
MULTIPLICATIVE REFINEMENTS AND REVERSES OF
YOUNG AND HÖLDER�S INEQUALITIES IN HERMITIAN

UNITAL BANACH �-ALGEBRAS

S. S. DRAGOMIR1;2

Abstract. In this paper we obtain some multiplicative re�nements and re-
verses of the celebrated Young and Hölder�s inequalities in the general setting
of Hermitian unital Banach �-algebras and for positive linear functionals de-
�ned on such algebras.

1. Introduction

The famous Young inequality for scalars says that if a; b > 0 and � 2 [0; 1]; then
(1.1) G� (a; b) := a1��b� � (1� �) a+ �b =: A� (a; b)
with equality if and only if a = b. The inequality (1.1) is also called �-weighted
arithmetic-geometric mean inequality.
Assume that a; b > 0, � 2 [0; 1]: The following multiplicative re�nement and

reverse of the arithmetic mean-geometric mean inequality holds

(FT) S
��a

b

�r�
� A� (a; b)

G� (a; b)
� S

�a
b

�
;

where; S is Specht�s ratio and r = min f1� �; �g. Specht�s ratio S, was introduced
in 1960 in [22], and is de�ned by

(S) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

Recall that S satis�es the properties

(1.2) lim
h!1

S (h) = 1; S (h) = S
�
1

h

�
> 1

for h > 0; h 6= 1, is decreasing on (0; 1) and increasing on (1;1) :
The second inequality in (FT) is due to Tominaga, 2002 [24], while the �rst is

due to Furuichi, 2012, [14].
Zuo et al. 2011, [25] and Liao et al. 2015, [13] obtained the following multiplica-

tive re�nement and reverse inequalities

(ZL) Kr
�a
b

�
� A� (a; b)

G� (a; b)
� KR

�a
b

�
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2 S. S. DRAGOMIR1;2

where r = min f1� �; �g and R = max f1� �; �g : Kantorovich�s constant K is
de�ned by

(K) K (h) := (h+ 1)
2

4h
; h > 0:

K is decreasing on (0; 1) and increasing on [1;1) ; K (h) � 1 for any h > 0 and
K (h) = K

�
1
h

�
for any h > 0:

We also have [25]

(Co) S
��a

b

�r�
� Kr

�a
b

�
;

which shows that the lower bound in (ZL) is better than the same bound in (FT).
The inequalities (ZL) can be directly obtained from the following more general

result obtained by the author in 2006 [5] that provides a re�nement and a reverse
for the weighted Jensen�s discrete inequality:

n min
j2f1;2;:::;ng

fpjg

24 1
n

nX
j=1

� (xj)� �

0@ 1
n

nX
j=1

xj

1A35(1.3)

� 1

Pn

nX
j=1

pj� (xj)� �

0@ 1

Pn

nX
j=1

pjxj

1A
� n max

j2f1;2;:::;ng
fpjg

24 1
n

nX
j=1

� (xj)� �

0@ 1
n

nX
j=1

xj

1A35 ;
where � : C ! R is a convex function de�ned on convex subset C of the linear space
X; fxjgj2f1;2;:::;ng are vectors in C and fpjgj2f1;2;:::;ng are nonnegative numbers
with Pn =

Pn
j=1 pj > 0.

For n = 2, we deduce from (1.3) that

2min f�; 1� �g
�
�(x) + �(y)

2
� �

�
x+ y

2

��
(1.4)

� �� (x) + (1� �) � (y)� � [�x+ (1� �) y]

� 2max f�; 1� �g
�
�(x) + �(y)

2
� �

�
x+ y

2

��
for any x; y 2 R and � 2 [0; 1]. Now, if we write the inequality (1.4) for the convex
function � (x) = � lnx; and for the positive numbers a and b we get (ZL).
In 2015, Alzer & Fonseca & Kovaµcec, [1] and Dragomir, [10] obtained indepen-

dently and by using di¤erent techniques the following logarithmic upper and lower
bounds for the quotient of the arithmetic mean and geometric mean:

exp

"
1

2
� (1� �)

�
1� min fa; bg

max fa; bg

�2#
(1.5)

� A� (a; b)

G� (a; b)

� exp
"
1

2
� (1� �)

�
max fa; bg
min fa; bg � 1

�2#



REFINEMENTS AND REVERSES OF YOUNG AND HÖLDER�S INEQUALITIES 3

for any a; b > 0, � 2 [0; 1]:
A di¤erent reverse in terms of the exponential was also obtained recently in the

paper [6]

(1.6)
A� (a; b)

G� (a; b)
� exp

h
4� (1� �)

�
K
�a
b

�
� 1
�i
;

for any a; b > 0, � 2 [0; 1]:
If upper and lower bounds are assumed for the positive numbers a; b namely a;

b 2 [
;�] � (0;1) and � 2 [0; 1] ; then [7]

(1.7)
A� (a; b)

G� (a; b)
� max fh
;� (�) ; h
;� (1� �)g ;

where

(1.8) h
;� (�) :=
(1� �) 
 + ��


1����
:

In order to extend these results in the abstract setting of Hermitian unital Banach
�-algebras and for positive linear functionals we need the following preparation.

2. Some Facts on Hermitian Unital Banach �-Algebra

Let A be a unital Banach �-algebra with unit 1. An element a 2 A is called
selfadjoint if a� = a: A is called Hermitian if every selfadjoint element a in A has
real spectrum � (a) ; namely � (a) � R.
In what follows we assume that A is a Hermitian unital Banach �-algebra.
We say that an element a is nonnegative and write this as a � 0 if a� = a and

� (a) � [0;1) : We say that a is positive and write a > 0 if a � 0 and 0 =2 � (a) :
Thus a > 0 implies that its inverse a�1 exists. Denote the set of all invertible
elements of A by Inv (A) : If a; b 2 Inv (A) ; then ab 2 Inv (A) and (ab)�1 = b�1a�1:
Also, saying that a � b means that a � b � 0 and, similarly a > b means that
a� b > 0:
The Shirali-Ford theorem asserts that [21] (see also [2, Theorem 41.5])

(SF) a�a � 0 for every a 2 A:

Based on this fact, Okayasu [20], Tanahashi and Uchiyama [23] proved the following
fundamental properties (see also [14]):

(i) If a; b 2 A; then a � 0; b � 0 imply a+ b � 0 and � � 0 implies �a � 0;
(ii) If a; b 2 A; then a > 0; b � 0 imply a+ b > 0;
(iii) If a; b 2 A; then either a � b > 0 or a > b � 0 imply a > 0;
(iv) If a > 0; then a�1 > 0;
(v) If c > 0; then 0 < b < a if and only if cbc < cac; also 0 < b � a if and only

if cbc � cac;
(vi) If 0 < a < 1; then 1 < a�1;
(vii) If 0 < b < a; then 0 < a�1 < b�1; also if 0 < b � a; then 0 < a�1 � b�1:

In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].
Let a 2 A and a > 0; then 0 =2 � (a) and the fact that � (a) is a compact subset

of C implies that inffz : z 2 � (a)g > 0 and supfz : z 2 � (a)g < 1: Choose 
 to
be close recti�able curve in fRe z > 0g; the right half open plane of the complex
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plane, such that � (a) � ins (
) ; the inside of 
: Let G be an open subset of C with
� (a) � G: If f : G! C is analytic, we de�ne an element f (a) in A by

f (a) :=
1

2�i

Z



f (z) (z � a)�1 dz:

It is well known (see for instance [4, pp. 201-204]) that f (a) does not depend on
the choice of 
 and the Spectral Mapping Theorem (SMT)

� (f (a)) = f (� (a))

holds.
For any � 2 R we de�ne for a 2 A and a > 0; the real power

a� :=
1

2�i

Z



z� (z � a)�1 dz;

where z� is the principal �-power of z: Since A is a Banach �-algebra, then a� 2 A:
Moreover, since z� is analytic in fRe z > 0g; then by (SMT) we have

� (a�) = (� (a))
�
= fz� : z 2 � (a)g � (0;1) :

Following [14], we list below some important properties of real powers:

(viii) If 0 < a 2 A and � 2 R, then a� 2 A with a� > 0 and
�
a2
�1=2

= a; [23,
Lemma 6];

(ix) If 0 < a 2 A and �; � 2 R, then a�a� = a�+� ;

(x) If 0 < a 2 A and � 2 R, then (a�)�1 =
�
a�1

��
= a��;

(xi) If 0 < a; b 2 A, �; � 2 R and ab = ba; then a�b� = b�a�:

Okayasu [20] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach �-algebra with continuous involution, namely if a; b 2 A and
p 2 [0; 1] then a > b (a � b) implies that ap > bp (ap � bp) :
We de�ne the following means for � 2 [0; 1] ; see also [14] for di¤erent notations:

(A) ar�b := (1� �) a+ �b; a; b 2 A
the weighted arithmetic mean of (a; b) ;

(H) a!�b :=
�
(1� �) a�1 + �b�1

��1
; a; b > 0

the weighted harmonic mean of positive elements (a; b) and

(G) a]�b := a1=2
�
a�1=2ba�1=2

��
a1=2

the weighted geometric mean of positive elements (a; b) : Our notations above are
motivated by the classical notations used in operator theory. For simplicity, if
� = 1

2 ; we use the simpler notations arb; a!b and a]b: The de�nition of weighted
geometric mean can be extended for any real �:
In [14], B. Q. Feng proved the following properties of these means in A a Her-

mitian unital Banach �-algebra:
(xii) If 0 < a; b 2 A; then a!b = b!a and a]b = b]a;
(xiii) If 0 < a; b 2 A and c 2 Inv (A) ; then

c� (a!b) c = (c�ac)! (c�bc) and c� (a]b) c = (c�ac) ] (c�bc) ;

(xiv) If 0 < a; b 2 A and � 2 [0; 1], then

(a!�b)
�1
=
�
a�1

�
r�
�
b�1
�
and

�
a�1

�
]�
�
b�1
�
= (a]�b)

�1
:
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Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real
numbers, B. Q. Feng obtained in [14] the following inequality between the weighted
means introduced above:

(HGA) ar�b � a]�b � a!�b

for any 0 < a; b 2 A and � 2 [0; 1] :
Now, assume that f (�) is analytic in G, an open subset of C and for the real

interval I � G assume that f (z) � 0 for any z 2 I: If u 2 A such that � (u) � I;
then by (SMT) we have

� (f (u)) = f (� (u)) � f (I) � [0;1)

meaning that f (u) � 0 in the order of A:
Therefore, we can state the following fact that will be used to establish various

inequalities in A; see also [11].

Lemma 1. Let f (z) and g (z) be analytic in G, an open subset of C and for the
real interval I � G; assume that f (z) � g (z) for any z 2 I: Then for any u 2 A
with � (u) � I we have f (u) � g (u) in the order of A:

De�nition 1. Assume that A is a Hermitian unital Banach �-algebra. A linear
functional  : A ! C is positive if for a � 0 we have  (a) � 0: We say that it is
normalized if  (1) = 1: The functional  is called faithful if a � 0 and  (a) = 0
implies that a = 0:

We observe that the positive linear functional  preserves the order relation,
namely if a � b then  (a) �  (b) and if � � a � � with �; � real numbers, then
� �  (a) � �; provided  is normalized. If the positive linear functional  is
faithful and a > 0 then  (a) > 0:
If we use the �rst inequality in (HGA), then we can state the Young type in-

equality

(Y) xp]1=qy
q � 1

p
xp +

1

q
yq

for any 0 � x; y 2 A and p; q > 1 with 1
p +

1
q = 1:

We have the following Hölder�s type inequality for positive functionals as well
[12]:

Theorem 1. Assume that A is a Hermitian unital Banach �-algebra and  : A! C
a faithful normalized positive linear functional. If 0 � a; b 2 A and p; q > 1 with
1
p +

1
q = 1; then

(H)  
�
ap]1=qb

q
�
�  1=p (ap) 1=q (bq) :

In particular,

(Sc)  2
�
a2]1=2b

2
�
�  

�
a2
�
 
�
b2
�
:

In the following we obtain some multiplicative re�nements and reverses of the
celebrated Young and Hölder�s inequalities in the general setting of Hermitian unital
Banach �-algebras and for positive linear functionals de�ned on such algebras.
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3. Multiplicative Refinements and Reverses

We consider the function g� : (0;1)! (0;1) de�ned for � 2 (0; 1) by

(3.1) g� (t) =
1� � + �t

t�
=
A� (1; t)

G� (1; t)
= (1� �) t�� + �t1�� :

For [k;K] � (0;1) ; de�ne the quantities

�� (k;K) :=

8>>>>>><>>>>>>:

A�(1;k)
G�(1;k)

if K < 1;

max
n
A�(1;k)
G�(1;k)

; A�(1;K)
G�(1;K)

o
if k � 1 � K;

A�(1;K)
G�(1;K)

if 1 < k

(3.2)

=

8>>>>>><>>>>>>:

(1� �) k�� + �k1�� if K < 1;

max
�
(1� �) k�� + �k1�� ; (1� �)K�� + �K1��	

if k � 1 � K;

(1� �)K�� + �K1�� if 1 < k

and


� (k;K) :=

8>>>>><>>>>>:

A�(1;K)
G�(1;K)

if K < 1;

1 if k � 1 � K;

A�(1;k)
G�(1;k)

if 1 < k;

(3.3)

=

8>>>><>>>>:
(1� �)K�� + �K1�� if K < 1;

1 if k � 1 � K;

(1� �) k�� + �k1�� if 1 < k:

The following lemma holds.

Lemma 2. For [k;K] � (0;1) we have
(3.4) max

t2[k;K]
g� (t) = �� (k;K)

and

(3.5) min
t2[k;K]

g� (t) = 
� (k;K) :

Proof. The function g� is di¤erentiable and

g0� (t) = (1� �) �t���1 (t� 1) ;
which shows that the function g� is decreasing on (0; 1) and increasing on [1;1) :We
have g� (1) = 1; limt!0+g� (t) = +1; limt!1g� (t) = +1 and g�

�
1
t

�
= g1�� (t)

for any t > 0 and � 2 (0; 1) :
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Therefore, by considering the 3 possible situations for the location of the interval
[k;K] and the number 1 we get the desired bounds (3.4) and (3.5). �

We have the following multiplicative re�nement and reverse of Young�s inequal-
ity:

Theorem 2. Let 0 < x; y 2 A and p; q > 1 with 1
p +

1
q = 1: Assume that there

exists the constant m; M > 0 such that

(3.6) mqxp � yq �Mqxp;

then

(3.7) 
1=q (m
q;Mq)xp]1=qy

q � 1

p
xp +

1

q
yq � �1=q (mq;Mq)xp]1=qy

q;

where the functions 
 and � are de�ned by (3.2) and (3.3).

Proof. From the above Lemma 2 we have

(3.8) 
� (k;K) z
� � 1� � + �z � �� (k;K) z�

for any real z 2 [k;K] � (0;1) and for any � 2 [0; 1] :
Let u 2 A with spectrum � (u) � [k;K] � (0;1) : Then by applying Lemma

1 for the corresponding analytic functions in the right half open plane fRe z > 0g
involved in the inequality (3.8) we conclude that we have in the order of A that

(3.9) 
� (k;K)u
� � 1� � + �u � �� (k;K)u�

for any � 2 [0; 1] :
Since x is invertible, then by multiplying both sides of (3.6) with x�p=2 > 0, we

get mq � x�p=2yqx�p=2 � Mq and by taking � = 1=q; u = x�p=2yqx�p=2; k = mq

and K =Mq we get in the order of A that


1=q (m
q;Mq)

�
x�p=2yqx�p=2

�1=q
� 1

p
+
1

q
x�p=2yqx�p=2(3.10)

� �1=q (mq;Mq)
�
x�p=2yqx�p=2

�1=q
:

If we multiply both sides of (3.10) by xp=2 > 0; then we get


1=q (m
q;Mq)xp=2

�
x�p=2yqx�p=2

�1=q
xp=2

� 1

p
xp +

1

q
yq

� �1=q (mq;Mq)xp=2
�
x�p=2yqx�p=2

�1=q
xp=2

and the inequality (3.7) is proved. �

Corollary 1. Let 0 < x; y 2 A: Assume that there exists the constant m; M > 0
such that

(3.11) m2x2 � y2 �M2x2;
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then 8>>>><>>>>:
1+M2

2M x2]y2 if M < 1;

x2]y2 if m � 1 �M;

1+m2

2m x2]y2 if 1 < m;

(3.12)

� x2 + y2

2

�

8>>>>><>>>>>:

1+m2

2m x2]y2 if M < 1;

max
n
1+m2

2m ; 1+M
2

2M

o
x2]y2 if m � 1 �M;

1+M2

2M x2]y2 if 1 < m:

Proof. If follows by taking p = q = 2 in Theorem 2 and observing that

�1=2
�
m2;M2

�
=

8>>>>>>>><>>>>>>>>:

A(1;m2)
G(1;m2) if M < 1;

max

�
A(1;m2)
G(1;m2) ;

A(1;M2)
G(1;M2)

�
if m � 1 �M;

A(1;M2)
G(1;M2) if 1 < m;

=

8>>>>><>>>>>:

1+m2

2m if M < 1;

max
n
1+m2

2m ; 1+M
2

2M

o
if m � 1 �M;

1+M2

2M if 1 < m

and


1=2
�
m2;M2

�
=

8>>>>>><>>>>>>:

A(1;M2)
G(1;M2) if M < 1;

1 if m � 1 �M;

A(1;m2)
G(1;m2) if 1 < m;

=

8>>>><>>>>:
1+M2

2M if M < 1;

1 if m � 1 �M;

1+m2

2m if 1 < m:

�

Remark 1. Let 0 < x; y 2 A: Assume that there exists the constant m1; M1; m2;
M2 > 0 such that m1 � x � M1 and m2 � y � M2: Then m

p
1 � xp � Mp

1 and



REFINEMENTS AND REVERSES OF YOUNG AND HÖLDER�S INEQUALITIES 9

mq
2 � yq �M2

2 which implies that

mq
2

Mp
1

xp � yq � Mq
2

mp
1

xp

for p; q > 1 with 1
p +

1
q = 1:

Also, �
m2

M1

�2
x2 � y2 �

�
M2

m1

�2
x2:

Therefore, by (3.7) we have


1=q

�
mq
2

Mp
1

;
Mq
2

mp
1

�
xp]1=qy

q � 1

p
xp +

1

q
yq(3.13)

� �1=q
�
mq
2

Mp
1

;
Mq
2

mp
1

�
xp]1=qy

q

where the functions 
 and � are de�ned by (3.2) and (3.3).
By (3.12) we also have8>>>>><>>>>>:

m2
1+M

2
2

2m1M2
x2]y2 if M2

m1
< 1;

x2]y2 if m2

M1
� 1 � M2

m1
;

M2
1+m

2
2

2m2M1
x2]y2 if 1 < m2

M1
;

(3.14)

� x2 + y2

2

�

8>>>>>><>>>>>>:

M2
1+m

2
2

2m2M1
x2]y2 if M2

m1
< 1;

max
n
M2

1+m
2
2

2m2M1
;
m2
1+M

2
2

2M2m1

o
x2]y2 if m2

M1
� 1 � M2

m1
;

m2
1+M

2
2

2M2m1
x2]y2 if 1 < m2

M1
:

The following multiplicative reverse of Hölder�s inequality holds:

Theorem 3. Assume that A is a Hermitian unital Banach �-algebra and  : A! C
a faithful normalized positive linear functional. If 0 � a; b 2 A such that there exists
the constant k1; K1; k2; K2 > 0 with k1 � a � K1 and k2 � b � K2 and p; q > 1
with 1

p +
1
q = 1; then

1 �  1=p (ap) 1=q (bq)

 
�
ap]1=qbq

�(3.15)

� max

8<:A1=q

�
1;
�
k2
K2

�q �
k1
K1

�p�
G1=q

�
1;
�
k2
K2

�q �
k1
K1

�p� ; A1=q
�
1;
�
K2

k2

�q �
K1

k1

�p�
G1=q

�
1;
�
K2

k2

�q �
K1

k1

�p�
9=; :

In particular,

(3.16) 1 �
 
�
a2
�
 
�
b2
�

 2 (a2]b2)
� 1

4

�
k21k

2
2 +K

2
1K

2
2

k1k2K1K2

�2
:
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Proof. We have 0 < k1 �  1=p (ap) � K1 and 0 < k2 �  1=q (bq) � K2. These
imply that k1

K1
� a

 1=p(ap)
� K1

k1
and k2

K2
� b

 1=q(bq)
� K2

k2
and k1

K1
; k2
K2

� 1 � K1

k1
;

K2

k2
: Consider x = a

 (a) ; y =
b

 (b) ; m1 =
k1
K1
; M1 =

K1

k1
; m2 =

k2
K2

and M2 =
K2

k2
:

Also, observe that

mq
2

Mp
1

=

�
k2
K2

�q
�
K1

k1

�p = � k2
K2

�q �
k1
K1

�p
� 1

and

Mq
2

mp
1

=

�
K2

k2

�q
�
k1
K1

�p = �K2

k2

�q �
K1

k1

�p
� 1:

Using the inequality (3.13) we have

1

p

 
a

 1=p (ap)

!p
+
1

q

 
b

 1=q (bq)

!q
� �1=q

��
k2
K2

�q �
k1
K1

�p
;

�
K2

k2

�q �
K1

k1

�p�
 

a

 1=p (ap)

!p
]1=q

 
a

 1=p (ap)

!q

= max

8<:A1=q

�
1;
�
k2
K2

�q �
k1
K1

�p�
G1=q

�
1;
�
k2
K2

�q �
k1
K1

�p� ; A1=q
�
1;
�
K2

k2

�q �
K1

k1

�p�
G1=q

�
1;
�
K2

k2

�q �
K1

k1

�p�
9=; 

a

 1=p (ap)

!p
]1=q

 
a

 1=p (ap)

!q
;

namely

1

p

ap

 (ap)
+
1

q

bq

 (bq)
(3.17)

� max

8<:A1=q

�
1;
�
k2
K2

�q �
k1
K1

�p�
G1=q

�
1;
�
k2
K2

�q �
k1
K1

�p� ; A1=q
�
1;
�
K2

k2

�q �
K1

k1

�p�
G1=q

�
1;
�
K2

k2

�q �
K1

k1

�p�
9=;

�
ap]1=qb

q

 1=q (ap) 1=q (bq)
:

If we take in (3.17) the functional  ; then we get the desired result (3.15).



REFINEMENTS AND REVERSES OF YOUNG AND HÖLDER�S INEQUALITIES 11

For p = q = 2 we get

1 �
 1=2

�
a2
�
 1=2

�
b2
�

 (a2]b2)

� max

8>><>>:
A

�
1;
�
k2
K2

�2 �
k1
K1

�2�
G

�
1;
�
k2
K2

�2 �
k1
K1

�2� ; A
�
1;
�
K2

k2

�2 �
K1

k1

�2�
G

�
1;
�
K2

k2

�2 �
K1

k1

�2�
9>>=>>;

=
k21k

2
2 +K

2
1K

2
2

2k1k2K1K2
;

which proves the desired result (3.16). �

4. Further Bounds

By the use of the multiplicative inequalities from the introduction we have further
upper and lower bounds for the quotient

A� (1; t)

G� (1; t)

with t > 0 and � 2 [0; 1] :
Indeed, by (FT), (ZL), (1.5) and (1.6) we have the following upper bounds

(4.1)
A� (1; t)

G� (1; t)
�

8>>>><>>>>:
S (t) ;
KR (t) ;

exp

�
1
2� (1� �)

�
maxf1;tg
minf1;tg � 1

�2�
;

exp [4� (1� �) (K (t)� 1)]

for any t > 0 and � 2 [0; 1] ; where R = max f1� �; �g :
By using the inequalities (ZL) and (1.5) we have the lower bounds

(4.2)
Kr (t) ;

exp

�
1
2� (1� �)

�
1� minf1;tg

maxf1;tg

�2� 9=; � A� (1; t)

G� (1; t)

for any t > 0 and � 2 [0; 1] ; where r = min f1� �; �g :
Observe that for 0 < m < M and q > 1; by making use of the de�nition (3.2)

we have

�1=q (m
q;Mq)(4.3)

=

8>>>>>><>>>>>>:

A1=q(1;m
q)

G1=q(1;mq) if M < 1;

max
n
A1=q(1;m

q)

G1=q(1;mq) ;
A1=q(1;M

q)

G1=q(1;Mq)

o
if m � 1 �M;

A1=q(1;M
q)

G1=q(1;Mq) if 1 < m:

Using the inequalities (4.1) we have the following upper bounds for �1=q (mq;Mq) :
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If 0 < m < M < 1; then

(4.4) �1=q (m
q;Mq) �

8>>>><>>>>:
S (mq) ;

Kmaxf
1
p ;

1
qg (mq) ;

exp
h
1
2pq� (1� �)

�
1�mq

mq

�2i
;

exp
h
4
pq (K (m

q)� 1)
i
:

If 0 < m � 1 �M; then

�1=q (m
q;Mq)(4.5)

�

max fS (mq) ;S (Mq)g ;
max

n
Kmaxf

1
p ;

1
qg (mq) ;Kmaxf

1
p ;

1
qg (Mq)

o
;

max
n
exp

h
1
2pq

�
1�mq

mq

�2i
; exp

h
1
2pq (M

q � 1)2
io

;

max
n
exp

h
4
pq (K (m

q)� 1)
i
; exp

h
4
pq (K (M

q)� 1)
io

:

If 1 < m < M; then

(4.6) �1=q (m
q;Mq) �

8>>>><>>>>:
S (Mq) ;

Kmaxf
1
p ;

1
qg (Mq) ;

exp
h
1
2pq (M

q � 1)2
i
;

exp
h
4
pq (K (M

q)� 1)
i
:

Also, we observe that for 0 < m < M and q > 1; by making use of the de�nition
(3.3) we have that

(4.7) 
1=q (m
q;Mq) =

8>>>>><>>>>>:

A�(1;M
q)

G�(1;Mq) if M < 1;

1 if k � 1 � K;

A�(1;m
q)

G�(1;mq) if 1 < m:

Using the inequalities (4.2) we have the following lower bounds for 
1=q (m
q;Mq) :

If 0 < m < M < 1; then

(4.8)
Kminf

1
p ;

1
qg (Mq) ;

exp
h
1
2pq (1�M

q)
2
i ) � 
1=q (m

q;Mq) :

Finally, if 1 < m < M; then

(4.9)
Kminf

1
p ;

1
qg (mq) ;

exp
h
1
2pq

�
mq�1
mq

�2i ) � 
1=q (m
q;Mq) :
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