ADDITIVE REFINEMENTS AND REVERSES OF YOUNG AND HÖLDER'S INEQUALITIES IN HERMITIAN UNITAL BANACH *-ALGEBRAS

S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper we obtain some additive refinements and reverses of the celebrated Young and Hölder's inequalities in the general setting of Hermitian unital Banach *-algebras and for positive linear functionals defined on such algebras.

1. Introduction

The famous Young inequality for scalars says that if a, b > 0 and $\nu \in [0, 1]$, then

$$(1.1) a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b$$

with equality if and only if a = b. The inequality (1.1) is also called ν -weighted arithmetic-geometric mean inequality.

In 1978, Cartwright & Field [3] obtained the following additive refinement and reverse of the arithmetic mean-geometric mean inequality,

(CF)
$$\frac{1}{2}\nu (1-\nu) \frac{(b-a)^2}{\max\{a,b\}} \le A_{\nu} (a,b) - G_{\nu} (a,b) \le \frac{1}{2}\nu (1-\nu) \frac{(b-a)^2}{\min\{a,b\}},$$

where $A_{\nu}(a,b) := (1-\nu) a + \nu b$ and $G_{\nu}(a,b) := a^{1-\nu}b^{\nu}$ if a, b > 0 and $\nu \in [0,1]$. In 2002, Tominaga [23] obtained a different additive reverse inequality, namely

(T)
$$A_{\nu}\left(a,b\right) - G_{\nu}\left(a,b\right) \le \mathcal{S}\left(\frac{a}{b}\right) L\left(a,b\right),$$

where Specht's ratio S, was introduced in 1960 in [21], and is defined by

(S)
$$\mathcal{S}(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln\left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty), \\ 1 & \text{if } h = 1 \end{cases}$$

and the *logarithmic mean* is defined by

(L)
$$L(a,b) := \begin{cases} \frac{b-a}{\ln b - \ln a} & \text{if} \quad a \neq b \\ b & \text{if} \quad a = b. \end{cases}$$

1

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A30, 15A60, 26D15, 26D10.

Key words and phrases. Weighted geometric mean, Weighted arithmetic mean, Young's inequality, Arithmetic mean-geometric mean-harmonic mean inequality, Hölder's inequality, Hermitian Unital Banach *-Algebras, Positive linear functionals.

Recall that S satisfies the properties

(1.2)
$$\lim_{h \to 1} \mathcal{S}(h) = 1, \ \mathcal{S}(h) = \mathcal{S}\left(\frac{1}{h}\right) > 1$$

for $h > 0, h \neq 1$, is decreasing on (0,1) and increasing on $(1,\infty)$.

In 2010-11, Kittaneh & Manasrah, see [16], [17] obtained the inequality,

(KM)
$$r\left(\sqrt{a} - \sqrt{b}\right)^{2} \le A_{\nu}\left(a, b\right) - G_{\nu}\left(a, b\right) \le R\left(\sqrt{a} - \sqrt{b}\right)^{2}$$

where $r = \min \{1 - \nu, \nu\}$ and $R = \max \{1 - \nu, \nu\}$.

This is a particular case of following result obtained by Dragomir in 2006, [5], that provides a refinement and a reverse for the weighted Jensen's discrete inequality:

$$(1.3) \qquad n \min_{j \in \{1, 2, ..., n\}} \{p_j\} \left[\frac{1}{n} \sum_{j=1}^n \Phi\left(x_j\right) - \Phi\left(\frac{1}{n} \sum_{j=1}^n x_j\right) \right] \\ \leq \frac{1}{P_n} \sum_{j=1}^n p_j \Phi\left(x_j\right) - \Phi\left(\frac{1}{P_n} \sum_{j=1}^n p_j x_j\right) \\ \leq n \max_{j \in \{1, 2, ..., n\}} \{p_j\} \left[\frac{1}{n} \sum_{j=1}^n \Phi\left(x_j\right) - \Phi\left(\frac{1}{n} \sum_{j=1}^n x_j\right) \right],$$

where $\Phi: C \to \mathbb{R}$ is a convex function defined on convex subset C of the linear space X, $\{x_j\}_{j \in \{1,2,\ldots,n\}}$ are vectors in C and $\{p_j\}_{j \in \{1,2,\ldots,n\}}$ are nonnegative numbers with $P_n = \sum_{j=1}^n p_j > 0$.

For n = 2, we deduce from (1.3) that

$$(1.4) 2\min\left\{\nu, 1 - \nu\right\} \left[\frac{\Phi(x) + \Phi(y)}{2} - \Phi\left(\frac{x + y}{2}\right)\right]$$

$$\leq \nu\Phi\left(x\right) + (1 - \nu)\Phi\left(y\right) - \Phi\left[\nu x + (1 - \nu)y\right]$$

$$\leq 2\max\left\{\nu, 1 - \nu\right\} \left[\frac{\Phi(x) + \Phi(y)}{2} - \Phi\left(\frac{x + y}{2}\right)\right]$$

for any $x, y \in \mathbb{R}$ and $\nu \in [0, 1]$.

If we take $\Phi(x) = \exp(x)$, then we get from (1.4) that

$$(1.5) 2\min\{\nu, 1-\nu\} \left[\frac{\exp(x) + \exp(y)}{2} - \exp\left(\frac{x+y}{2}\right) \right]$$

$$\leq \nu \exp(x) + (1-\nu) \exp(y) - \exp\left[\nu x + (1-\nu)y\right]$$

$$\leq 2\max\{\nu, 1-\nu\} \left[\frac{\exp(x) + \exp(y)}{2} - \exp\left(\frac{x+y}{2}\right) \right]$$

for any $x, y \in \mathbb{R}$ and $\nu \in [0, 1]$. Further, denote $\exp(x) = a$, $\exp(y) = b$ with a, b > 0, then from (1.5) we obtain the inequality (KM).

In 2015, Alzer & Fonseca & Kovačec, [1] and Dragomir, [10] obtained independently and by using different techniques the following logarithmic upper and lower

bounds for the difference of the arithmetic mean and geometric mean:

(1.6)
$$\frac{1}{2}\nu (1-\nu) (\ln a - \ln b)^2 \min \{a,b\} \le A_{\nu} (a,b) - G_{\nu} (a,b)$$
$$\le \frac{1}{2}\nu (1-\nu) (\ln a - \ln b)^2 \max \{a,b\}.$$

A different reverse in terms of the logarithm was also obtained recently in the paper [6]

$$(1.7) A_{\nu}(a,b) - G_{\nu}(a,b) \le \nu (1-\nu) (a-b) (\ln a - \ln b)$$

for any a, b > 0 and $\nu \in [0, 1]$.

If upper and lower bounds are assumed for the positive numbers a, b namely $a, b \in [\gamma, \Gamma] \subset (0, \infty)$ and $\nu \in [0, 1]$, then [7]

$$(1.8) A_{\nu}(a,b) - G(_{\nu}a,b) \le \max \left\{ g_{\gamma,\Gamma}(\nu), g_{\gamma,\Gamma}(1-\nu) \right\},$$

where

(1.9)
$$g_{\gamma,\Gamma}(\nu) := (1-\nu)\gamma + \nu\Gamma - \gamma^{1-\nu}\Gamma^{\nu}.$$

In order to extend these results in the abstract setting of Hermitian unital Banach *-algebras and for positive linear functionals we need the following preparation.

2. Some Facts on Hermitian Unital Banach *-Algebra

Let A be a unital Banach *-algebra with unit 1. An element $a \in A$ is called selfadjoint if $a^* = a$. A is called Hermitian if every selfadjoint element a in A has real spectrum $\sigma(a)$, namely $\sigma(a) \subset \mathbb{R}$.

In what follows we assume that A is a Hermitian unital Banach *-algebra.

We say that an element a is nonnegative and write this as $a \ge 0$ if $a^* = a$ and $\sigma(a) \subset [0, \infty)$. We say that a is positive and write a > 0 if $a \ge 0$ and $0 \notin \sigma(a)$. Thus a > 0 implies that its inverse a^{-1} exists. Denote the set of all invertible elements of A by Inv (A). If $a, b \in \text{Inv}(A)$, then $ab \in \text{Inv}(A)$ and $(ab)^{-1} = b^{-1}a^{-1}$. Also, saying that $a \ge b$ means that $a - b \ge 0$ and, similarly a > b means that a - b > 0.

The Shirali-Ford theorem asserts that [20] (see also [2, Theorem 41.5])

(SF)
$$a^*a \ge 0$$
 for every $a \in A$.

Based on this fact, Okayasu [19], Tanahashi and Uchiyama [22] proved the following fundamental properties (see also [13]):

- (i) If $a, b \in A$, then $a \ge 0$, $b \ge 0$ imply $a + b \ge 0$ and $\alpha \ge 0$ implies $\alpha a \ge 0$;
- (ii) If $a, b \in A$, then a > 0, $b \ge 0$ imply a + b > 0;
- (iii) If $a, b \in A$, then either $a \ge b > 0$ or $a > b \ge 0$ imply a > 0;
- (iv) If a > 0, then $a^{-1} > 0$;
- (v) If c > 0, then 0 < b < a if and only if cbc < cac, also $0 < b \le a$ if and only if $cbc \le cac$;
- (vi) If 0 < a < 1, then $1 < a^{-1}$;
- (vii) If 0 < b < a, then $0 < a^{-1} < b^{-1}$, also if $0 < b \le a$, then $0 < a^{-1} \le b^{-1}$.

In order to introduce the real power of a positive element, we need the following facts [2, Theorem 41.5].

Let $a \in A$ and a > 0, then $0 \notin \sigma(a)$ and the fact that $\sigma(a)$ is a compact subset of \mathbb{C} implies that $\inf\{z : z \in \sigma(a)\} > 0$ and $\sup\{z : z \in \sigma(a)\} < \infty$. Choose γ to be close rectifiable curve in $\{\text{Re } z > 0\}$, the right half open plane of the complex

plane, such that $\sigma(a) \subset \operatorname{ins}(\gamma)$, the inside of γ . Let G be an open subset of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic, we define an element f(a) in A by

$$f(a) := \frac{1}{2\pi i} \int_{\gamma} f(z) (z - a)^{-1} dz.$$

It is well known (see for instance [4, pp. 201-204]) that f(a) does not depend on the choice of γ and the Spectral Mapping Theorem (SMT)

$$\sigma\left(f\left(a\right)\right) = f\left(\sigma\left(a\right)\right)$$

holds.

For any $\alpha \in \mathbb{R}$ we define for $a \in A$ and a > 0, the real power

$$a^{\alpha} := \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} \left(z - a\right)^{-1} dz,$$

where z^{α} is the principal α -power of z. Since A is a Banach *-algebra, then $a^{\alpha} \in A$. Moreover, since z^{α} is analytic in $\{\text{Re } z > 0\}$, then by (SMT) we have

$$\sigma\left(a^{\alpha}\right)=\left(\sigma\left(a\right)\right)^{\alpha}=\left\{ z^{\alpha}:z\in\sigma\left(a\right)\right\} \subset\left(0,\infty\right).$$

Following [13], we list below some important properties of real powers:

- (viii) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $a^{\alpha} \in A$ with $a^{\alpha} > 0$ and $(a^2)^{1/2} = a$, [22, Lemma 6];
 - (ix) If $0 < a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^{\alpha}a^{\beta} = a^{\alpha+\beta}$;
 - (x) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $(a^{\alpha})^{-1} = (a^{-1})^{\alpha} = a^{-\alpha}$;
 - (xi) If $0 < a, b \in A$, $\alpha, \beta \in \mathbb{R}$ and ab = ba, then $a^{\alpha}b^{\beta} = b^{\beta}a^{\alpha}$.

Okayasu [19] showed that the *Löwner-Heinz inequality* remains valid in a Hermitian unital Banach *-algebra with continuous involution, namely if $a, b \in A$ and $p \in [0,1]$ then a > b $(a \ge b)$ implies that $a^p > b^p$ $(a^p \ge b^p)$.

We define the following means for $\nu \in [0,1]$, see also [13] for different notations:

(A)
$$a\nabla_{\nu}b := (1-\nu) \, a + \nu b, \ a, \ b \in A$$

the weighted arithmetic mean of (a, b).

(H)
$$a!_{\nu}b := ((1-\nu)a^{-1} + \nu b^{-1})^{-1}, \ a, \ b > 0$$

the weighted harmonic mean of positive elements (a, b) and

(G)
$$a \sharp_{\nu} b := a^{1/2} \left(a^{-1/2} b a^{-1/2} \right)^{\nu} a^{1/2}$$

the weighted geometric mean of positive elements (a,b). Our notations above are motivated by the classical notations used in operator theory. For simplicity, if $\nu = \frac{1}{2}$, we use the simpler notations $a\nabla b$, a!b and $a\sharp b$. The definition of weighted geometric mean can be extended for any real ν .

In [13], B. Q. Feng proved the following properties of these means in A a Hermitian unital Banach *-algebra:

- (xii) If $0 < a, b \in A$, then a!b = b!a and $a\sharp b = b\sharp a$;
- (xiii) If $0 < a, b \in A$ and $c \in Inv(A)$, then

$$c^*(a!b) c = (c^*ac)!(c^*bc)$$
 and $c^*(a\sharp b) c = (c^*ac)\sharp(c^*bc)$;

(xiv) If $0 < a, b \in A$ and $\nu \in [0, 1]$, then

$$(a!_{\nu}b)^{-1} = (a^{-1}) \nabla_{\nu} (b^{-1}) \text{ and } (a^{-1}) \sharp_{\nu} (b^{-1}) = (a\sharp_{\nu}b)^{-1}.$$

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real numbers, B. Q. Feng obtained in [13] the following inequality between the weighted means introduced above:

(HGA)
$$a\nabla_{\nu}b \geq a\sharp_{\nu}b \geq a!_{\nu}b$$

for any $0 < a, b \in A$ and $\nu \in [0, 1]$.

Now, assume that $f(\cdot)$ is analytic in G, an open subset of \mathbb{C} and for the real interval $I \subset G$ assume that $f(z) \geq 0$ for any $z \in I$. If $u \in A$ such that $\sigma(u) \subset I$, then by (SMT) we have

$$\sigma(f(u)) = f(\sigma(u)) \subset f(I) \subset [0, \infty)$$

meaning that $f(u) \geq 0$ in the order of A.

Therefore, we can state the following fact that will be used to establish various inequalities in A, see also [11].

Lemma 1. Let f(z) and g(z) be analytic in G, an open subset of $\mathbb C$ and for the real interval $I \subset G$, assume that $f(z) \geq g(z)$ for any $z \in I$. Then for any $u \in A$ with $\sigma(u) \subset I$ we have $f(u) \geq g(u)$ in the order of A.

Definition 1. Assume that A is a Hermitian unital Banach *-algebra. A linear functional $\psi: A \to \mathbb{C}$ is positive if for $a \geq 0$ we have $\psi(a) \geq 0$. We say that it is normalized if $\psi(1) = 1$. The functional ψ is called faithful if a > 0 and $\psi(a) = 0$ implies that a = 0.

We observe that the positive linear functional ψ preserves the order relation, namely if $a \ge b$ then $\psi(a) \ge \psi(b)$ and if $\beta \ge a \ge \alpha$ with α, β real numbers, then $\beta \geq \psi(a) \geq \alpha$, provided ψ is normalized. If the positive linear functional ψ is faithful and a > 0 then $\psi(a) > 0$.

In the following we obtain some additive refinements and reverses of the celebrated Young and Hölder's inequalities in the general setting of Hermitian unital Banach *-algebras and for positive linear functionals defined on such algebras.

3. Young and Hölder Type Inequalities

If we use the first inequality in (HGA) we can state the Young type inequality

(Y)
$$x^p \sharp_{1/q} y^q \le \frac{1}{p} x^p + \frac{1}{q} y^q$$

for any $0 \le x$, $y \in A$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. We have the following $H\"{o}lder$'s type inequality for positive functionals as well:

Theorem 1. Assume that A is a Hermitian unital Banach *-algebra and $\psi: A \to \mathbb{C}$ a faithful normalized positive linear functional. If $0 \le a, b \in A$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then

(H)
$$\psi(a^p \sharp_{1/q} b^q) \le \psi^{1/p}(a^p) \psi^{1/q}(b^q).$$

In particular,

(Sc)
$$\psi^2\left(a^2\sharp_{1/2}b^2\right) \le \psi\left(a^2\right)\psi\left(b^2\right).$$

Proof. If $\psi(a^p) = 0$, then $a^p = 0$ which implies that $a^p \sharp_{1/q} b^q = 0$ and $\psi(a^p \sharp_{1/q} b^q) = 0$ showing that the inequality (H) holds with equality. The same if $\psi(b^q) = 0$.

Assume that $\psi(a^p)$, $\psi(b^q) > 0$. Then by Young's inequality for $x = \frac{a}{\psi^{1/p}(a^p)}$ and $y = \frac{b}{\psi^{1/q}(b^q)}$ we have

$$(3.1) \quad \left(\frac{a}{\psi^{1/p}(a^p)}\right)^p \sharp_{1/q} \left(\frac{b}{\psi^{1/q}(b^q)}\right)^q \le \frac{1}{p} \left(\frac{a}{\psi^{1/p}(a^p)}\right)^p + \frac{1}{q} \left(\frac{b}{\psi^{1/q}(b^q)}\right)^q.$$

Observe that

$$\left(\frac{a}{\psi^{1/p}(a^{p})}\right)^{p} \sharp_{1/q} \left(\frac{b}{\psi^{1/q}(b^{q})}\right)^{q} \\
= \left(\left(\frac{a}{\psi^{1/p}(a^{p})}\right)^{p}\right)^{1/2} \\
\left(\left(\left(\frac{a}{\psi^{1/p}(a^{p})}\right)^{p}\right)^{-1/2} \left(\frac{b}{\psi^{1/q}(b^{q})}\right)^{q} \left(\left(\frac{a}{\psi^{1/p}(a^{p})}\right)^{p}\right)^{-1/2}\right)^{1/q} \\
\left(\left(\left(\frac{a}{\psi^{1/p}(a^{p})}\right)^{p}\right)^{1/2}\right)^{1/2} \\
= \frac{a^{p/2}}{\psi^{1/2}(a^{p})} \left(\frac{a^{-p/2}}{\psi^{-1/2}(a^{p})} \frac{b^{q}}{\psi(b^{q})} \frac{a^{-p/2}}{\psi^{-1/2}(a^{p})}\right)^{1/q} \frac{a^{p/2}}{\psi^{1/2}(a^{p})} \\
= \frac{1}{\psi(a^{p}) \psi^{-1/q}(a^{p}) \psi^{1/q}(b^{q})} a^{p/2} \left(a^{-p/2} b^{q} a^{-p/2}\right)^{1/q} \\
= \frac{a^{p} \sharp_{1/q} b^{q}}{\psi^{1/q}(a^{p}) \psi^{1/q}(b^{q})}$$

and the inequality (3.1) may be written as

(3.2)
$$\frac{a^{p}\sharp_{1/q}b^{q}}{\psi^{1/q}(a^{p})\psi^{1/q}(b^{q})} \leq \frac{1}{p\psi(a^{p})}a^{p} + \frac{1}{q\psi(b^{q})}b^{q}.$$

If we take in (3.2) the functional ψ then we get

$$\frac{\psi\left(a^{p}\sharp_{1/q}b^{q}\right)}{\psi^{1/q}\left(a^{p}\right)\psi^{1/q}\left(b^{q}\right)} \leq \frac{1}{p\psi\left(a^{p}\right)}\psi\left(a^{p}\right) + \frac{1}{q\psi\left(b^{q}\right)}\psi\left(b^{q}\right) = 1$$

and the inequality (H) is proved.

Corollary 1. Assume that A is a Hermitian unital Banach *-algebra and $\psi: A \to \mathbb{C}$ a faithful normalized positive linear functional. If $0 \le a_i$, $b_i \in A$, $p_i \ge 0$ for $i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then

(3.3)
$$\psi\left(\sum_{i=1}^{n} p_{i}\left(a_{i}^{p}\sharp_{1/q}b_{i}^{q}\right)\right) \leq \psi^{1/p}\left(\sum_{i=1}^{n} p_{i}a_{i}^{p}\right)\psi^{1/q}\left(\sum_{i=1}^{n} p_{i}b_{i}^{q}\right).$$

In particular,

(3.4)
$$\psi^2\left(\sum_{i=1}^n p_i\left(a_i^2 \sharp b_i^2\right)\right) \le \psi\left(\sum_{i=1}^n p_i a_i^2\right) \psi\left(\sum_{i=1}^n p_i b_i^2\right).$$

Proof. Using discrete Hölder's inequality we have

$$\psi\left(\sum_{i=1}^{n} p_{i}\left(a_{i}^{p}\sharp_{1/q}b_{i}^{q}\right)\right) = \sum_{i=1}^{n} p_{i}\psi\left(a_{i}^{p}\sharp_{1/q}b_{i}^{q}\right)
\leq \sum_{i=1}^{n} p_{i}\psi^{1/p}\left(a_{i}^{p}\right)\psi^{1/q}\left(b_{i}^{q}\right) \text{ by (H)}
\leq \left(\sum_{i=1}^{n} p_{i}\left(\psi^{1/p}\left(a_{i}^{p}\right)\right)^{p}\right)^{1/p}\left(\sum_{i=1}^{n} p_{i}\left(\psi^{1/q}\left(b_{i}^{q}\right)\right)^{q}\right)^{1/q}
= \left(\sum_{i=1}^{n} p_{i}\psi\left(a_{i}^{p}\right)\right)^{1/p}\left(\sum_{i=1}^{n} p_{i}\psi\left(b_{i}^{q}\right)\right)^{1/q}
= \psi^{1/p}\left(\sum_{i=1}^{n} p_{i}a_{i}^{p}\right)\psi^{1/q}\left(\sum_{i=1}^{n} p_{i}b_{i}^{q}\right)$$

and the inequality (3.3) is proved.

4. Additive Refinements and Reverses

We consider the function $f_{\nu}:[0,\infty)\to[0,\infty)$ defined for $\nu\in(0,1)$ by

$$f_{\nu}(t) = 1 - \nu + \nu t - t^{\nu} = A_{\nu}(1, t) - G_{\nu}(1, t)$$

where $A_{\nu}(\cdot,\cdot)$ and $G_{\nu}(\cdot,\cdot)$ are the scalar arithmetic and geometric means. The following lemma holds.

Lemma 2. For $[k, K] \subset [0, \infty)$ we have

$$(4.1) \quad \max_{t \in [k,K]} f_{\nu}(t)$$

$$= \Delta_{\nu} (k, K) := \begin{cases} A_{\nu} (1, k) - G_{\nu} (1, k) & \text{if } K < 1, \\ \max \{ A_{\nu} (1, k) - G_{\nu} (1, k), A_{\nu} (1, K) - G_{\nu} (1, K) \} \\ & \text{if } k \le 1 \le K, \\ A_{\nu} (1, K) - G_{\nu} (1, K) & \text{if } 1 < k \end{cases}$$

and

(4.2)
$$\min_{t \in [k,K]} f_{\nu}(t) = \delta_{\nu}(k,K) := \begin{cases} A_{\nu}(1,K) - G_{\nu}(1,K) & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ A_{\nu}(1,k) - G_{\nu}(1,k) & \text{if } 1 < k. \end{cases}$$

Proof. The function f_{ν} is differentiable and

$$f'_{\nu}(t) = \nu \left(1 - t^{\nu - 1}\right) = \nu \frac{t^{1 - \nu} - 1}{t^{1 - \nu}}, \ t > 0,$$

which shows that the function f_{ν} is decreasing on [0,1] and increasing on $[1,\infty)$, $f_{\nu}(0) = 1 - \nu$, $f_{\nu}(1) = 0$, $\lim_{t\to\infty} f_{\nu}(t) = \infty$ and the equation $f_{\nu}(t) = 1 - \nu$ for t>0 has the unique solution $t_{\nu} = \nu^{\frac{1}{\nu-1}} > 1$.

Therefore, by considering the 3 possible situations for the location of the interval [k, K] and the number 1 we get the desired bounds (4.1) and (4.2).

Remark 1. We have the inequalities

$$0 \le f_{\nu}(t) \le 1 - \nu \text{ for any } t \in \left[0, \nu^{\frac{1}{\nu-1}}\right]$$

and

$$1 - \nu \le f_{\nu}(t) \text{ for any } t \in \left[\nu^{\frac{1}{\nu-1}}, \infty\right).$$

We have the following additive refinement and reverse of Young's inequality:

Theorem 2. Let $0 < x, y \in A$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Assume that there exists the constant m, M > 0 such that

$$(4.3) m^q x^p \le y^q \le M^q x^p,$$

then

$$(4.4) \delta_{1/q}(m^q, M^q) x^p \le \frac{1}{p} x^p + \frac{1}{q} y^q - x^p \sharp_{1/q} y^q \le \Delta_{1/q}(m^q, M^q) x^p$$

where the functions δ and Δ are defined by (4.1) and (4.2).

Proof. From the above Lemma 2 we have

(4.5)
$$\delta_{\nu}(k,K) < 1 - \nu + \nu z - z^{\nu} < \Delta_{\nu}(k,K)$$

for any real $z \in [k, K] \subset (0, \infty)$ and for any $\nu \in [0, 1]$.

Let $u \in A$ with spectrum $\sigma(u) \subset [k, K] \subset (0, \infty)$. Then by applying Lemma 1 for the corresponding analytic functions in the right half open plane $\{\text{Re } z > 0\}$ involved in the inequality (3.4) we conclude that we have in the order of A that

$$\delta_{\nu}\left(k,K\right) \leq 1 - \nu + \nu u - u^{\nu} \leq \Delta_{\nu}\left(k,K\right)$$

for any $\nu \in [0,1]$.

Since x is invertible, then by multiplying both sides of (4.3) with $x^{-p/2} > 0$, we get $m^q \le x^{-p/2}y^qx^{-p/2} \le M^q$ and by taking $\nu = 1/q$, $u = x^{-p/2}y^qx^{-p/2}$, $k = m^q$ and $K = M^q$ we get in the order of A that

(4.7)
$$\delta_{1/q}(m^q, M^q) \leq \frac{1}{p} + \frac{1}{q} x^{-p/2} y^q x^{-p/2} - \left(x^{-p/2} y^q x^{-p/2}\right)^{1/q}$$
$$\leq \Delta_{1/q}(m^q, M^q).$$

If we multiply both sides of (4.7) by $x^{p/2} > 0$, then we get

(4.8)
$$\delta_{1/q}(m^q, M^q) x^p \leq \frac{1}{p} x^p + \frac{1}{q} y^q - x^{p/2} \left(x^{-p/2} y^q x^{-p/2} \right)^{1/q} x^{p/2}$$
$$\leq \Delta_{1/q}(m^q, M^q) x^p$$

and the inequality (4.2) is proved.

Corollary 2. Let $0 < x, y \in A$. Assume that there exists the constant m, M > 0 such that

$$(4.9) m^2 x^2 \le y^2 \le M^2 x^2,$$

then

$$(4.10) \qquad \frac{1}{2} \begin{cases} (1-M)^2 x^2 & \text{if } M < 1, \\ 0 & \text{if } m \le 1 \le M, \\ (m-1)^2 x^2 & \text{if } 1 < m, \end{cases}$$

$$\leq \frac{x^2 + y^2}{2} - x^2 \sharp y^2$$

$$\begin{cases} (1-m)^2 x^2 & \text{if } M < 1, \\ \max \left\{ (1-m)^2, (M-1)^2 \right\} x^2 & \text{if } m \le 1 \le M, \\ (M-1)^2 x^2 & \text{if } 1 < m. \end{cases}$$

Proof. If follows by taking p = q = 2 in Theorem 2 and observing that

$$\Delta_{1/2} (m^2, M^2)$$

$$= \begin{cases} A (1, m^2) - G (1, m^2) & \text{if } M < 1, \\ \max \left\{ A (1, m^2) - G (1, m^2), A (1, M^2) - G (1, M^2) \right\} \\ \text{if } m \le 1 \le M, \\ A (1, M^2) - G (1, M^2) & \text{if } 1 < m \end{cases}$$

$$= \frac{1}{2} \begin{cases} (1 - m)^2 & \text{if } M < 1, \\ \max \left\{ (1 - m)^2, (M - 1)^2 \right\} \\ \text{if } m \le 1 \le M, \\ (M - 1)^2 & \text{if } 1 < m \end{cases}$$

and

$$\delta_{1/2} \left(m^2, M^2 \right) = \frac{1}{2} \left\{ \begin{array}{l} \left(1 - M \right)^2 \text{ if } M < 1, \\ \\ 0 \text{ if } m \leq 1 \leq M, \\ \\ \left(m - 1 \right)^2 \text{ if } 1 < m. \end{array} \right.$$

Remark 2. Let $0 < x, y \in A$. Assume that there exists the constant $m_1, M_1, m_2, M_2 > 0$ such that $m_1 \le x \le M_1$ and $m_2 \le y \le M_2$. Then $m_1^p \le x^p \le M_1^p$ and $m_2^q \le y^q \le M_2^q$ which implies that

$$\frac{m_2^q}{M_1^p} x^p \le y^q \le \frac{M_2^q}{m_1^p} x^p$$

for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Also.

$$\left(\frac{m_2}{M_1}\right)^2 x^2 \le y^2 \le \left(\frac{M_2}{m_1}\right)^2 x^2.$$

Therefore, by (4.2) we have

$$(4.11) \delta_{1/q} \left(\frac{m_2^q}{M_1^p}, \frac{M_2^q}{m_1^p} \right) x^p \le \frac{1}{p} x^p + \frac{1}{q} y^q - x^p \sharp_{1/q} y^q \le \Delta_{1/q} \left(\frac{m_2^q}{M_1^p}, \frac{M_2^q}{m_1^p} \right) x^p$$

where the functions δ and Δ are defined by (4.1) and (4.2).

By (4.10) we also have

$$(4.12) \qquad \frac{1}{2} \begin{cases} \left(1 - \frac{M_2}{m_1}\right)^2 x^2 & \text{if } \frac{M_2}{m_1} < 1, \\ 0 & \text{if } \frac{m_2}{M_1} \le 1 \le \frac{M_2}{m_1}, \\ \left(\frac{m_2}{M_1} - 1\right)^2 x^2 & \text{if } 1 < \frac{m_2}{M_1} \end{cases}$$

$$\le \frac{x^2 + y^2}{2} - x^2 \sharp y^2$$

$$\begin{cases} \left(1 - \frac{m_2}{M_1}\right)^2 x^2 & \text{if } \frac{M_2}{m_1} < 1, \\ \\ = \frac{1}{2} \begin{cases} \left(1 - \frac{m_2}{M_1}\right)^2 , \left(\frac{M_2}{m_1} - 1\right)^2 \right\} x^2 & \text{if } \frac{m_2}{M_1} \le 1 \le \frac{M_2}{m_1}, \\ \left(\frac{M_2}{m_1} - 1\right)^2 x^2 & \text{if } 1 < \frac{m_2}{M_1}. \end{cases}$$

The following additive reverse of Hölder's inequality holds:

Theorem 3. Assume that A is a Hermitian unital Banach *-algebra and $\psi: A \to \mathbb{C}$ a faithful normalized positive linear functional. If $0 \le a, b \in A$ such that there exists the constant $k_1, K_1, k_2, K_2 > 0$ with $k_1 \le a \le K_1$ and $k_2 \le b \le K_2$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then

$$(4.13) 0 \leq 1 - \frac{\psi\left(a^{p}\sharp_{1/q}b^{q}\right)}{\psi^{1/p}\left(a^{p}\right)\psi^{1/q}\left(b^{q}\right)}$$

$$\leq \max\left\{A_{1/q}\left(1, \left(\frac{k_{2}}{K_{2}}\right)^{q}\left(\frac{k_{1}}{K_{1}}\right)^{p}\right) - G_{1/q}\left(1, \left(\frac{k_{2}}{K_{2}}\right)^{q}\left(\frac{k_{1}}{K_{1}}\right)^{p}\right),$$

$$A_{1/q}\left(1, \left(\frac{K_{2}}{k_{2}}\right)^{q}\left(\frac{K_{1}}{k_{1}}\right)^{p}\right) - G_{1/q}\left(1, \left(\frac{K_{2}}{k_{2}}\right)^{q}\left(\frac{K_{1}}{k_{1}}\right)^{p}\right)\right\}.$$

In particular,

$$(4.14) 0 \le 1 - \frac{\psi^2 \left(a^2 \sharp b^2\right)}{\psi \left(a^2\right) \psi \left(b^2\right)} \le \frac{1}{2} \left(\frac{K_2 K_1 - k_2 k_1}{k_2 k_1}\right)^2.$$

Proof. We have $0 < k_1 \le \psi^{1/p}(a^p) \le K_1$ and $0 < k_2 \le \psi^{1/q}(b^q) \le K_2$. These imply that $\frac{k_1}{K_1} \le \frac{a}{\psi^{1/p}(a^p)} \le \frac{K_1}{k_1}$ and $\frac{k_2}{K_2} \le \frac{b}{\psi^{1/q}(b^q)} \le \frac{K_2}{k_2}$ and $\frac{k_1}{K_1}, \frac{k_2}{K_2} \le 1 \le \frac{K_1}{k_1}$,

 $\frac{K_2}{k_2}$. Consider $x = \frac{a}{\psi(a)}$, $y = \frac{b}{\psi(b)}$, $m_1 = \frac{k_1}{K_1}$, $M_1 = \frac{K_1}{k_1}$, $m_2 = \frac{k_2}{K_2}$ and $M_2 = \frac{K_2}{k_2}$. Also, observe that

$$\frac{m_2^q}{M_1^p} = \frac{\left(\frac{k_2}{K_2}\right)^q}{\left(\frac{K_1}{k_1}\right)^p} = \left(\frac{k_2}{K_2}\right)^q \left(\frac{k_1}{K_1}\right)^p \le 1$$

and

$$\frac{M_2^q}{m_1^p} = \frac{\left(\frac{K_2}{k_2}\right)^q}{\left(\frac{k_1}{K_1}\right)^p} = \left(\frac{K_2}{k_2}\right)^q \left(\frac{K_1}{k_1}\right)^p \ge 1.$$

Using the inequality (4.11) we have

$$\begin{split} 0 &\leq \frac{1}{p} \left(\frac{a}{\psi^{1/p} \left(a^p \right)} \right)^p + \frac{1}{q} \left(\frac{b}{\psi^{1/q} \left(b^q \right)} \right)^q - \left(\frac{a}{\psi^{1/p} \left(a^p \right)} \right)^p \sharp_{1/q} \left(\frac{b}{\psi^{1/q} \left(b^q \right)} \right)^q \\ &\leq \Delta_{1/q} \left(\left(\frac{k_2}{K_2} \right)^q \left(\frac{k_1}{K_1} \right)^p, \left(\frac{K_2}{k_2} \right)^q \left(\frac{K_1}{k_1} \right)^p \right) \left(\frac{a}{\psi^{1/p} \left(a^p \right)} \right)^p \\ &= \max \left\{ A_{1/q} \left(1, \left(\frac{k_2}{K_2} \right)^q \left(\frac{k_1}{K_1} \right)^p \right) - G_{1/q} \left(1, \left(\frac{k_2}{K_2} \right)^q \left(\frac{k_1}{K_1} \right)^p \right), \right. \\ &A_{1/q} \left(1, \left(\frac{K_2}{k_2} \right)^q \left(\frac{K_1}{k_1} \right)^p \right) - G_{1/q} \left(1, \left(\frac{K_2}{k_2} \right)^q \left(\frac{K_1}{k_1} \right)^p \right) \right\} \left(\frac{a}{\psi^{1/p} \left(a^p \right)} \right)^p \end{split}$$

namely

$$(4.15) \qquad 0 \leq \frac{1}{p} \frac{a^{p}}{\psi\left(a^{p}\right)} + \frac{1}{q} \frac{b^{q}}{\psi\left(b^{q}\right)} - \frac{a^{p} \sharp_{1/q} b^{q}}{\psi^{1/q} \left(a^{p}\right) \psi^{1/q} \left(b^{q}\right)}$$

$$= \max \left\{ A_{1/q} \left(1, \left(\frac{k_{2}}{K_{2}}\right)^{q} \left(\frac{k_{1}}{K_{1}}\right)^{p} \right) - G_{1/q} \left(1, \left(\frac{k_{2}}{K_{2}}\right)^{q} \left(\frac{k_{1}}{K_{1}}\right)^{p} \right),$$

$$A_{1/q} \left(1, \left(\frac{K_{2}}{k_{2}}\right)^{q} \left(\frac{K_{1}}{k_{1}}\right)^{p} \right) - G_{1/q} \left(1, \left(\frac{K_{2}}{k_{2}}\right)^{q} \left(\frac{K_{1}}{k_{1}}\right)^{p} \right) \right\} \frac{a^{p}}{\psi\left(a^{p}\right)}.$$

If we take in (4.15) the functional ψ , then we get the desired result (4.13). We have

$$\frac{m_2}{M_1} = \frac{\frac{k_2}{K_2}}{\frac{K_1}{k_1}} = \frac{k_2 k_1}{K_2 K_1} \text{ and } \frac{M_2}{m_1} = \frac{\frac{K_2}{k_2}}{\frac{k_1}{K_1}} = \frac{K_2 K_1}{k_2 k_1}.$$

Therefore

$$\max \left\{ \left(1 - \frac{m_2}{M_1} \right)^2, \left(\frac{M_2}{m_1} - 1 \right)^2 \right\}$$

$$= \max \left\{ \left(1 - \frac{k_2 k_1}{K_2 K_1} \right)^2, \left(\frac{K_2 K_1}{k_2 k_1} - 1 \right)^2 \right\}$$

$$= \max \left\{ \left(\frac{K_2 K_1 - k_2 k_1}{K_2 K_1} \right)^2, \left(\frac{K_2 K_1 - k_2 k_1}{k_2 k_1} \right)^2 \right\} = \left(\frac{K_2 K_1 - k_2 k_1}{k_2 k_1} \right)^2$$

and by (4.12) we get the desired result (4.14).

5. Further Bounds

By the use of the additive inequalities from the introduction we have further upper and lower bounds for the difference

$$A_{\nu}(1,t) - G_{\nu}(1,t)$$

with t > 0 and $\nu \in [0, 1]$.

Indeed, by (CF), (T), (KM), (1.6) and (1.7) we have the following upper bounds

(5.1)
$$A_{\nu}(1,t) - G_{\nu}(1,t) \leq \begin{cases} \frac{1}{2}\nu(1-\nu)\frac{(t-1)^{2}}{\min\{t,1\}}, \\ \mathcal{S}(t)L(t,1), \\ \max\{\nu,1-\nu\}\left(\sqrt{t}-1\right)^{2}, \\ \frac{1}{2}\nu(1-\nu)(\ln t)^{2}\max\{t,1\}, \\ \nu(1-\nu)(t-1)\ln t, \end{cases}$$

for any t > 0 and $\nu \in [0, 1]$.

By using the inequalities (CF), (KM) and (1.6) we have the lower bounds

(5.2)
$$\frac{\frac{1}{2}\nu\left(1-\nu\right)\frac{(t-1)^{2}}{\max\{t,1\}}, \\ \min\left\{\nu,1-\nu\right\}\left(\sqrt{t}-1\right)^{2}, \\ \frac{1}{2}\nu\left(1-\nu\right)\left(\ln t\right)^{2}\min\left\{t,1\right\} } \right\} \leq A_{\nu}\left(1,t\right) - G_{\nu}\left(1,t\right)$$

for any t > 0 and $\nu \in [0, 1]$.

Observe that for 0 < m < M and q > 1, by making use of the definition (4.1) we have

$$(5.3) \quad \Delta_{1/q} \left(m^q, M^q \right)$$

$$= \begin{cases} A_{1/q} \left(1, m^q \right) - G_{1/q} \left(1, m^q \right) & \text{if } M < 1, \\ \max \left\{ A_{1/q} \left(1, m^q \right) - G_{1/q} \left(1, m^q \right), A_{1/q} \left(1, M^q \right) - G_{1/q} \left(1, M^q \right) \right\} \\ & \text{if } m \le 1 \le M, \\ A_{1/q} \left(1, M^q \right) - G_{1/q} \left(1, M^q \right) & \text{if } 1 < m. \end{cases}$$

Using the inequalities (5.1) we have the following upper bounds for $\Delta_{1/q} (m^q, M^q)$. If 0 < m < M < 1, then

(5.4)
$$\Delta_{1/q} (m^{q}, M^{q}) \leq \begin{cases} \frac{1}{2pq} \frac{(m^{q}-1)^{2}}{m^{q}}, \\ \mathcal{S} (m^{q}) L (m^{q}, 1), \\ \max \left\{ \frac{1}{p}, \frac{1}{q} \right\} (m^{q/2} - 1)^{2}, \\ \frac{q}{2p} (\ln m)^{2}, \\ \frac{1}{p} (m^{q} - 1) \ln m. \end{cases}$$

If $0 < m \le 1 \le M$, then

$$(5.5) \qquad \Delta_{1/q}\left(m^{q}, M^{q}\right) \leq \begin{cases} \frac{1}{2pq} \max\left\{\frac{(1-m^{q})^{2}}{m^{q}}, \left(M^{q}-1\right)^{2}\right\}, \\ \max\left\{\mathcal{S}\left(m^{q}\right) L\left(m^{q}, 1\right), \mathcal{S}\left(M^{q}\right) L\left(M^{q}, 1\right)\right\}, \\ \max\left\{\frac{1}{p}, \frac{1}{q}\right\} \max\left\{\left(1-m^{q/2}\right)^{2}, \left(M^{q/2}-1\right)^{2}\right\}, \\ \frac{q}{2p} \max\left\{\left(\ln m\right)^{2}, \left(\ln M\right)^{2} M^{q}\right\}, \\ \frac{1}{p} \max\left\{\left(m^{q}-1\right) \ln m, \left(M^{q}-1\right) \ln M\right\}. \end{cases}$$

If 1 < m < M, then

(5.6)
$$\Delta_{1/q} (m^q, M^q) \leq \begin{cases} \frac{1}{2pq} (M^q - 1)^2, \\ \mathcal{S} (M^q) L (M^q, 1), \\ \max \left\{ \frac{1}{p}, \frac{1}{q} \right\} (M^{q/2} - 1)^2, \\ \frac{q}{2p} (\ln M)^2 M^q, \\ \frac{1}{p} (M^q - 1) \ln M. \end{cases}$$

Also, we observe that for 0 < m < M and q > 1, by making use of the definition (4.2) we have that

(5.7)
$$\delta_{1/q} \left(m^q, M^q \right) := \begin{cases} A_{1/q} \left(1, M^q \right) - G_{1/q} \left(1, M^q \right) & \text{if } M < 1, \\ 0 & \text{if } m \le 1 \le M, \\ A_{1/q} \left(1, m^q \right) - G_{1/q} \left(1, m^q \right) & \text{if } 1 < m. \end{cases}$$

Using the inequalities (5.2) we have the following lower bounds for $\delta_{1/q}$ (m^q, M^q). If 0 < m < M < 1, then

(5.8)
$$\min \left\{ \frac{\frac{1}{2pq} \left(1 - M^q \right)^2}{\frac{1}{p}, \frac{1}{q}} \right\} \left(1 - M^{q/2} \right)^2, \\ \frac{\frac{q}{2p} \left(\ln M \right)^2 M^q}{\frac{1}{2p} \left(\ln M \right)^2 M^q} \right\} \leq \delta_{1/q} \left(m^q, M^q \right).$$

Finally, if 1 < m < M, then

(5.9)
$$\min \left\{ \frac{1}{p}, \frac{1}{q} \right\} \left(m^{q/2} - 1 \right)^{2}, \\ \frac{q}{2p} \left(\ln m \right)^{2} \right\} \leq \delta_{1/q} \left(m^{q}, M^{q} \right).$$

REFERENCES

- H. Alzer, C. M. da Fonseca and A. Kovačec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63 (2015), Issue 3, 622-635.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, 1973.
- [3] D. I. Cartwright and M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
- [4] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [5] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 417-478.
- [6] S. S. Dragomir, A note on Young's inequality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, to appear, see http://link.springer.com/article/10.1007/s13398-016-0300-8. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
- [7] S. S. Dragomir, Two new reverses of Young's inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 158. [http://rgmia.org/papers/v18/v18a158.pdf].
- [8] S. S. Dragomir, Additive refinements and reverses of Young's operator inequality with applications, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. A 165. [http://rgmia.org/papers/v18/v18a165.pdf].
- [9] S. S. Dragomir, Multiplicative refinements and reverses of Young's operator inequality with applications, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. A 166. [http://rgmia.org/papers/v18/v18a166.pdf].

- [10] S. S. Dragomir, A note on new refinements and reverses of Young's inequality, Transylv. J. Math. & Mech. 8 (2016), No. 1, 45-49. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 131. [http://rgmia.org/papers/v18/v18a131.pdf].
- [11] S. S. Dragomir, Quadratic weighted geometric mean in Hermitian unital Banach *-algebras, RGMIA Res. Rep. Coll. 19 (2016), Art. 161 [Online http://rgmia.org/papers/v19/v19a161.pdf].
- [12] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [13] B. Q. Feng, The geometric means in Banach *-algebra, J. Operator Theory 57 (2007), No. 2, 243-250.
- [14] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization. Linear Algebra Appl. 219 (1995), 139–155.
- [15] F. Kittaneh, M. Krnić, N. Lovričević and J. Pečarić, Improved arithmetic-geometric and Heinz means inequalities for Hilbert space operators. *Publ. Math. Debrecen* 80 (2012), no. 3-4, 465–478.
- [16] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [17] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, *Linear Multilinear Algebra*, 59 (2011), 1031-1037.
- [18] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
- [19] T. Okayasu, The Löwner-Heinz inequality in Banach *-algebra, Glasgow Math. J. 42 (2000), 243-246.
- [20] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras, II. Duke Math. J. 37 (1970), 275-280.
- [21] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), pp. 91-98.
- [22] K. Tanahashi and A. Uchiyama, The Furuta inequality in Banach *-algebras, Proc. Amer. Math. Soc. 128 (2000), 1691-1695.
- [23] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.
- [24] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

URL: http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa