
REVERSES AND REFINEMENTS OF JENSEN�S INEQUALITY
FOR POSITIVE LINEAR FUNCTIONALS ON HERMITIAN

UNITAL BANACH �-ALGEBRAS

S. S. DRAGOMIR1;2

Abstract. We establish in this paper some inequalities for analytic and con-
vex functions on an open interval and positive normalized functionals de�ned
on a Hermitian unital Banach �-algebra. Reverses and re�nements of Jensen�s
and Slater�s type inequalities are provided. Some examples for particular con-
vex functions of interest are given as well.

1. Introduction

We need some preliminary concepts and facts about Banach �-algebras.
Let A be a unital Banach �-algebra with unit 1. An element a 2 A is called

selfadjoint if a� = a: A is called Hermitian if every selfadjoint element a in A has
real spectrum � (a) ; namely � (a) � R.
We say that an element a is nonnegative and write this as a � 0 if a� = a and

� (a) � [0;1) :We say that a is positive and write a > 0 if a � 0 and 0 =2 � (a) : Thus
a > 0 implies that its inverse a�1 exists. Denote the set of all invertible elements
of A by Inv (A) : If a; b 2 Inv (A) ; then ab 2 Inv (A) and (ab)�1 = b�1a�1: Also,
saying that a � b means that a� b � 0 and, similarly a > b means that a� b > 0:
The Shirali-Ford theorem asserts that if A is a unital Banach �-algebra [14] (see

also [2, Theorem 41.5]), then

(SF) jaj2 := a�a � 0 for every a 2 A:
Based on this fact, Okayasu [13], Tanahashi and Uchiyama [15] proved the following
fundamental properties (see also [9]):

(i) If a; b 2 A; then a � 0; b � 0 imply a+ b � 0 and � � 0 implies �a � 0;
(ii) If a; b 2 A; then a > 0; b � 0 imply a+ b > 0;
(iii) If a; b 2 A; then either a � b > 0 or a > b � 0 imply a > 0;
(iv) If a > 0; then a�1 > 0;
(v) If c > 0; then 0 < b < a if and only if cbc < cac; also 0 < b � a if and only

if cbc � cac;
(vi) If 0 < a < 1; then 1 < a�1;
(vii) If 0 < b < a; then 0 < a�1 < b�1; also if 0 < b � a; then 0 < a�1 � b�1:

In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].
Let a 2 A and a > 0; then 0 =2 � (a) and the fact that � (a) is a compact subset

of C implies that inffz : z 2 � (a)g > 0 and supfz : z 2 � (a)g < 1: Choose 
 to
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be close recti�able curve in fRe z > 0g; the right half open plane of the complex
plane, such that � (a) � ins (
) ; the inside of 
: Let G be an open subset of C with
� (a) � G: If f : G! C is analytic, we de�ne an element f (a) in A by

f (a) :=
1

2�i

Z



f (z) (z � a)�1 dz:

It is well known (see for instance [3, pp. 201-204]) that f (a) does not depend on
the choice of 
 and the Spectral Mapping Theorem (SMT)

� (f (a)) = f (� (a))

holds.
For any � 2 R we de�ne for a 2 A and a > 0; the real power

a� :=
1

2�i

Z



z� (z � a)�1 dz;

where z� is the principal �-power of z: Since A is a Banach �-algebra, then a� 2 A:
Moreover, since z� is analytic in fRe z > 0g; then by (SMT) we have

� (a�) = (� (a))
�
= fz� : z 2 � (a)g � (0;1) :

Following [9], we list below some important properties of real powers:

(viii) If 0 < a 2 A and � 2 R, then a� 2 A with a� > 0 and
�
a2
�1=2

= a; [15,
Lemma 6];

(ix) If 0 < a 2 A and �; � 2 R, then a�a� = a�+� ;

(x) If 0 < a 2 A and � 2 R, then (a�)�1 =
�
a�1

��
= a��;

(xi) If 0 < a; b 2 A, �; � 2 R and ab = ba; then a�b� = b�a�:

Okayasu [13] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach �-algebra with continuous involution, namely if a; b 2 A and
p 2 [0; 1] then a > b (a � b) implies that ap > bp (ap � bp) :
Now, assume that f (�) is analytic in G, an open subset of C and for the real

interval I � G assume that f (z) � 0 for any z 2 I: If u 2 A such that � (u) � I;
then by (SMT) we have

� (f (u)) = f (� (u)) � f (I) � [0;1)

meaning that f (u) � 0 in the order of A:
Therefore, we can state the following fact that will be used to establish various

inequalities in A; see also [5].

Lemma 1. Let f (z) and g (z) be analytic in G, an open subset of C and for the
real interval I � G; assume that f (z) � g (z) for any z 2 I: Then for any u 2 A
with � (u) � I we have f (u) � g (u) in the order of A:

De�nition 1. Assume that A is a Hermitian unital Banach �-algebra. A linear
functional  : A ! C is positive if for a � 0 we have  (a) � 0: We say that it is
normalized if  (1) = 1:

We observe that the positive linear functional  preserves the order relation,
namely if a � b then  (a) �  (b) and if � � a � � with �; � real numbers, then
� �  (a) � �:
In the recent paper [6] we established the following McCarthy type inequality:



REVERSES AND REFINEMENTS OF JENSEN�S INEQUALITY 3

Theorem 1. Assume that A is a Hermitian unital Banach �-algebra and  : A! C
a positive normalized linear functional on A:
(i) If p 2 (0; 1) and a � 0; then

(1.1)  p (a) �  (ap) � 0;

(ii) If q � 1 and b � 0; then

(1.2)  (bq) �  q (b) � 0;

(iii) If r < 0; c > 0 with  (c) > 0; then

(1.3)  (cr) �  r (c) > 0:

In [7] and [8] we obtained the following result for analytic convex functions:

Theorem 2. Let f (z) be analytic in G, an open subset of C and the real interval
I � G: If f is convex (in the usual sense) on the interval I and  : A ! C is a
positive normalized linear functional on A; then for any selfadjoint element c 2 A
with with � (c) � [m;M ] � I for some real numbers m < M;

0 �  (f (c))� f ( (c)) �  (cf 0 (c))�  (c) (f 0 (c))(1.4)

�

8>><>>:
1
2 (M �m)

h
 
�
[f 0 (c)]

2
�
�  2 (f 0 (c))

i1=2
1
2 [f

0 (M)� f 0 (m)]
�
 
�
c2
�
�  2 (c)

�1=2
� 1

4
(M �m) [f 0 (M)� f 0 (m)] :

Motivated by these results we establish in this paper some inequalities for an-
alytic and convex functions on an open interval and positive normalized function-
als de�ned on a Hermitian unital Banach �-algebra. Reverses and re�nements of
Jensen�s and Slater�s type inequalities are provided. Some examples for particular
convex functions of interest are given as well.

2. Some Reverses

We have:

Theorem 3. Let f (z) be analytic in G, an open subset of C and the real interval
I � G: If f is convex on the interval I and  : A! C is a positive normalized linear
functional on A; then for any selfadjoint element c 2 A with � (c) � [m;M ] � I
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for some real numbers m < M;

0 �  (f (c))� f ( (c))(2.1)

� (M �  (c)) ( (c)�m)
M �m sup

t2(m;M)

�f (t;m;M)

�

8<:
1
4 (M �m) supt2(m;M)�f (t;m;M)

(M �  (c)) ( (c)�m) f
0(M)�f 0(m)
M�m

� 1

4
(M �m) [f 0 (M)� f 0 (m)]

provided  (c) 2 (m;M) ; where �f (�;m;M) : (m;M)! R is de�ned by

�f (t;m;M) =
f (M)� f (t)

M � t � f (t)� f (m)
t�m :

We also have

0 �  (f (c))� f ( (c)) � 1

4
(M �m)�f ( (c) ;m;M)(2.2)

� 1

4
(M �m) sup

t2(m;M)

�f (t;m;M) �
1

4
(M �m) [f 0 (M)� f 0 (m)] ;

provided  (c) 2 (m;M) :

Proof. By the convexity of f on [m;M ] we have for any z 2 [m;M ] that

(2.3) f (z) � z �m
M �mf (M) +

M � z
M �mf (m) :

Using Lemma 1 we have by (2.3) for any selfadjoint element c 2 A with � (c) �
[m;M ] that

(2.4) f (c) � f (M)
c�m
M �m + f (m)

M � c
M �m

in the order of A:
If we take in this inequality the functional  we get the following reverse of

Jensen�s inequality

(2.5)  (f (c)) � f (M)
 (c)�m
M �m + f (m)

M �  (c)
M �m :

This generalizes the scalar Lah-Ribaríc inequality for convex functions that is well
known in the literature, see for instance [10, p. 57] for an extension to selfadjoint
operators in Hilbert spaces.
De�ne

�f (t;m;M) :=
(t�m) f (M) + (M � t) f (m)

M �m � f (t) ; t 2 [m;M ] ;
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then we have

�f (t;m;M) =
(t�m) f (M) + (M � t) f (m)� (M �m) f (t)

M �m(2.6)

=
(t�m) f (M) + (M � t) f (m)� (M � t+ t�m) f (t)

M �m

=
(t�m) [f (M)� f (t)]� (M � t) [f (t)� f (m)]

M �m

=
(M � t) (t�m)

M �m �f (t;m;M)

for any t 2 (m;M) :
From (2.5) we have for  (c) 2 (m;M) that

 (f (c))� f ( (c))(2.7)

� ( (c)�m) f (M) + (M �  (c)) f (m)
M �m � f ( (c))

= �f ( (c) ;m;M) =
(M �  (c)) ( (c)�m)

M �m �f ( (c) ;m;M)

� (M �  (c)) ( (c)�m)
M �m sup

t2(m;M)

�f (t;m;M) :

We also have

sup
t2(m;M)

�f (t;m;M) = sup
t2(m;M)

�
f (M)� f (t)

M � t � f (t)� f (m)
t�m

�
� sup
t2(m;M)

�
f (M)� f (t)

M � t

�
+ sup
t2(m;M)

�
�f (t)� f (m)

t�m

�
= sup
t2(m;M)

�
f (M)� f (t)

M � t

�
� inf
t2(m;M)

�
� (t)� � (m)

t�m

�
= f 0 (M)� f 0 (m)

and since, obviously

(M �  (c)) ( (c)�m)
M �m � 1

4
(M �m)

we have the desired result (2.1).
From (2.7) we have

 (f (c))� f ( (c)) � (M �  (c)) ( (c)�m)
M �m �f ( (c) ;m;M)

� 1

4
(M �m)�f ( (c) ;m;M) �

1

4
(M �m) sup

t2(m;M)

�f (t;m;M)

� 1

4
(M �m) [f 0 (M)� f 0 (m)]

that proves (2.2). �

We also have:
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Theorem 4. With the assumptions of Theorem 3 we have

0 �  (f (c))� f ( (c))(2.8)

�
 
1 + 2

�� (c)� m+M
2

��
M �m

!�
f (m) + f (M)

2
� f

�
m+M

2

��

� f (m) + f (M)� 2f
�
m+M

2

�
:

Proof. First of all, we recall the following result obtained by the author in [4] that
provides a re�nement and a reverse for the weighted Jensen�s discrete inequality:

n min
i2f1;:::;ng

fpig
"
1

n

nX
i=1

� (xi)� �
 
1

n

nX
i=1

xi

!#
(2.9)

� 1

Pn

nX
i=1

pi� (xi)� �
 
1

Pn

nX
i=1

pixi

!

n max
i2f1;:::;ng

fpig
"
1

n

nX
i=1

� (xi)� �
 
1

n

nX
i=1

xi

!#
;

where � : C ! R is a convex function de�ned on the convex subset C of the linear
space X; fxigi2f1;:::;ng � C are vectors and fpigi2f1;:::;ng are nonnegative numbers
with Pn :=

Pn
i=1 pi > 0:

For n = 2 we deduce from (2.9) that

2min ft; 1� tg
�
� (x) + � (y)

2
� �

�
x+ y

2

��
(2.10)

� t� (x) + (1� t)� (y)� � (tx+ (1� t) y)

� 2max ft; 1� tg
�
� (x) + � (y)

2
� �

�
x+ y

2

��

for any x; y 2 C and t 2 [0; 1] :
If we use the second inequality in (2.10) for the convex function f : I ! R and

m; M 2 R, m < M with [m;M ] � I; we have for t = M� (c)
M�m that

(M �  (c)) f (m) + ( (c)�m) f (M)
M �m(2.11)

� f
�
m (M �  (c)) +M ( (c)�m)

M �m

�
� 2max

�
M �  (c)
M �m ;

 (c)�m
M �m

��
f (m) + f (M)

2
� f

�
m+M

2

��
;
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namely

(M �  (c)) f (m) + ( (c)�m) f (M)
M �m � f ( (c))(2.12)

�
 
1 + 2

�� (c)� m+M
2

��
M �m

!�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
f (m) + f (M)

2
� f

�
m+M

2

��
:

On making use of the �rst inequality in (2.7) and (2.12) we get the �rst part of
(2.8).
The last part follows by the fact that m �  (c) �M: �

3. Refinements and Reverses

We start with the following result:

Theorem 5. Let f (z) be analytic in G, an open subset of C and the real interval
I � G; [m;M ] � I for some real numbers m < M; and  : A ! C is a positive
normalized linear functional on A: If there exists the constants K > k � 0 such
that

(3.1) K � f 00 (z) � k for any z 2 [m;M ] ;
then for any selfadjoint element c 2 A with � (c) � [m;M ] � I;

(3.2)
1

2
K 

h
(c� t)2

i
�  (f (c))� f 0 (t) ( (c)� t)� f (t) � 1

2
k 
h
(c� t)2

i
and

(3.3)
1

2
K 

h
(c� t)2

i
�  (cf 0 (c))�t (f 0 (c))+f (t)� (f (c)) � 1

2
k 
h
(c� t)2

i
;

for any t 2 [m;M ] :

Proof. Using Taylor�s representation with the integral remainder we can write the
following identity

(3.4) f (z) =
nX
k=0

1

k!
f (k) (t) (z � t)k + 1

n!

Z z

t

f (n+1) (s) (z � s)n ds

for any z; t 2 �I; the interior of I:
For any integrable function h on an interval and any distinct numbers c; d in

that interval, we have, by the change of variable s = (1� s) c+ sd; s 2 [0; 1] thatZ d

c

h (s) ds = (d� c)
Z 1

0

h ((1� s) c+ sd) ds:

Therefore, Z z

t

f (n+1) (s) (z � s)n ds

= (z � t)
Z 1

0

f (n+1) ((1� s) t+ sz) (z � (1� s) t� sz)n ds

= (z � t)n+1
Z 1

0

f (n+1) ((1� s) t+ sz) (1� s)n ds:
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The identity (3.4) can then be written as

f (z) =
nX
k=0

1

k!
f (k) (t) (z � t)k(3.5)

+
1

n!
(z � t)n+1

Z 1

0

f (n+1) ((1� s) t+ sz) (1� s)n ds:

For n = 1 we get

(3.6) f (z) = f (t) + (z � t) f 0 (t) + (z � t)2
Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds

for any z; t 2 �I:
By the condition (3.1) we have

K

Z 1

0

(1� s) ds �
Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds � k

Z 1

0

(1� s) ds;

namely
1

2
K �

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds � 1

2
k;

and by (3.6) we get the double inequality

(3.7)
1

2
K (z � t)2 � f (z)� f (t)� (z � t) f 0 (t) � 1

2
k (z � t)2

for any z; t 2 �I:
Fix t 2 [m;M ]. Using Lemma 1 and the inequality (3.7) we obtain for the

element c 2 A with � (c) � [m;M ] � I the following inequality in the order of A
1

2
K (c� t)2 � f (c)� f (t)� (c� t) f 0 (t) � 1

2
k (c� t)2 :

If we take in this inequality the functional  we get (3.2).
Fix z 2 [m;M ] : Using Lemma 1 and the inequality (3.7) we obtain for the

element c 2 A with � (c) � [m;M ] � I the following inequality in the order of A

(3.8)
1

2
K (c� z)2 � f (z)� f (c)� zf 0 (c) + cf 0 (c) � 1

2
k (c� z)2 :

If we take in this inequality the functional  we get
1

2
K 

h
(c� z)2

i
�  (cf 0 (c))� z (f 0 (c))�  (f (c)) + f (z)

� 1

2
k 
h
(c� z)2

i
;

for any z 2 [m;M ] : If we replace z with t we get the desired result (3.3). �
Corollary 1. With the assumptions of Theorem 5 we have the Jensen�s type in-
equalities

(3.9)
1

2
K
�
 
�
c2
�
�  2 (c)

�
�  (f (c))� f ( (c)) � 1

2
k
�
 
�
c2
�
�  2 (c)

�
and

1

2
K
�
 
�
c2
�
�  2 (c)

�
�  (cf 0 (c))�  (c) (f 0 (c)) + f ( (c))�  (f (c))(3.10)

� 1

2
k
�
 
�
c2
�
�  2 (c)

�
:
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Follows by Theorem 5 on choosing t =  (c) 2 [m;M ] :

Corollary 2. With the assumptions of Theorem 5 we have

1

2
K 

"�
c� m+M

2

�2#
(3.11)

�  (f (c))� f 0
�
m+M

2

��
 (c)� m+M

2

�
� f

�
m+M

2

�
� 1

2
k 

"�
c� m+M

2

�2#
and

1

2
K 

"�
c� m+M

2

�2#
(3.12)

�  (cf 0 (c))� m+M

2
 (f 0 (c)) + f

�
m+M

2

�
�  (f (c))

� 1

2
k 

"�
c� m+M

2

�2#
:

Follows by Theorem 5 on choosing t = m+M
2 :

Corollary 3. With the assumptions of Theorem 5 and, if, in addition, t =
 (cf 0(c))
 (f 0(c)) 2

[m;M ] with  (f 0 (c)) 6= 0; then we have the Slater�s type inequalities

1

2
K 

"�
c�  (cf 0 (c))

 (f 0 (c))

�2#
� f

�
 (cf 0 (c))

 (f 0 (c))

�
�  (f (c))(3.13)

� 1

2
k 

"�
c�  (cf 0 (c))

 (f 0 (c))

�2#
;

and

1

2
K 

"�
c�  (cf 0 (c))

 (f 0 (c))

�2#
(3.14)

� f 0
�
 (cf 0 (c))

 (f 0 (c))

�
 (cf 0 (c))

 (f 0 (c))
�  (c) f 0

�
 (cf 0 (c))

 (f 0 (c))

�
� f

�
 (cf 0 (c))

 (f 0 (c))

�
+  (f (c))

� 1

2
k 

"�
c�  (cf 0 (c))

 (f 0 (c))

�2#
:

Follows by Follows by Theorem 5 on choosing t =
 (cf 0(c))
 (f 0(c)) 2 [m;M ] :We observe

that a su¢ cient condition for this to happen is that f 0 (c) > 0 and  (f 0 (c)) > 0:
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Corollary 4. With the assumptions of Theorem 5 we have

1

4
K

"
1

12
(M �m)2 +  

"�
c� m+M

2

�2##
(3.15)

� 1

2

�
 (f (c)) +

(M �  (c)) f (M) + ( (c)�m) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

4
k

"
1

12
(M �m)2 +  

"�
c� m+M

2

�2##

and

1

2
K

"
1

12
(M �m)2 +  

"�
c� m+M

2

�2##
(3.16)

� 1

M �m

Z M

m

f (z) dz �  (f (c))� m+M

2
 (f 0 (c))�  (cf 0 (c))

� 1

2
k

"
1

12
(M �m)2 +  

"�
c� m+M

2

�2##
:

Proof. If we take the integral mean over t on [m;M ] in the inequality (3.7) we get

1

2
K

1

M �m

Z M

m

(z � t)2 dt(3.17)

� f (z)� 1

M �m

Z M

m

f (t) dt� 1

M �m

Z M

m

(z � t) f 0 (t) dt

� 1

2

1

M �m

Z M

m

(z � t)2 dt

for any z 2 [m;M ] :
Observe that

1

M �m

Z M

m

(z � t)2 = (M � z)3 + (z �m)3

3 (M �m)

=
1

3

h
(z �m)2 + (M � z)2 � (z �m) (M � z)

i
=
1

3

"
1

4
(M �m)2 + 3

�
z � m+M

2

�2#

=
1

12
(M �m)2 +

�
z � m+M

2

�2
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and

1

M �m

Z M

m

(z � t) f 0 (t) dt

=
1

M �m

"
(z � t) f (t)jMm +

Z M

m

f (t) dt

#

=
1

M �m

"Z M

m

f (t) dt� (M � z) f (M)� (z �m) f (m)
#

=
1

M �m

Z M

m

f (t) dt� (M � z) f (M) + (z �m) f (m)
M �m :

Then by (3.17) we get

1

2
K

"
1

12
(M �m)2 +

�
z � m+M

2

�2#

� f (z)� 1

M �m

Z M

m

f (t) dt� 1

M �m

Z M

m

f (t) dt

+
(M � z) f (M) + (z �m) f (m)

M �m

� 1

2
k

"
1

12
(M �m)2 +

�
z � m+M

2

�2#

namely

1

4
K

"
1

12
(M �m)2 +

�
z � m+M

2

�2#
(3.18)

� 1

2

�
f (z) +

(M � z) f (M) + (z �m) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

4
k

"
1

12
(M �m)2 +

�
z � m+M

2

�2#

for any z 2 [m;M ] :
Using Lemma 1 and the inequality (3.18) we obtain for the element c 2 A with

� (c) � [m;M ] � I the following inequality in the order of A

1

4
K

"
1

12
(M �m)2 +

�
c� m+M

2

�2#

� 1

2

�
f (c) +

(M � c) f (M) + (c�m) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

4
k

"
1

12
(M �m)2 +

�
c� m+M

2

�2#
:

If we apply to this inequality the functional  we get (3.15).
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If we take the integral mean over z on [m;M ] in the inequality (3.7) we get

1

2
K

1

M �m

Z M

m

(z � t)2 dz

� 1

M �m

Z M

m

f (z) dz � f (t)�
�
m+M

2
� t
�
f 0 (t)

� 1

2
k

1

M �m

Z M

m

(z � t)2 dz;

namely

1

2
K

"
1

12
(M �m)2 +

�
t� m+M

2

�2#
(3.19)

� 1

M �m

Z M

m

f (z) dz � f (t)�
�
m+M

2
� t
�
f 0 (t)

� 1

2
k

"
1

12
(M �m)2 +

�
t� m+M

2

�2#
for any t 2 [m;M ] :
Using (3.19) and a similar argument as above, we get the desired result (3.16).

�

4. Some Examples

Assume that A is a Hermitian unital Banach �-algebra and  : A! C a positive
normalized linear functional on A:
Let c 2 A be a selfadjoint element with � (c) � [m;M ] for some real numbers

m < M: If we take f (t) = t2 and calculate

�f (t;m;M) =
M2 � t2
M � t � t2 �m2

t�m =M �m

then by (2.1) we get

(4.1) 0 �  
�
c2
�
� ( (c))2 � (M �  (c)) ( (c)�m) � 1

4
(M �m)2 :

Consider the convex function f : [m;M ] � (0;1) ! (0;1) ; f (t) = tp; p > 1:
Using the inequality (2.1) we have

0 �  (cp)� ( (c))p � p (M �  (c)) ( (c)�m)M
p�1 �mp�1

M �m(4.2)

� 1

4
p (M �m)

�
Mp�1 �mp�1�

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
If we use the inequality (2.8) we also get

0 �  (cp)� ( (c))p(4.3)

�
 
1 + 2

�� (c)� m+M
2

��
M �m

!�
mp +Mp

2
�
�
m+M

2

�p�
� mp +Mp � 21�p (m+M)

p

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :



REVERSES AND REFINEMENTS OF JENSEN�S INEQUALITY 13

Since f 00 (t) = p (p� 1) tp�2; t > 0 then

kp := p (p� 1)

8<: Mp�2 for p 2 (1; 2)

mp�2 for p 2 [2;1)
(4.4)

� f 00 (t) � Kp := p (p� 1)

8<: mp�2 for p 2 (1; 2)

Mp�2 for p 2 [2;1)
for any t 2 [m;M ] :
Using (3.9) and (3.10) we get

(4.5)
1

2
Kp

�
 
�
c2
�
�  2 (c)

�
�  (cp)� ( (c))p � 1

2
kp
�
 
�
c2
�
�  2 (c)

�
and

1

2
Kp

�
 
�
c2
�
�  2 (c)

�
� (p� 1) (cp) + ( (c))p � p (c) 

�
cp�1

�
(4.6)

� 1

2
kp
�
 
�
c2
�
�  2 (c)

�
;

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
Using (3.13) and (3.14) we get

1

2
Kp 

"�
c�  (cp)

 (cp�1)

�2#
�
�

 (cp)

 (cp�1)

�p
�  (cp)(4.7)

� 1

2
kp 

"�
c�  (cp)

 (cp�1)

�2#
;

and

1

2
Kp 

"�
c�  (cp)

 (cp�1)

�2#
(4.8)

� p

�
 (cp)

 (cp�1)

�p�1�
 (cp)

 (cp�1)
�  (c)

�
�
�

 (cp)

 (cp�1)

�p
+  (cp)

� 1

2
kp 

"�
c�  (cp)

 (cp�1)

�2#
for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
Using (3.15) and (3.16) we also have

1

4
K

"
1

12
(M �m)2 +  

"�
c� m+M

2

�2##
(4.9)

� 1

2

�
 (cp) +

(M �  (c))Mp + ( (c)�m)mp

M �m

�
� Mp+1 �mp+1

(p+ 1) (M �m)

� 1

4
k

"
1

12
(M �m)2 +  

"�
c� m+M

2

�2##
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and

1

2
Kp

"
1

12
(M �m)2 +  

"�
c� m+M

2

�2##
(4.10)

� Mp+1 �mp+1

(p+ 1) (M �m) � p
m+M

2
 
�
cp�1

�
� (p+ 1) (cp)

� 1

2
kp

"
1

12
(M �m)2 +  

"�
c� m+M

2

�2##
for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
Consider the convex function f : [m;M ] � (0;1)! (0;1), f (t) = 1

t . We have

�f (t;m;M) =
1
M � 1

t

M � t �
1
t �

1
m

t�m =
M �m
tmM

;

which implies that

sup
t2(m;M)

�f (t;m;M) =
M �m
m2M

:

From (2.1) we get

0 �  
�
c�1
�
�  �1 (c) � (M �  (c)) ( (c)�m)

m2M
(4.11)

�

8<:
1

4m2M (M �m)2

(M �  (c)) ( (c)�m) M+m
m2M2

� 1

4
(M �m)2 M +m

M2m2

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
From (2.2) we have

(4.12) 0 �  
�
c�1
�
�  �1 (c) � 1

4

(M �m)2

mM
 �1 (c) � 1

4m2M
(M �m)2

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
From (2.8) we also have

0 �  
�
c�1
�
�  �1 (c) � (M �m)2

2mM (m+M)

 
1 + 2

�� (c)� m+M
2

��
M �m

!
(4.13)

� (M �m)2

mM (m+M)

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
Since f 00 (t) = 2

t3 ; t > 0; then
2
m3 � f 00 (t) � 2

M3 and by (3.9) and (3.10) we get

(4.14)
1

m3

�
 
�
c2
�
�  2 (c)

�
�  

�
c�1
�
�  �1 (c) � 1

M3

�
 
�
c2
�
�  2 (c)

�
and

1

m3

�
 
�
c2
�
�  2 (c)

�
� 1

2

�
 (c) 

�
c�2
�
+  �1 (c)

�
�  

�
c�1
�

(4.15)

� 1

M3

�
 
�
c2
�
�  2 (c)

�
;

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
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From (3.13) and (3.14) we also have

1

m3
 

24 c�  
�
c�1
�

 (c�2)

!235 �  
�
c�2
�

 (c�1)
�  

�
c�1
�

(4.16)

� 1

M3
 

24 c�  
�
c�1
�

 (c�2)

!235 ;
and

1

m3
 

24 c�  
�
c�1
�

 (c�2)

!235(4.17)

�  
�
c�1
�
�
 
�
c�1
�

 (c�2)
+  (c)

 2
�
c�2
�

 2 (c�1)
�
 
�
c�2
�

 (c�1)

� 1

M3
 

24 c�  
�
c�1
�

 (c�2)

!235
for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
Similar results may be stated for the convex functions f (t) = tr; r < 0 and

f (t) = �tq, q 2 (0; 1) :
The case of logarithmic function is also of interest. If we take the function

f (t) = � ln t in (2.1), then we get

(4.18) 0 � ln ( (c))�  (ln c) � (M �  (c)) ( (c)�m)
mM

� 1

4

(M �m)2

mM

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
From (2.8) we have

0 � ln ( (c))�  (ln c) � ln
�
m+M

2
p
mM

� 
1 + 2

�� (c)� m+M
2

��
M �m

!
(4.19)

� ln
�
m+M

2
p
mM

�2
for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
Since f 00 (t) = 1

t2 and
1
m2 � f 00 (t) � 1

M2 for any t 2 [m;M ] � (0;1) ; then by
(3.9) and (3.10) we have

(4.20)
1

2m2

�
 
�
c2
�
�  2 (c)

�
� ln ( (c))�  (ln c) � 1

2M2

�
 
�
c2
�
�  2 (c)

�
and

1

2m2

�
 
�
c2
�
�  2 (c)

�
�  (ln c)� ln ( (c)) +  (c) 

�
c�1
�
� 1(4.21)

� 1

2M2

�
 
�
c2
�
�  2 (c)

�
;

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
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Finally, by making use of (3.13) and (3.14) we have
1

2m2
 
h�
c�  �1

�
c�1
��2i �  (ln c)� ln

�
 �1

�
c�1
��

(4.22)

� 1

2M2
 
h�
c�  �1

�
c�1
��2i

;

and
1

2m2
 
h�
c�  �1

�
c�1
��2i �  (c) 

�
c�1
�
� 1�  (ln c) + ln

�
 �1

�
c�1
��

(4.23)

� 1

2M2
 
h�
c�  �1

�
c�1
��2i

for any c 2 A a selfadjoint element with � (c) � [m;M ] � (0;1) :
The interested reader may obtain other similar inequalities by using the convex

functions f (t) = t ln t; t > 0 and f (t) = exp (�t) ; t; � 2 R and � 6= 0:
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