ČEBYŠEV'S TYPE INEQUALITIES FOR POSITIVE LINEAR FUNCTIONALS ON HERMITIAN UNITAL BANACH *-ALGEBRAS

S. S. DRAGOMIR^{1,2}

ABSTRACT. Some inequalities of Čebyšev type for positive linear functionals of synchronous functions of selfadjoint elements in Hermitian Unital Banach *-Algebras are given. Applications for power function and logarithm are provided as well.

1. INTRODUCTION

We say that the functions $f, g: [a, b] \longrightarrow \mathbb{R}$ are synchronous (asynchronous) on the interval [a, b] if they satisfy the following condition:

$$(f(t) - f(s))(g(t) - g(s)) \ge (\le) 0$$
 for each $t, s \in [a, b]$.

It is obvious that, if f, g are monotonic and have the same monotonicity on the interval [a, b], then they are synchronous on [a, b] while if they have opposite monotonicity, they are asynchronous.

In 1882-1883, Čebyšev [4] and [5] proved that if the *n*-tuples $\mathbf{a} = (a_1, ..., a_n)$ and $\mathbf{b} = (b_1, ..., b_n)$ are monotonic in the same (opposite) sense, then

(1.1)
$$\frac{1}{P_n} \sum_{i=1}^n p_i a_i b_i - \frac{1}{P_n} \sum_{i=1}^n p_i a_i \frac{1}{P_n} \sum_{i=1}^n p_i b_i \ge (\le) 0,$$

where $\mathbf{p} = (p_1, ..., p_n)$ are positive weights.

In the special case $\mathbf{p} = \mathbf{a} \ge \mathbf{0}$, it appears that the inequality (1.1) has been obtained by Laplace long before Čebyšev (see for example [22, p. 240]).

The inequality (1.1) was mentioned by Hardy, Littlewood and Pólya in their book [21] in 1934 in the more general setting of synchronous sequences, i.e., if **a**, **b** are synchronous (asynchronous), this means that

(1.2)
$$(a_i - a_j) (b_i - b_j) \ge (\le) 0 \text{ for any } i, j \in \{1, \dots, n\},\$$

then (1.1) holds true as well.

For other recent results on the Čebyšev inequality in either discrete or integral form see [3], [7], [8], [9], [10], [11], [22], [24], [25], [28], [29], [30], and the references therein.

The following result provides an inequality of Čebyšev type for functions of selfadjoint operators [15] (see also [14, p. 73] or [16, p. 73]):

RGMIA Res. Rep. Coll. 19 (2016), Art. 178

¹⁹⁹¹ Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Positive linear functionals, Synchronous (asynchronous) functions, Monotonic functions, Čebyšev inequality, Functions of selfadjoint elements, Hermitian unital Banach *-algebras.

Theorem 1. Let A be a selfadjoint operator with $\text{Sp}(A) \subseteq [m, M]$ for some real numbers m < M. If f, $g : [m, M] \longrightarrow \mathbb{R}$ are continuous and synchronous (asynchronous) on [m, M], then

(1.3)
$$\langle f(A) g(A) x, x \rangle \ge (\le) \langle f(A) x, x \rangle \langle g(A) x, x \rangle$$

for any $x \in H$ with ||x|| = 1.

Assume that A is a positive operator on the Hilbert space H and p, q > 0. Then for each $x \in H$ with ||x|| = 1 we have by (1.3) the inequality

(1.4)
$$\langle A^{p+q}x, x \rangle \ge \langle A^px, x \rangle \langle A^qx, x \rangle$$

If A is positive definite then the inequality (1.4) also holds for p, q < 0. If A is positive definite and either p > 0, q < 0 or p < 0, q > 0, then the reverse inequality holds in (1.4).

Assume that A is positive definite and p > 0. Then by (1.3) we have

(1.5)
$$\langle A^p \log Ax, x \rangle \ge \langle A^p x, x \rangle \langle \log Ax, x \rangle$$

for each $x \in H$ with ||x|| = 1. If p < 0 then the reverse inequality holds in (1.5).

The following result that is related to the Čebyšev inequality also holds [15] (see also [14, p. 73] or [16, p. 73]):

Theorem 2. Let A be a selfadjoint operator with $Sp(A) \subseteq [m, M]$ for some real numbers m < M.

If $f, g: [m, M] \longrightarrow \mathbb{R}$ are continuous and synchronous on [m, M], then

(1.6)
$$\langle f(A) g(A) x, x \rangle - \langle f(A) x, x \rangle \langle g(A) x, x \rangle$$
$$\geq [\langle f(A) x, x \rangle - f(\langle Ax, x \rangle)] [g(\langle Ax, x \rangle) - \langle g(A) x, x \rangle]$$

for any $x \in H$ with ||x|| = 1. If f, g are asynchronous, then

(1.7)
$$\langle f(A) x, x \rangle \langle g(A) x, x \rangle - \langle f(A) g(A) x, x \rangle \\ \geq [\langle f(A) x, x \rangle - f(\langle Ax, x \rangle)] [\langle g(A) x, x \rangle - g(\langle Ax, x \rangle)]$$

for any $x \in H$ with ||x|| = 1.

Let A be a selfadjoint operator with $\operatorname{Sp}(A) \subseteq [m, M]$ for some real numbers m < M. If $f, g : [m, M] \longrightarrow \mathbb{R}$ are continuous, synchronous and one is convex while the other is concave on [m, M], then by Jensen's inequality for convex (concave) functions and by (1.6) we have

(1.8)
$$\langle f(A) g(A) x, x \rangle - \langle f(A) x, x \rangle \langle g(A) x, x \rangle \\ \geq [\langle f(A) x, x \rangle - f(\langle Ax, x \rangle)] [g(\langle Ax, x \rangle) - \langle g(A) x, x \rangle] \ge 0$$

for any $x \in H$ with ||x|| = 1.

If f, g are asynchronous and either both of them are convex or both of them concave on [m, M], then

(1.9)
$$\langle f(A) x, x \rangle \langle g(A) x, x \rangle - \langle f(A) g(A) x, x \rangle \\ \geq [\langle f(A) x, x \rangle - f(\langle Ax, x \rangle)] [\langle g(A) x, x \rangle - g(\langle Ax, x \rangle)] \geq 0$$

for any $x \in H$ with ||x|| = 1.

Assume that A is a positive operator on the Hilbert space H. If $p \in (0, 1)$ and $q \in (1, \infty)$, then for each $x \in H$ with ||x|| = 1 we have the inequality

(1.10)
$$\langle A^{p+q}x, x \rangle - \langle A^{p}x, x \rangle \langle A^{q}x, x \rangle \\ \geq [\langle A^{q}x, x \rangle - \langle Ax, x \rangle^{q}] [\langle Ax, x \rangle^{p} - \langle A^{p}x, x \rangle] \geq 0.$$

If A is positive definite and p > 1, q < 0, then

(1.11)
$$\langle A^{p}x, x \rangle \langle A^{q}x, x \rangle - \langle A^{p+q}x, x \rangle \\ \geq [\langle A^{q}x, x \rangle - \langle Ax, x \rangle^{q}] [\langle A^{p}x, x \rangle - \langle Ax, x \rangle^{p}] \ge 0$$

for each $x \in H$ with ||x|| = 1.

Assume that A is positive definite and p > 1. Then also

(1.12)
$$\langle A^p \log Ax, x \rangle - \langle A^p x, x \rangle \langle \log Ax, x \rangle \\ \geq [\langle A^p x, x \rangle - \langle Ax, x \rangle^p] [\log \langle Ax, x \rangle - \langle \log Ax, x \rangle] \ge 0$$

for each $x \in H$ with ||x|| = 1.

In order to extend these results in the more general case of Hermitian unital Banach *-algebras and for positive linear functionals we need the following preparation.

2. Some Facts on Hermitian Unital Banach *-Algebra

Let A be a unital Banach *-algebra with unit 1. An element $a \in A$ is called *selfadjoint* if $a^* = a$. A is called *Hermitian* if every selfadjoint element a in A has real spectrum $\sigma(a)$, namely $\sigma(a) \subset \mathbb{R}$.

In what follows we assume that A is a Hermitian unital Banach *-algebra.

We say that an element a is *nonnegative* and write this as $a \ge 0$ if $a^* = a$ and $\sigma(a) \subset [0, \infty)$. We say that a is *positive* and write a > 0 if $a \ge 0$ and $0 \notin \sigma(a)$. Thus a > 0 implies that its inverse a^{-1} exists. Denote the set of all invertible elements of A by Inv (A). If $a, b \in \text{Inv}(A)$, then $ab \in \text{Inv}(A)$ and $(ab)^{-1} = b^{-1}a^{-1}$. Also, saying that $a \ge b$ means that $a - b \ge 0$ and, similarly a > b means that a - b > 0.

The Shirali-Ford theorem asserts that [32] (see also [2, Theorem 41.5])

(SF)
$$a^*a \ge 0$$
 for every $a \in A$.

Based on this fact, Okayasu [27], Tanahashi and Uchiyama [33] proved the following fundamental properties (see also [20]):

- (i) If $a, b \in A$, then $a \ge 0, b \ge 0$ imply $a + b \ge 0$ and $\alpha \ge 0$ implies $\alpha a \ge 0$;
- (ii) If $a, b \in A$, then $a > 0, b \ge 0$ imply a + b > 0;
- (iii) If $a, b \in A$, then either $a \ge b > 0$ or $a > b \ge 0$ imply a > 0;
- (iv) If a > 0, then $a^{-1} > 0$;
- (v) If c > 0, then 0 < b < a if and only if cbc < cac, also $0 < b \le a$ if and only if $cbc \le cac$;
- (vi) If 0 < a < 1, then $1 < a^{-1}$;
- (vii) If 0 < b < a, then $0 < a^{-1} < b^{-1}$, also if $0 < b \le a$, then $0 < a^{-1} \le b^{-1}$.

In order to introduce the real power of a positive element, we need the following facts [2, Theorem 41.5].

Let $a \in A$ and a > 0, then $0 \notin \sigma(a)$ and the fact that $\sigma(a)$ is a compact subset of \mathbb{C} implies that $\inf\{z : z \in \sigma(a)\} > 0$ and $\sup\{z : z \in \sigma(a)\} < \infty$. Choose γ to be close rectifiable curve in $\{\operatorname{Re} z > 0\}$, the right half open plane of the complex plane, such that $\sigma(a) \subset \operatorname{ins}(\gamma)$, the inside of γ . Let G be an open subset of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic, we define an element f(a) in A by

$$f(a) := \frac{1}{2\pi i} \int_{\gamma} f(z) (z-a)^{-1} dz.$$

It is well known (see for instance [6, pp. 201-204]) that f(a) does not depend on the choice of γ and the Spectral Mapping Theorem (SMT)

$$\sigma\left(f\left(a\right)\right) = f\left(\sigma\left(a\right)\right)$$

holds.

For any $\alpha \in \mathbb{R}$ we define for $a \in A$ and a > 0, the real power

$$a^{\alpha} := \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} \left(z - a \right)^{-1} dz,$$

where z^{α} is the principal α -power of z. Since A is a Banach *-algebra, then $a^{\alpha} \in A$. Moreover, since z^{α} is analytic in {Re z > 0}, then by (SMT) we have

$$\sigma(a^{\alpha}) = (\sigma(a))^{\alpha} = \{z^{\alpha} : z \in \sigma(a)\} \subset (0, \infty).$$

Following [20], we list below some important properties of real powers:

- (viii) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $a^{\alpha} \in A$ with $a^{\alpha} > 0$ and $(a^2)^{1/2} = a$, [33, Lemma 6];
- (ix) If $0 < a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^{\alpha}a^{\beta} = a^{\alpha+\beta}$;
- (x) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $(a^{\alpha})^{-1} = (a^{-1})^{\alpha} = a^{-\alpha}$;
- (xi) If $0 < a, b \in A, \alpha, \beta \in \mathbb{R}$ and ab = ba, then $a^{\alpha}b^{\beta} = b^{\beta}a^{\alpha}$.

Okayasu [27] showed that the *Löwner-Heinz inequality* remains valid in a Hermitian unital Banach *-algebra with continuous involution, namely if $a, b \in A$ and $p \in [0, 1]$ then a > b ($a \ge b$) implies that $a^p > b^p$ ($a^p \ge b^p$).

Now, assume that $f(\cdot)$ is analytic in G, an open subset of \mathbb{C} and for the real interval $I \subset G$ assume that $f(z) \geq 0$ for any $z \in I$. If $u \in A$ such that $\sigma(u) \subset I$, then by (SMT) we have

$$\sigma(f(u)) = f(\sigma(u)) \subset f(I) \subset [0,\infty)$$

meaning that $f(u) \ge 0$ in the order of A.

Therefore, we can state the following fact that will be used to establish various inequalities in A, see also [18].

Lemma 1. Let f(z) and g(z) be analytic in G, an open subset of \mathbb{C} and for the real interval $I \subset G$, assume that $f(z) \ge g(z)$ for any $z \in I$. Then for any $u \in A$ with $\sigma(u) \subset I$ we have $f(u) \ge g(u)$ in the order of A.

Definition 1. Assume that A is a Hermitian unital Banach *-algebra. A linear functional $\psi : A \to \mathbb{C}$ is positive if for $a \ge 0$ we have $\psi(a) \ge 0$. We say that it is normalized if $\psi(1) = 1$. The functional ψ is called faithful if $a \ge 0$ and $\psi(a) = 0$ implies that a = 0. The functional ψ is called tracial if $\psi(ab) = \psi(ba)$ for any $a, b \in A$

We observe that the positive linear functional ψ preserves the order relation, namely if $a \ge b$ then $\psi(a) \ge \psi(b)$ and if $\beta \ge a \ge \alpha$ with α , β real numbers, then $\beta \ge \psi(a) \ge \alpha$, provided ψ is normalized. If the positive linear functional ψ is faithful and a > 0 then $\psi(a) > 0$.

3. Čebyšev Type Inequalities for Positive Functionals

We have the following result:

Theorem 3. Let f(z) and g(z) be analytic in G, an open subset of \mathbb{C} and the real interval $I \subset G$. If f and g are synchronous (asynchronous) on the interval I and φ , $\psi : A \to \mathbb{C}$ are positive normalized linear functionals on A, then for any selfadjoint elements $a, b \in A$ with $\sigma(a), \sigma(b) \subset I$,

$$(3.1) \quad \varphi\left(f\left(a\right)g\left(a\right)\right) + \psi\left(f\left(b\right)g\left(b\right)\right) \ge (\leq) \varphi\left(f\left(a\right)\right)\psi\left(g\left(b\right)\right) + \varphi\left(g\left(a\right)\right)\psi\left(f\left(b\right)\right).$$

In particular, we have

$$(3.2) \quad \varphi\left(f\left(a\right)g\left(a\right)\right) + \psi\left(f\left(a\right)g\left(a\right)\right) \ge (\leq) \varphi\left(f\left(a\right)\right)\psi\left(g\left(a\right)\right) + \varphi\left(g\left(a\right)\right)\psi\left(f\left(a\right)\right).$$

 $\mathit{Proof.}$ We consider only the case of synchronous functions. In this case we have that

(3.3)
$$f(t) g(t) + f(s) g(s) \ge f(t) g(s) + f(s) g(t)$$

for each $t, s \in I$.

Fix $s \in I$. By utilizing Lemma 1 and the inequality (3.3) we obtain in the order of A that

$$f(a) g(a) + f(s) g(s) \ge g(s) f(a) + f(s) g(a)$$

for any $a \in A$ with $\sigma(a) \subset I$ and any $s \in I$.

If we apply to this inequality the functional $\varphi: A \to \mathbb{C}$ that is positive, normalized and linear, we get

(3.4)
$$\varphi\left(f\left(a\right)g\left(a\right)\right) + f\left(s\right)g\left(s\right) \ge g\left(s\right)\varphi\left(f\left(a\right)\right) + f\left(s\right)\varphi\left(g\left(a\right)\right)$$

for any $s \in I$.

If we apply Lemma 1 again and the inequality (3.4), we get in the order of A that

(3.5)
$$\varphi\left(f\left(a\right)g\left(a\right)\right) + f\left(b\right)g\left(b\right) \ge \varphi\left(f\left(a\right)\right)g\left(b\right) + \varphi\left(g\left(a\right)\right)f\left(b\right)$$

for any $b \in A$ with $\sigma(b) \subset I$.

If we apply to this inequality the functional $\psi : A \to \mathbb{C}$ that is positive, normalized and linear, we get the desired result (3.1).

Remark 1. If we take in (3.1) $\psi = \varphi$, then we get

$$(3.6) \quad \varphi\left(f\left(a\right)g\left(a\right)\right) + \varphi\left(f\left(b\right)g\left(b\right)\right) \ge (\leq)\varphi\left(f\left(a\right)\right)\varphi\left(g\left(b\right)\right) + \varphi\left(g\left(a\right)\right)\varphi\left(f\left(b\right)\right)$$

and in particular, for b = a we get the Čebyšev type inequality

(Ce)
$$\varphi(f(a) g(a)) \ge (\le) \varphi(f(a)) \varphi(g(a))$$

for $\varphi : A \to \mathbb{C}$ a positive normalized linear functional on A and for any selfadjoint element $a \in A$ with $\sigma(a) \subset I$.

If ψ is a positive linear functional (non-necessary normalized) and $\psi\left(1\right)>0$ then

(Ce1)
$$\psi(1)\psi(f(a)g(a)) \ge (\le)\psi(f(a))\psi(g(a)),$$

provided f and g are synchronous (asynchronous) on the interval I and the selfadjoint element $a \in A$ with $\sigma(a) \subset I$. If $0 and <math>\varphi : A \to \mathbb{C}$ is a positive linear functional on A with $\varphi(p) > 0$ (it suffices for φ to be faithful), then the functional $\psi_p(x) := \varphi(p^{1/2}xp^{1/2})$ is a positive linear functional with $\psi_p(1) = \varphi(p) > 0$ and by (Ce) we have

$$\left(\operatorname{Cep}\right) \quad \varphi\left(p\right)\varphi\left(p^{1/2}f\left(a\right)g\left(a\right)p^{1/2}\right) \geq \left(\leq\right)\varphi\left(p^{1/2}f\left(a\right)p^{1/2}\right)\varphi\left(p^{1/2}g\left(a\right)p^{1/2}\right).$$

Moreover, if φ is tracial then by (Cep) we have

(Cept)
$$\varphi(p)\varphi(pf(a)g(a)) \ge (\le)\varphi(pf(a))\varphi(pg(a))$$

We will use only the inequality (Cep) to exemplify the Čebyšev type inequalities obtained above.

Proposition 1. Let $0 and <math>\varphi : A \to \mathbb{C}$ a faithful positive linear functional on A.

(i) If $0 \le a \in A$ and $\alpha, \beta > 0$, then

(3.7)
$$\varphi\left(p\right)\varphi\left(p^{1/2}a^{\alpha+\beta}p^{1/2}\right) \ge \varphi\left(p^{1/2}a^{\alpha}p^{1/2}\right)\varphi\left(p^{1/2}a^{\beta}p^{1/2}\right)$$

(ii) If $0 < a \in A$ and α , $\beta < 0$, then the inequality (3.7) also holds.

(iii) If $0 < a \in A$ and either $\alpha > 0$, $\beta < 0$ or $\alpha < 0$, $\beta > 0$, then the reverse inequality holds in (3.7).

(iv) If $0 < a \in A$ and $\alpha > 0$, then

(3.8)
$$\varphi(p)\varphi\left(p^{1/2}(a^{\alpha}\ln a)p^{1/2}\right) \ge \varphi\left(p^{1/2}a^{\alpha}p^{1/2}\right)\varphi\left(p^{1/2}(\ln a)p^{1/2}\right)$$

(v) If $0 < a \in A$ and $\alpha < 0$, then the reverse inequality holds in (3.8).

These results generalize the corresponding inequalities from (1.3)-(1.5). Let $w_j \in A$, j = 1, ..., k satisfy the property

(3.9)
$$\sum_{j=1}^{k} w_j^* w_j = 1_H.$$

The map $\varphi_w : A \to \mathbb{C}$ defined by

$$\varphi_{w}\left(x\right) := \sum_{j=1}^{k} \varphi\left(w_{j}^{*} x w_{j}\right),$$

where $\varphi : A \to \mathbb{C}$ is a positive normalized linear functionals on A, is linear, positive and normalized.

Let f(z) and g(z) be analytic in G, an open subset of \mathbb{C} and the real interval $I \subset G$. If f and g are synchronous (asynchronous) on the interval I, then by (Ce) we have for $\varphi : A \to \mathbb{C}$ a positive normalized linear functional on A

$$(3.10) \qquad \sum_{j=1}^{k} \varphi\left(w_{j}^{*}f\left(a\right)g\left(a\right)w_{j}\right) \geq (\leq) \sum_{j=1}^{k} \varphi\left(w_{j}^{*}f\left(a\right)w_{j}\right) \sum_{j=1}^{k} \varphi\left(w_{j}^{*}g\left(a\right)w_{j}\right)$$

for any selfadjoint element $a \in A$ with $\sigma(a) \subset I$.

If, moreover $0 \le a \in A$, and $\alpha, \beta > 0$, then by (3.10) we get

(3.11)
$$\varphi\left(\sum_{j=1}^{k} w_j^* a^{\alpha+\beta} w_j\right) \ge \varphi\left(\sum_{j=1}^{k} w_j^* a^{\alpha} w_j\right) \varphi\left(\sum_{j=1}^{k} w_j^* a^{\beta} w_j\right).$$

Moreover, if $0 < a \in A$, φ is faithful and either $\alpha > 0$, $\beta < 0$ or or $\alpha < 0$, $\beta > 0$, then the reverse inequality holds in (3.11).

In the later case, if we take the square root in (3.11) and use the arithmetic mean-geometric mean inequality, we get

(3.12)
$$\varphi^{1/2}\left(\sum_{j=1}^{k} w_j^* a^{\alpha+\beta} w_j\right) \le \varphi\left(\sum_{j=1}^{k} w_j^* \left(\frac{a^{\alpha}+a^{\beta}}{2}\right) w_j\right).$$

4. Some Related Results

We have:

Theorem 4. Let f(z) and g(z) be analytic in G, an open subset of \mathbb{C} and the real interval $I \subset G$. If f and g are synchronous (asynchronous) on the interval I and φ , $\psi : A \to \mathbb{C}$ are positive normalized linear functionals on A, then for any selfadjoint elements $a, b \in A$ with $\sigma(a), \sigma(b) \subset I$,

$$(4.1) \quad \psi\left(f\left(b\right)g\left(b\right)\right) + f\left(\varphi\left(a\right)\right)g\left(\varphi\left(a\right)\right) \ge f\left(\varphi\left(a\right)\right)\psi\left(g\left(b\right)\right) + g\left(\varphi\left(a\right)\right)\psi\left(f\left(b\right)\right).$$

In particular,

$$(4.2) \quad \varphi\left(f\left(b\right)g\left(b\right)\right) + f\left(\varphi\left(a\right)\right)g\left(\varphi\left(a\right)\right) \ge f\left(\varphi\left(a\right)\right)\varphi\left(g\left(b\right)\right) + g\left(\varphi\left(a\right)\right)\varphi\left(f\left(b\right)\right)$$
 and

$$(4.3) \quad \psi\left(f\left(a\right)g\left(a\right)\right) + f\left(\varphi\left(a\right)\right)g\left(\varphi\left(a\right)\right) \ge f\left(\varphi\left(a\right)\right)\psi\left(g\left(a\right)\right) + g\left(\varphi\left(a\right)\right)\psi\left(f\left(a\right)\right).$$

Proof. Since $\sigma(a)$ is compact and $\sigma(a) \subset I$, there exist the real numbers m < M such that $\sigma(a) \subseteq [m, M] \subset I$. This implies that $m \leq a \leq M$ in the order of A, hence by taking the functional φ we have $\varphi(a) \in [m, M] \subset I$.

We consider only the case of synchronous functions. In this case we have that

$$[f(z) - f(\varphi(a))] [g(z) - g(\varphi(a))] \ge 0$$

for any $z \in I$.

This can be written as

$$(4.4) \qquad f(z) g(z) + f(\varphi(a)) g(\varphi(a)) \ge f(\varphi(a)) g(z) + g(\varphi(a)) f(z)$$

for any $z \in I$.

By utilizing Lemma 1 and the inequality (4.4) we obtain in the order of A that

$$(4.5) \qquad f(b) g(b) + f(\varphi(a)) g(\varphi(a)) \ge f(\varphi(a)) g(b) + g(\varphi(a)) f(b)$$

for any $\sigma(b) \subset I$.

If we take the functional ψ in (4.5), then we get the desired result (4.1).

Corollary 1. Let f(z) and g(z) be analytic in G, an open subset of \mathbb{C} and the real interval $I \subset G$. Assume that $\varphi : A \to \mathbb{C}$ is a positive normalized linear functional on A and the selfadjoint element $a \in A$ with $\sigma(a) \subset I$.

(i) If f and g are synchronous on the interval I, then

(4.6)
$$\varphi(f(a) g(a)) - \varphi(f(a)) \varphi(g(a)) \\ \ge (f(\varphi(a)) - \varphi(f(a))) (\varphi(g(a)) - g(\varphi(a)))$$

(ii) If f and g are asynchronous on the interval I, then

(4.7)
$$\varphi(f(a))\varphi(g(a)) - \varphi(f(a)g(a)) \\ \ge (\varphi(f(a)) - f(\varphi(a)))(\varphi(g(a)) - g(\varphi(a))).$$

Proof. If we take in (4.2) b = a, we get

 $\begin{array}{ll} (4.8) & \varphi\left(f\left(a\right)g\left(a\right)\right)+f\left(\varphi\left(a\right)\right)g\left(\varphi\left(a\right)\right)\geq f\left(\varphi\left(a\right)\right)\varphi\left(g\left(a\right)\right)+g\left(\varphi\left(a\right)\right)\varphi\left(f\left(a\right)\right). \\ \\ \text{By subtracting in } (4.8) & \varphi\left(f\left(a\right)\right)\varphi\left(g\left(a\right)\right) \text{ and rearranging, we get} \end{array}$

$$\begin{split} \varphi\left(f\left(a\right)g\left(a\right)\right) &-\varphi\left(f\left(a\right)\right)\varphi\left(g\left(a\right)\right)\\ &\geq f\left(\varphi\left(a\right)\right)\varphi\left(g\left(a\right)\right) + g\left(\varphi\left(a\right)\right)\varphi\left(f\left(a\right)\right)\\ &- f\left(\varphi\left(a\right)\right)g\left(\varphi\left(a\right)\right) - \varphi\left(f\left(a\right)\right)\varphi\left(g\left(a\right)\right)\\ &= \left(f\left(\varphi\left(a\right)\right) - \varphi\left(f\left(a\right)\right)\right)\left(\varphi\left(g\left(a\right)\right) - g\left(\varphi\left(a\right)\right)\right), \end{split}$$

which proves (4.6).

The inequality can be proved in a similar way and we omit the details.

We need the following Jensen's type inequality for convex functions on a Hermitian unital Banach *-algebra :

Lemma 2. Let f(z) be analytic in G, an open subset of \mathbb{C} and the real interval $I \subset G$. If f is convex (in the usual sense) on the interval I and $\psi : A \to \mathbb{C}$ is a positive normalized linear functional on A, then for any selfadjoint element $c \in A$ with $\sigma(c) \subset I$,

(4.9)
$$\psi(f(c)) \ge f(s) + f'(s)(\psi(c) - s)$$

for any $s \in I$.

In particular, we have the Jensen inequality

(4.10)
$$\psi\left(f\left(c\right)\right) \ge f\left(\psi\left(c\right)\right).$$

Proof. Since f is differentiable and convex on I we have by the gradient inequality that

$$f(t) \ge f(s) + (t-s)f'(s)$$

for any $t, s \in I$.

Fix $s \in I$ and apply Lemma 1 for the analytic functions f(z) and $g_s(z) := f(s) + f'(s)(z-s)$ to get for $c \in A$ with $\sigma(c) \subset I$ that the following inequality holds

(4.11)
$$f(c) \ge f(s) + f'(s)(c-s)$$

in the order of A and for any $s \in I$.

If we take the functional ψ on (3.5) we get

$$\begin{split} \psi(f(c)) &\geq \psi[f(s) + f'(s)(c-s)] \\ &= f(s)\psi(1) + f'(s)(\psi(c) - s\psi(1)) \\ &= f(s)\psi + f'(s)(\psi(c) - s) \end{split}$$

and the inequality (4.9) is proved.

Since $\sigma(c)$ is compact and $\sigma(c) \subset I$, then there exists the real numbers m, M with $\sigma(c) \subseteq [m, M] \subset I$. This means that we have $m \leq c \leq M$ in the order of A and by taking the functional ψ , we have $m \leq \psi(c) \leq M$, meaning that $\psi(c) \in [m, M] \subset I$. Therefore, by taking $s = \psi(c) \in [m, M]$ in (4.9) we get (4.10).

We can establish now some refinements of the Čebyšev type inequality (Ce) when some convexity properties are assumed. **Corollary 2.** Let f(z) and g(z) be analytic in G, an open subset of \mathbb{C} and the real interval $I \subset G$. Assume that $\varphi : A \to \mathbb{C}$ is a positive normalized linear functional on A and the selfadjoint element $a \in A$ with $\sigma(a) \subset I$.

(i) If f and g are synchronous on the interval I and one is convex while the other is concave on I, then

(4.12)
$$\varphi \left(f\left(a\right) g\left(a\right) \right) - \varphi \left(f\left(a\right) \right) \varphi \left(g\left(a\right) \right) \\ \ge \left(f\left(\varphi \left(a\right) \right) - \varphi \left(f\left(a\right) \right) \right) \left(\varphi \left(g\left(a\right) \right) - g \left(\varphi \left(a\right) \right) \right) \ge 0.$$

(ii) If f and g are asynchronous and either both of them are convex or both of them concave on the interval I, then

(4.13)
$$\varphi(f(a))\varphi(g(a)) - \varphi(f(a)g(a)) \\ \ge (\varphi(f(a)) - f(\varphi(a)))(\varphi(g(a)) - g(\varphi(a))) \ge 0.$$

The proof follows by Corollary 1 and Lemma 2.

Assume that $a \in A$ is a selfadjoint element with $\sigma(a) \subset I$. If ψ is a positive linear functional (non-necessary normalized) and $\psi(1) > 0$ then

$$(4.14) \qquad \frac{\psi\left(f\left(a\right)g\left(a\right)\right)}{\psi\left(1\right)} - \frac{\psi\left(f\left(a\right)\right)}{\psi\left(1\right)}\frac{\psi\left(g\left(a\right)\right)}{\psi\left(1\right)}$$
$$\geq \left(f\left(\frac{\psi\left(a\right)}{\psi\left(1\right)}\right) - \frac{\psi\left(f\left(a\right)\right)}{\psi\left(1\right)}\right)\left(\frac{\psi\left(g\left(a\right)\right)}{\psi\left(1\right)} - g\left(\frac{\psi\left(a\right)}{\psi\left(1\right)}\right)\right) \ge 0$$

provided f and g are synchronous on the interval I and one is convex while the other is concave on I.

If f and g are asynchronous and either both of them are convex or both of them concave on the interval I, then

$$(4.15) \qquad \frac{\psi(f(a))}{\psi(1)}\frac{\psi(g(a))}{\psi(1)} - \frac{\psi(f(a)g(a))}{\psi(1)}$$
$$\geq \left(\frac{\psi(f(a))}{\psi(1)} - f\left(\frac{\psi(a)}{\psi(1)}\right)\right) \left(\frac{\psi(g(a))}{\psi(1)} - g\left(\frac{\psi(a)}{\psi(1)}\right)\right) \geq 0.$$

If $0 and <math>\varphi : A \to \mathbb{C}$ is a positive linear functional on A with $\varphi(p) > 0$ (it suffices for φ to be faithful), then

$$(4.16) \qquad \frac{\varphi\left(p^{1/2}f\left(a\right)g\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)} - \frac{\varphi\left(p^{1/2}f\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)}\frac{\varphi\left(p^{1/2}g\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)}}{\varphi\left(p\right)} \\ \ge \left(f\left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right) - \frac{\varphi\left(p^{1/2}f\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)}\right) \\ \times \left(\frac{\varphi\left(p^{1/2}g\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)} - g\left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right)\right) \\ \ge 0$$

provided f and g are synchronous on the interval I and one is convex while the other is concave on I.

If f and g are asynchronous and either both of them are convex or both of them concave on the interval I, then

$$(4.17) \qquad \frac{\varphi\left(p^{1/2}f\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)}\frac{\varphi\left(p^{1/2}g\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)} - \frac{\varphi\left(p^{1/2}f\left(a\right)g\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)}}{\varphi\left(p\right)} \\ \ge \left(\frac{\varphi\left(p^{1/2}f\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)} - f\left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right)\right) \\ \times \left(\frac{\varphi\left(p^{1/2}g\left(a\right)p^{1/2}\right)}{\varphi\left(p\right)} - g\left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right)\right) \\ \ge 0.$$

We can give the following simple examples: If $0 \le a \in A$, $\alpha \in (0, 1)$ and $\beta \ge 1$, then by (4.16) we have

(4.18)
$$\frac{\varphi\left(p^{1/2}a^{\alpha+\beta}p^{1/2}\right)}{\varphi\left(p\right)} - \frac{\varphi\left(p^{1/2}a^{\alpha}p^{1/2}\right)}{\varphi\left(p\right)}\frac{\varphi\left(p^{1/2}a^{\beta}p^{1/2}\right)}{\varphi\left(p\right)}$$
$$\geq \left(\left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right)^{\alpha} - \frac{\varphi\left(p^{1/2}a^{\alpha}p^{1/2}\right)}{\varphi\left(p\right)}\right)$$
$$\times \left(\frac{\varphi\left(p^{1/2}a^{\beta}p^{1/2}\right)}{\varphi\left(p\right)} - \left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right)^{\beta}\right)$$
$$\geq 0$$

provided $0 and <math>\varphi : A \to \mathbb{C}$ is a positive linear functional on A with $\varphi(p) > 0$.

If $0 < a \in A$, $\alpha < 0$ and $\beta \ge 1$, then by (4.17)

$$(4.19) \qquad \frac{\varphi\left(p^{1/2}a^{\alpha}p^{1/2}\right)}{\varphi\left(p\right)}\frac{\varphi\left(p^{1/2}a^{\beta}p^{1/2}\right)}{\varphi\left(p\right)} - \frac{\varphi\left(p^{1/2}a^{\alpha+\beta}p^{1/2}\right)}{\varphi\left(p\right)}}{\varphi\left(p\right)}$$
$$\geq \left(\frac{\varphi\left(p^{1/2}a^{\alpha}p^{1/2}\right)}{\varphi\left(p\right)} - \left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right)^{\alpha}\right)$$
$$\times \left(\frac{\varphi\left(p^{1/2}a^{\beta}p^{1/2}\right)}{\varphi\left(p\right)} - \left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right)^{\beta}\right)$$
$$\geq 0,$$

provided $0 and <math>\varphi : A \to \mathbb{C}$ is a positive linear functional on A with $\varphi(p) > 0$.

If $0 < a \in A$ and $\beta \ge 1$, then by (4.16)

$$(4.20) \qquad \frac{\varphi\left(p^{1/2}\left(a^{\beta}\ln a\right)p^{1/2}\right)}{\varphi\left(p\right)} - \frac{\varphi\left(p^{1/2}a^{\beta}p^{1/2}\right)}{\varphi\left(p\right)}\frac{\varphi\left(p^{1/2}\left(\ln a\right)p^{1/2}\right)}{\varphi\left(p\right)}$$
$$\geq \left(\ln\left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right) - \frac{\varphi\left(p^{1/2}\left(\ln a\right)p^{1/2}\right)}{\varphi\left(p\right)}\right)$$
$$\times \left(\frac{\varphi\left(p^{1/2}a^{\beta}p^{1/2}\right)}{\varphi\left(p\right)} - \left(\frac{\varphi\left(p^{1/2}ap^{1/2}\right)}{\varphi\left(p\right)}\right)^{\beta}\right)$$
$$\geq 0$$

provided $0 and <math>\varphi : A \to \mathbb{C}$ is a positive linear functional on A with $\varphi(p) > 0$.

These results generalize the corresponding inequalities from (1.10)-(1.12).

References

- M. Biernacki, Sur une inégalité entre les intégrales due à Tchebyscheff. Ann. Univ. Mariae Curie-Sklodowska (Poland), A5(1951), 23-29.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, 1973.
- [3] K. Boukerrioua, and A. Guezane-Lakoud, On generalization of Čebyšev type inequalities. J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Article 55, 4 pp.
- [4] P. L. Čebyšev, O približennyh vyraženijah odnih integralov čerez drugie. Soobšćenija i protokoly zasedaniš Matemmatičeskogo občestva pri Imperatorskom Har'kovskom Universitete No. 2, 93–98; Polnoe sobranie sočineniš P. L. Čebyševa. Moskva-Leningrad, 1948a, (1882), 128-131.
- [5] P. L. Čebyšev, Ob odnom rjade, dostavljajušćem predel'nye veličiny integralov pri razloženii podintegral'noĭ funkcii na množeteli. Priloženi k 57 tomu Zapisok Imp. Akad. Nauk, No. 4; Polnoe sobranie sočineniĭ P. L. Čebyševa. Moskva-Leningrad, 1948b, (1883),157-169.
- [6] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [7] S. S. Dragomir, On some improvements of Čebyšev's inequality for sequences and integrals, Studia Univ. Babeş-Bolyai, Mathematica (Romania), XXXV (4)(1990), 35-40.
- [8] S. S. Dragomir, Some improvement of Čebyšev's inequality for isotonic functionals, Atti. Sem. Mat. Fis. Univ. Modena (Italy), 41 (1993), 473-481.
- [9] S. S. Dragomir, On the Čebyšev's inequality for weighted means. Acta Math. Hungar. 104 (2004), no. 4, 345–355.
- [10] S. S. Dragomir and B. Mond, Some mappings associated with Čebyšev's inequality for sequences of real numbers. Bull. Allahabad Math. Soc. 8/9 (1993/94), 37–55
- [11] S. S. Dragomir and J. E. Pečarić, Refinements of some inequalities for isotonic linear functionals, L'Anal. Num. Théor de L'Approx. (Romania) 18(1989) (1), 61-65.
- [12] S. S. Dragomir and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces. I. Proceedings of the Second Symposium of Mathematics and its Applications (Timişoara, 1987), 61-64, Res. Centre, Acad. SR Romania, Timişoara, 1988. MR1006000 (90k:46048).
- S. S. Dragomir, J. Pečarić and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces.
 II. Proceedings of the Third Symposium of Mathematics and its Applications (Timişoara, 1989), 75–78, Rom. Acad., Timişoara, 1990. MR1266442 (94m:46033)
- [14] S. S. Dragomir, Inequalities for the Cebyšev functional of two functions of selfadjoint operators in Hilbert spaces. Aust. J. Math. Anal. Appl. 6 (2009), no. 1, Art. 7, 58 pp.
- [15] S. S. Dragomir, Cebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces. *Linear Multilinear Algebra* 58 (2010), No. 7-8, 805–814.
- [16] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
- [17] S. S. Dragomir, A weaken version of Davis-Choi-Jensen's inequality for normalised positive linear maps, Preprint RGMIA Res. Rep. Coll. 19 (2016), Art.

S. S. $DRAGOMIR^{1,2}$

- [18] S. S. Dragomir, Quadratic weighted geometric mean in Hermitian unital Banach *-algebras, *RGMIA Res. Rep. Coll.* 19 (2016), Art. 161 [Online http://rgmia.org/papers/v19/v19a161.pdf].
- [19] S. S. Dragomir, Inequalities of Jensen's type for positive linear functionals on Hermitian unital Banach *-algebras, *RGMIA Res. Rep. Coll.* 19 (2016), Art. 172 [Online http://rgmia.org/papers/v19/v19a172.pdf].
- [20] B. Q. Feng, The geometric means in Banach *-algebra, J. Operator Theory 57 (2007), No. 2, 243-250.
- [21] G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, 1st Ed. and 2nd Ed. Cambridge University Press, (1934, 1952) Cambridge, England.
- [22] D. S. Mitrinović, J. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
- [23] D. S. Mitrinović and J. E. Pečarić, On an identity of D.Z. Djoković, Prilozi Mak. Akad.Nauk. Umj. (Skopje), 12(1)(1991), 21-22.
- [24] D. S. Mitrinović and J. E. Pečarić, History, variations and generalizations of the Čebyšev inequality and question of some priorities. II. Rad Jugoslav. Akad. Znan. Umjet. No. 450 (1990), 139–156.
- [25] D. S. Mitrinović and P. M. Vasić, History, variations and generalisations of the Čebyšev inequality and the question of some priorities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461-497 (1974), 1-30.
- [26] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
- [27] T. Okayasu, The Löwner-Heinz inequality in Banach *-algebra, Glasgow Math. J. 42 (2000), 243-246.
- [28] B. G. Pachpatte, New Čebyšev type inequalities involving functions of two and three variables. Soochow J. Math. 33 (2007), no. 4, 569–577.
- [29] B. G. Pachpatte, A note on Čebyšev type inequalities. An. Stiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.)(Romania), 53 (2007), no. 1, 97–102.
- [30] J. Pečarić, Remarks on Biernacki's generalization of Čebyšev's inequality. Ann. Univ. Mariae Curie-Sklodowska Sect. A 47 (1993), 116–122.
- [31] J. Pečarić and S. S. Dragomir, Some remarks on Čebyšev's inequality, L'Anal. Num. Théor de L'Approx. 19 (1)(1990), 58-65.
- [32] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras, II. Duke Math. J. 37 (1970), 275-280.
- [33] K. Tanahashi and A. Uchiyama, The Furuta inequality in Banach *-algebras, Proc. Amer. Math. Soc. 128 (2000), 1691-1695.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA

12