (v (¢2) = ¢ () ?
< iq (M —m) (M7 —m1t),
For any p € (0,1) and o (c) C [m, M] C (0,00) we have
(3.4) 0< 9P (c) = (c”) <p[p () (P71) =9 ()]
Lp (M —m) [ip (X0~ — ¢ (e-1)] /2
<
A (v () - v ()
< gV —m) S

If we take p = 1/2 in (3.4) we get

(35 0<v 2@ —p (M) < 5 [B@w () ()]

i(M _ m) W (c—l) o ¢2 (6_1/2)]1/2
<

e (A CORRT ) R
< E(M—m) M2 — 1/

8 ml/2pML/2
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For r <0, o (¢) C [m, M] C (0,00) then

(3.6) 0< Y ()= (e) <r(W(c) —v(c)v (<))
{ FOL = m) o] 1 (207) = o ()]
<
Lr (M=t — 1) (v () - 0 ()
1 —1 r—1
< ZT(M—’ITL) (MT —-m )
If we take r = —1 then we get
(3.7) 0<¢ () —v () <y (v (c?) —v(c)
<

S(M-—m)? =

<
Assume that o (¢) C [m,M] C (0,00) and ¢ : A — C is a positive normalized
linear functional on A. By applying the inequality (3.2) for the convex function
f () = —Int, we get

(3.8) 0<In(¥(e) —v(ine) <o (c) () — 1

Assume that o(c) C [m,M] C R and ¢ : A — C is a positive normalized
linear functional on A. By applying the inequality (3.2) for the convex function
f(t) =exp(rt), with 7 € R and 7 # 0, we get

(3.9)  0< 9 (exp(rc)) —exp (19 (¢)) < 7[¢ (cexp(re)) = ¥ (¢) ¥ (exp (7¢))]
<

{ L (M = m) 7| [ (exp (27¢)) — v (exp (r¢))]/*

1/2

37 lexp (TM) — exp (rm)] (v (%) = 9* (0))

< -7 (M —m)[exp(TM) —exp (Tm)] .

| =
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