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REVERSES AND REFINEMENTS OF JENSEN’S INEQUALITY
FOR POSITIVE LINEAR FUNCTIONALS ON HERMITIAN
UNITAL BANACH x-ALGEBRAS

S. S. DRAGOMIR!:2

ABSTRACT. We establish in this paper some inequalities for analytic and con-
vex functions on an open interval and positive normalized functionals defined
on a Hermitian unital Banach %-algebra. Reverses and refinements of Jensen’s
and Slater’s type inequalities are provided. Some examples for particular con-
vex functions of interest are given as well.

1. INTRODUCTION

We need some preliminary concepts and facts about Banach x-algebras.

Let A be a unital Banach x-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0, 00) . We say that a is positive and write a > 0ifa > 0 and 0 ¢ o (a) . Thus
a > 0 implies that its inverse a~! exists. Denote the set of all invertible elements
of A by Inv (A). If a, b € Inv (A), then ab € Inv (A) and (ab)™" = b~La~. Also,
saying that ¢ > b means that a — b > 0 and, similarly a > b means that a — b > 0.

The Shirali-Ford theorem asserts that if A is a unital Banach x-algebra [14] (see
also [2, Theorem 41.5]), then

(SF) la|® := a*a > 0 for every a € A.

Based on this fact, Okayasu [13], Tanahashi and Uchiyama [15] proved the following
fundamental properties (see also [9]):
(i) If a, b€ A, thena >0, b > 0 imply a+ b > 0 and « > 0 implies aa > 0;
) Ifa, b€ A, then a >0, b > 0 imply a + b > 0;
ii) If a, b € A, then either a > b > 0or a > b > 0 imply a > 0;
) If a > 0, then a=! > 0;
) If ¢ > 0, then 0 < b < a if and only if cbe < cac, also 0 < b < @ if and only
if ¢be < cac;
(vi) If0 <a <1, then 1 <a™}
(vii) f0<b<a,then0<a ! <b ! alsoif 0<b<a,then0<a ! <b L
In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].
Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € 0 (a)} > 0 and sup{z: z € 0 (a)} < co. Choose 7 to
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be close rectifiable curve in {Rez > 0}, the right half open plane of the complex
plane, such that o (a) C ins (), the inside of . Let G be an open subset of C with
o(a) CG. If f: G — C is analytic, we define an element f (a) in A by

f@ =5 [ 1@ E-0

It is well known (see for instance [3, pp. 201-204]) that f (a) does not depend on
the choice of v and the Spectral Mapping Theorem (SMT)

o(f(a))=f(o(a))
holds.
For any o € R we define for ¢ € A and a > 0, the real power

1 _
a® = — [ 2%(z—a) " dz,
27 J,
where 2% is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z* is analytic in {Re z > 0}, then by (SMT) we have

o(a®)=(o(a)*={2*:2€0(a)} C(0,00).
Following [9], we list below some important properties of real powers:

(viii) If 0 < @ € A and a € R, then a® € A with a® > 0 and (a2)1/2 = a, [15,
Lemma 6];
(ix) If0 < a € A and «, B € R, then a®a® = a**+7;
(x) f0<a€ Aand a €R, then (a®)” ' = (ail)a =a" %
(xi) If0 < a, b€ A, a, B €R and ab = ba, then a*b® = b7a®.

Okayasu [13] showed that the Lowner-Heinz inequality remains valid in a Her-
mitian unital Banach x-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (a? > bP).

Now, assume that f(-) is analytic in G, an open subset of C and for the real
interval I C G assume that f(z) > 0 for any z € I. If u € A such that o (u) C I,
then by (SMT) we have

o (f(u) = f(o(w)C f)cC0,00)

meaning that f (u) > 0 in the order of A.
Therefore, we can state the following fact that will be used to establish various
inequalities in A, see also [5].

Lemma 1. Let f(z) and g (z) be analytic in G, an open subset of C and for the
real interval I C G, assume that f(z) > g(z) for any z € I. Then for any u € A
with o (u) C I we have f (u) > g (u) in the order of A.

Definition 1. Assume that A is a Hermitian unital Banach x-algebra. A linear
functional ¢ : A — C is positive if for a > 0 we have ¥ (a) > 0. We say that it is
normalized if ¥ (1) = 1.

We observe that the positive linear functional 1 preserves the order relation,
namely if @ > b then ¢ (a) > ¢ (b) and if 8 > a > «a with «, 8 real numbers, then
B>1(a) > a.

In the recent paper [6] we established the following McCarthy type inequality:
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Theorem 1. Assume that A is a Hermitian unital Banach x-algebra and ) : A — C
a positive normalized linear functional on A.
(i) If p € (0,1) and a > 0, then

(1.1) PP (a) > 4 (a”) 2 0;
(1) If g > 1 and b > 0, then
(12) B (b9) > 99 (6) > 0
(iii) If r < 0, ¢ > 0 with ¢ (c) > 0, then
(1.3) Y (c") > " (c) > 0.
In [7] and [8] we obtained the following result for analytic convex functions:

Theorem 2. Let f (z) be analytic in G, an open subset of C and the real interval
I C G If f is convex (in the usual sense) on the interval I and ¢ : A — C is a
positive normalized linear functional on A, then for any selfadjoint element c € A
with with o (¢) C [m, M] C I for some real numbers m < M,

(1.4) 0< 9 (f(e)) = fW(e) <v(cf (¢) =¥ (e)y (f ()

S0 —m) [o (17 @)~ (7 @)]

<

<

(M —m) [f" (M) = " (m)].

N

Motivated by these results we establish in this paper some inequalities for an-
alytic and convex functions on an open interval and positive normalized function-
als defined on a Hermitian unital Banach *-algebra. Reverses and refinements of
Jensen’s and Slater’s type inequalities are provided. Some examples for particular
convex functions of interest are given as well.

2. SOME REVERSES
We have:
Theorem 3. Let f (z) be analytic in G, an open subset of C and the real interval

I C G. If f is convex on the interval I and ¢ : A — C is a positive normalized linear
functional on A, then for any selfadjoint element ¢ € A with o (¢) C [m,M] C I



4 S.S. DRAGOMIRY2

for some real numbers m < M,

(2.1) 0<y(f(e) = f@ ()

M -9 (@) @()=m) Oy (t;m, M)

<
M —m te(m,M)

{ % (M —m) SUP¢e (m,M) Oy (t;m, M)
<

(M =9 (¢)) (¥ () — m) LEH=L0m)

< 5 (M —m)[f' (M) — f' (m)]
provided v (c) € (m, M), where ©¢ (-;m, M) : (m, M) — R is defined by

JOD=F(t)  f0)—Fm)
M —t t—m

B~ =

Of (t;m, M) =
We also have

(22) 0<% (f(e) = f(W(c)) <7 (M —m)Oy (¢ (c);m, M)

e

<—(M—-m) sup Of(t;m,M)<

te(m,M)

(M —m) [f" (M) = " (m)],

| =
N

provided 1 (c) € (m, M) .
Proof. By the convexity of f on [m, M] we have for any z € [m, M] that

z—m M —z
=P (M) + 3 f ().

Using Lemma 1 we have by (2.3) for any selfadjoint element ¢ € A with o (¢) C
[m, M] that

(2.3) f(2) <

c—m M —c¢
TR ALY

(2.4) fle) < f(M)

in the order of A.
If we take in this inequality the functional ¢ we get the following reverse of
Jensen’s inequality

—m

(2.5) Y (f(e) < f (M) % +f(m) %

This generalizes the scalar Lah-Ribari¢ inequality for convex functions that is well
known in the literature, see for instance [10, p. 57] for an extension to selfadjoint

operators in Hilbert spaces.
Define

(t—m)f(M)+(M—t)f(m)
M—m

Ay (t;m, M) :=
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then we have

26) Ay (i, by = LSOO+ (M= 8) f(m) = (M —m) [ (1)

M—-m
_=m)f(M)+ M —t)f(m) = (M —t+t—m)f ()
M—m
_=m)[f (M) = f@®)] = (M =t)[f () = f(m)]
M—-—m
= WD m, )

for any t € (m, M).
From (2.5) we have for ¢ (c) € (m, M) that

(2.7) Y (f(c) = f¥(e)
< (w(C)—m)f(ﬂﬁt%—lﬁ(C))f(m) @ (0)
= (0 (e)im. an) = SN = (s )
< S, O
We also have
. _ f(M)—f@) f@)—f(m)
tG?ﬂg?M) O (t5m, M) = te(srlrlll,)M) | M-t a t—m ]
fM) - f(t) ap | LB = f(m)
= tG(S:LI,)M) L M-t } +te?ml,)M) [ t—m ]
o [fOD=F0] L [p0=00m)
_te(srlrlL,pM) | M-t } te(m,fM)[ t—m ]

= (M) — f"(m)
and since, obviously

(M =9 () ((c)—m) _1
M —-—m 4
)

we have the desired result (2.1).
From (2.7) we have

w(F () - (o) < DW= ) 0y, )

< LM —m) Oy (5 () m, M) < T (M —m) sup O (m, M)
te(m,M)

< 3 (M —m) [ () ~ f' (m)]

that proves (2.2).

We also have:
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Theorem 4. With the assumptions of Theorem 3 we have

(2.8) 0<9(f(e) = f¥(e)

< fm)+ f(M >—2f(’”+M)

Proof. First of all, we recall the following result obtained by the author in [4] that
provides a refinement and a reverse for the weighted Jensen’s discrete inequality:

(2.9) n ie{r{nn {p:} [ Z D (z;) (711 Z xz>]

, pt
< i sz(l) xz ( szxl>
nie{n’llf.i.x {pz [ Z (I) -Tz (i Z $z>‘| 5

where ® : C' — R is a convex function defined on the convex subset C' of the linear
space X, {zi};c(1, .y C C are vectors and {p;},c(; ,, are nonnegative numbers
with P, := Y"1 p; > 0.

For n = 2 we deduce from (2.9) that

(2.10) 2min {t, 1 — £} {‘1’ (z) -2F 2 (y)

_q)(x;'y)]
<tP(z)+(1—t)@(y) —P(tz+ (1 —t)y)
< 2max {t,1 -t} [‘I’(x);r@(y) _@(m;yﬂ

for any z,y € C and t € [0, 1].
If we use the second inequality in (2.10) for the convex function f : I — R and

m, M € R, m < M with [m, M] C I, we have for t = J\fw_iip(nf) that

(2.11)
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namely

(2.12) (M = () f(m) + (¢ () —m) f (M)

M—m
+M

(roa ) g (o)
><[f( )ﬂ;f f< . )}

On making use of the first inequality in (2.7) and (2.12) we get the first part of
(2.8).
The last part follows by the fact that m < (¢) < M. d

3. REFINEMENTS AND REVERSES
We start with the following result:

Theorem 5. Let f (z) be analytic in G, an open subset of C and the real interval
I C @G, [m,M]CI for some real numbers m < M, and ¢ : A — C is a positive
normalized linear functional on A. If there exists the constants K > k > 0 such
that

(3.1) K > f"(2) > k for any z € [m, M],

then for any selfadjoint element ¢ € A with o (¢) C [m, M] C I,

(32)  GKG [~ 0] 20 (F @)~ 1 () Wle)~ 1)~ [ (1) > shv [(c— )]
and

(33) 3K (e~ 7] 2% (ef (@)~ (7 @)+ (1)~ (F () = Sk [(e— 1]
for any t € [m, M].

Proof. Using Taylor’s representation with the integral remainder we can write the
following identity

B 1@ = P OE-0 [ ) -
k=0"" Tt

for any z, t € f7 the interior of I.
For any integrable function h on an interval and any distinct numbers ¢, d in
that interval, we have, by the change of variable s = (1 — s) ¢ + sd, s € [0,1] that

d 1
/ h(s)ds = (dfc)/o h((1—s)c+ sd)ds.
Therefore,

/t O (5) (2 )" s
= (z—t)/ FOHD (1 =)t +52)(z— (1 —s)t —s2)"ds
0

1
=(z— t)"“/o FOFD (1 = s)t+ s2) (1 — )™ ds.
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The identity (3.4) can then be written as
=1
35 FE =3 M0 E- "
k=0

1 n ! n+1 n
+m(z—t) +1/0 FOD (1= s)t+s2) (1 — 5)" ds.
For n =1 we get
(3.6) fR=FfO)+E-tft)+(E=-1 /f” s)t+sz)(1—s)ds

for any z, t € I.
By the condition (3.1) we have

1
K/ (1—s) ds>/f” t+sz)(1fs)dszk/0 (1—s)ds,

namely

7K>/ 1 t+sz)(1—s)dsz%k,
and by (3.6) we get the double inequality
(3.7) SR (=122 f(2) = f ()~ (= 0) (1) 2 gk (z— 1)

for any z, t € I.
Fix ¢ € [m,M]. Using Lemma 1 and the inequality (3.7) we obtain for the
element ¢ € A with o (¢) C [m, M] C I the following inequality in the order of A

SE (=02 F(©) = F ()~ (= 0) f (62 3h(e— ).

If we take in this inequality the functional 1) we get (3.2).
Fix z € [m,M]. Using Lemma 1 and the inequality (3.7) we obtain for the
element ¢ € A with o (¢) C [m, M] C I the following inequality in the order of A

1 1
(3.8) 7K (e~ 22 f(z) = f(e)=2f () +ef' (¢) 2 Fk(e— 2)%.
If we take in this inequality the functional ¥ we get

LK [(e = 2] 2 0 ef (@) — 2 (1 ()~ v (F () + 1 (2)
> 2k [(e- 27
for any z € [m, M]. If we replace z with ¢ we get the desired result (3.3). O

Corollary 1. With the assumptions of Theorem & we have the Jensen’s type in-
equalities

(3.9) %K [¥(c?) =9 (c
and

(3.10) %K [0 (¢*) = v ()] 2w (ef' (€)) = ()% (f' () + [ (¥ (c)) =¥ (£ (c))
1
2

=
Vv
<
~
=
~
~—
\
~
—
<
—
&
Y%
|
o~
=
—
o
[V
~—
[
<
[\v]
—
o
=
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Follows by Theorem 5 on choosing ¢ = ¢ (¢) € [m, M].

Corollary 2. With the assumptions of Theorem 5 we have

(3.11) %sz Kc m;M)Q]

v -r (") (v - "5 ) - ()

2
2
- [(c_m—;—M> ]
and

(3.12) %Kw l(c— mJ;M)Z]

ef' @)= "5 @)+ £ (™

> g | (o= 252

Follows by Theorem 5 on choosing ¢t =

vV
DN | =

Y
<

>w(f(0))

m+M
— -

¥(cf' ()

Corollary 3. With the assumptions of Theorem 5 and, if, in addition, t = )]

[m, M] with 3 (' (¢)) # 0, then we have the Slater’s type inequalities

5.13) ;ml(c_w(cf'(c»ﬂ>f(w<cf'<c>>) 5 (@)

b7 ) VAG)
i Vel (©)
S l( o) ] /

<" ) 12(6{'(%))))2]
v
v (f

(cf’ (C))> lfb(Cf/ (©) (o) f (%fp((c;‘/’((;))))

(bl () )
f<w ) e
| Vel (@)
S [(‘ ) ]
(cf(c))

Follows by Follows by Theorem 5 on choosing ¢ = 75 € [m, M]. We observe
that a sufficient condition for this to happen is that f'(c¢) > 0 and ¢ (f' (c)) > 0.
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Corollary 4. With the assumptions of Theorem 5 we have

(3.15) iKlfQ(M_m)u;y (C_m;M> H
2;[¢(f(0)>+(M_w(C))f(A]ijn (C)—m)f(m)}

and

(3.16) -K ll (M —m)® +1

Proof. If we take the integral mean over ¢t on [m, M] in the inequality (3.7) we get

(3.17) I 1 /M(—t)2dt
. m ) z

M M
&) =g | fOd e [0 @

11 M
§M_m/ (z—t)°dt

for any z € [m, M].
Observe that

Y

Y

1 M 2_(M—z)3—|—(z—m)3
M—m/m (2=t = 3(M —m)

(2= m)® + (M = 2)* = (2 = m) (M - 2)]
v a2

1 2 m—|—M 2
= — M— —
12( m) +(z 5 )
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and
M
i [ emoroa
1

M
=M_m[@—wﬂm%+ﬁlﬂw%

M
MimlllﬂwﬁwszM@@mﬁwﬂ

i [ s AL e

Then by (3.17) we get
2
%K [112(M—m)2+ (z— m—;M) 1
M M
256 - g | S Od- g [
+(

(M —2z) f(M)+(z—m) f(m)
M—-—m

_|_

pamely

(3.15) KL;M—mY+G—m§Mf]
S PPRNUES FAUEICC ) R
(-]

for any z € [m, M].

Using Lemma 1 and the inequality (3.18) we obtain for the element ¢ € A with
o (¢) C [m, M] C I the following inequality in the order of A

iK [112 (M —m)? + <c— m;M>T

>;P@HﬁM—dﬂ%[%?Wﬂﬂm}_Mimlffmﬁ
zik [112(M—m)2+ (c—m;M>2].

If we apply to this inequality the functional ¥ we get (3.15).
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If we take the integral mean over z on [m, M] in the inequality (3.7) we get

M
%Klem - (z—t)* dz
M
> [ i@a-ro- (M) ro
1 1 M 9
_QkM—m/m (z —t)" dz,
namely
1 1 ) m+ M2
(3.19) 2KLQ(Mm)JrG 5 )
1 M m+ M ,
> s [ i@a-ro- (M) ro
2
zék[lg(M—m)QJr(t—sz)]

for any t € [m, M].
Using (3.19) and a similar argument as above, we get the desired result (3.16).
O

4. SOME EXAMPLES

Assume that A is a Hermitian unital Banach x-algebra and ¢ : A — C a positive
normalized linear functional on A.
Let ¢ € A be a selfadjoint element with o (¢) C [m, M] for some real numbers
m < M. If we take f (t) = t? and calculate
M2 _ t2 t2 _ m2
Of(t;m, M) = — = M —
rGm M) = —r—r = —— m

then by (2.1) we get

41 0<9 () = (@ (e)® < (M =9 () (¢ (c) —m) < 1

Consider the convex function f : [m, M] C (0,00) — (0,00), f(t) =t’, p > 1.
Using the inequality (2.1) we have

—_

(M —m)>.

» MP—L —mp—l
(12)  0<v ()~ () <p(M — () (6 () —m) T
1 _ _
< ip(M—m) (MP~! —mP 1)
for any ¢ € A a selfadjoint element with o (c) C [m, M| C (0, 00).

If we use the inequality (2.8) we also get

(4.3) 0 <9 (") = (¥(c))”

< <1+2|w(j\)4_:5M|> [WH;MP B (m—;M)p]

<mP 4 MP —217P (m + M)P
for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).
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Since f” (t) =p(p—1)t*P72,t > 0 then

MP=2 for p € (1,2)
(4.4) ky:=p(p— 1){

mP~2 for p € [2,00)

mP~2 for p € (1,2)
<) <K, :—p(p—l){

MP=2 for p € [2,00)

for any t € [m, M].
Using (3.9) and (3.10) we get

(@5) K [ () v (9] 2 () — () > gk [ (D) — v (@)
and
(16) 3K, [ ()~ (0] 2 (0~ )% () + (W (@) — p () ()

for any ¢ € A a selfadjoint element with o (¢) C [m,
Using (3.13) and (3.14) we get

(4.7) % 0 [(c— f(c(f)l)f] > (ww(c(zfp)l)y_zp(cp)
1
2

o [( - w%zfp)w)?] |

>

an gm0 ]

)
= (i) (o) - (5h) +ee

> Sk [(c - f(c(;p)l)ﬂ

for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).
Using (3.15) and (3.16) we also have

(4.9) iK [112(M—m)2+w (a—m;M) H
Zw(cm(Mw(c))Aﬁjgp(c)m)mp}
MP+tl _ ppt1
C(p+ 1) (M —m)
1|1 ) m 4+ M2
sz E(Mfm) + <c 5 >H

13
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and
(4.10) %K = (M —m)? ¢ ( )]
MP+tL _ g+l -
> Gt Py YT e

1 1
Zikp [H(Mm) JFTZ)

for any ¢ € A a selfadjoint element with a( ) C [m
Consider the convex function f : [m, M] C (0, ) (0 ) ( ) = +. We have

1 1 1_ 1 M
O (t: M _ M t m ,
s lm, M) = = th
which implies that
M—-—m
ttm, M) = ———.
Sup Gf(’m) ) m2M

te(m,M)

From (2.1) we get

R e R e

2
{ 4m2M (M —m) 1 oM +m
< m

(M = (c) (¢ (c) —m) 1557

for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).
From (2.2) we have

<

@12 0<e(l)—up @ iMoo L gy
’ - — 4 mM ~ 4Am2M
for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).

From (2.8) we also have

(413)  0=w(c) —vTHo < Wm)) <1 +2W<C>—’”EM)

(M —m)*
~ mM (m+ M)

forany c€ A a selfad301nt element with o (¢) C [m, M] C (0,00).
Since f” (t) = &, t > 0, then -2 > f”(t) > 7% and by (3.9) and (3.10) we get

(4.14) % [ () =¥ ()] =¥ () =¥ (o) > % [ () = v*(c)]

and

(4.15) — [¥(¢?) —¢* ()]

Y

Sw©@v () +u @] ()
1

> L@ -,
for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).
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From (3.13) and (3.14) we also have

e [ls)] s

and
(4.17) %w {(c— ZE;%) ]
Lyl e e (e?)
2 ) e O e T v

i3

for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).

Similar results may be stated for the convex functions f (t) = t", r < 0 and
f(t)=—t1,q€(0,1).

The case of logarithmic function is also of interest. If we take the function
f () =—Intin (2.1), then we get

(M = () (W () =m) _ L (M —m)*
mM —4 mM
for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).
From (2.8) we have

m c) — miM
(4.19) 0<In(y(c)) —¢(Inc) Sln@%) <1+2W>
m+M\?
<t (537

for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).

(
Since f” (t) = % and -5 > f”(t) > 5 for any ¢t € [m, M] C (0,00), then by

(3.9) and (3.10) we have

(418)  0<In(¥(c) — ¥ (Ino) <

(120) 5 [() 92 (O] 2 @ (@) ~ ¥ (ne) > s [0(F) ~ v (o)
and
(@21) i [0(@) 0 (9] 2 ne) —In (6 (6) + b () () — 1

for any ¢ € A a selfadjoint element with o (¢) C [m, M] C (0,00).



16

(4.

S.S. DRAGOMIR 2
Finally, by making use of (3.13) and (3.14) we have
1
22) ﬁﬂ’ [(0*1/)—1 (0*1))2] > (Inc) —1In (w—l (c—l))
1 — _
> v e= v @),

and

(4

for any ¢ € A a selfadjoint element with o

23) s [(e—v ()] 2w @ () 1w e +n (w7 (7))

2m

> st [e— ()]
(c

) € [m, M] C (0,00).
The interested reader may obtain other similar inequalities by using the convex

functions f (t) =tInt, t > 0 and f (¢) = exp (at), t, @ € R and a # 0.
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