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CEBYSEV’S TYPE INEQUALITIES FOR POSITIVE LINEAR
FUNCTIONALS ON HERMITIAN UNITAL BANACH
*~ALGEBRAS

S. S. DRAGOMIR!:2

ABSTRACT. Some inequalities of Cebysev type for positive linear functionals
of synchronous functions of selfadjoint elements in Hermitian Unital Banach
x-Algebras are given. Applications for power function and logarithm are pro-
vided as well.

1. INTRODUCTION

We say that the functions f, g : [a,b] — R are synchronous (asynchronous) on
the interval [a, b] if they satisfy the following condition:

(f ()= F(s)(g(#) —g(s)) = (<) 0 for each ¢, s € [a,b].

It is obvious that, if f, g are monotonic and have the same monotonicity on
the interval [a,b], then they are synchronous on [a,b] while if they have opposite
monotonicity, they are asynchronous.

In 1882-1883, Cebysev [4] and [5] proved that if the n-tuples a = (a1, ..., a,,) and
b = (b1, ..., b,) are monotonic in the same (opposite) sense, then

(1.1) Pizpiaibi - Pizpiai% Zpibz‘ > ()0,
no_q moi=1 =1

where p = (p1, ..., p) are positive weights.

In the special case p = a > 0, it appears that the inequality (1.1) has been
obtained by Laplace long before Cebysev (see for example [22, p. 240]).

The inequality (1.1) was mentioned by Hardy, Littlewood and Pélya in their
book [21] in 1934 in the more general setting of synchronous sequences, i.e., if a, b
are synchronous (asynchronous), this means that

(1.2) (ai —aj) (b; —bj) > (L)0 for any 4, j € {1,...,n},

then (1.1) holds true as well.

For other recent results on the Cebysev inequality in either discrete or integral
form see [3], [7], [8], [9], [10], [11], [22], [24], [25], [28], [29], [30], and the references
therein.

The following result provides an inequality of Cebysev type for functions of
selfadjoint operators [15] (see also [14, p. 73] or [16, p. 73]):
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2 S.S. DRAGOMIRY2

Theorem 1. Let A be a selfadjoint operator with Sp (A) C [m, M| for some real

numbers m < M. If f, g : [m, M] — R are continuous and synchronous (asyn-
chronous) on [m, M], then

(1.3) (f(A)g(A)z,z) > (<) (f (A z,2) (9(A) z,2)
for any x € H with ||z|| = 1.

Assume that A is a positive operator on the Hilbert space H and p, ¢ > 0. Then
for each z € H with ||z|| = 1 we have by (1.3) the inequality

(1.4) (APHg ) > (APx, z) (A%, ) .

If A is positive definite then the inequality (1.4) also holds for p, ¢ < 0. If A is
positive definite and either p > 0, ¢ < 0 or p < 0, ¢ > 0, then the reverse inequality

holds in (1.4).
Assume that A is positive definite and p > 0. Then by (1.3) we have
(1.5) (APlog Az, x) > (APz, ) (log Az, x)

for each x € H with ||z|| = 1. If p < 0 then the reverse inequality holds in (1.5).

The following result that is related to the Cebysev inequality also holds [15] (see
also [14, p. 73] or [16, p. 73]):

Theorem 2. Let A be a selfadjoint operator with Sp (A) C [m, M] for some real
numbers m < M.
If f, g : [m, M] — R are continuous and synchronous on [m, M|, then

(1.6) (f(A)g(A)z,z) - (f(A)z,z) (9 (A), )
> [(f(A)z,z) — [ ((Az,2))] [g ((Az, 2)) = (9 (A) z, z)]

for any x € H with ||z| = 1.
If f, g are asynchronous, then

(L.7) (f (A)z,z) (g(A)z,z) - (f (A)
= [(f (A)z,z) — f ((Az, z))] [{g

for any x € H with ||z| = 1.

g9(A)z,z)
(A)z,z) — g ((Az, z))]

Let A be a selfadjoint operator with Sp (A) C [m, M] for some real numbers
m < M.If f, g: [m, M] — R are continuous, synchronous and one is convex while
the other is concave on [m, M], then by Jensen’s inequality for convex (concave)
functions and by (1.6) we have

(1.8) (f(A)g(A)z,z) = (f (A) z, ) (g (A) z, )
> [(f(A)z,z) = [ ((Az, 2))] [g ({(Az, 2)) = (g (A) ,2)] > O
for any « € H with ||z]| = 1.

If f, g are asynchronous and either both of them are convex or both of them
concave on [m, M], then

(1.9) (f (A)z,z) (g(A)z,z) = (f(A)
= [(f (A)z,z) — [ ((Az, )] [(g
for any x € H with ||z| = 1.

g9(A)z,x)
(A)z,z) — g ((Az,2))] > 0



CEBYSEV’S TYPE INEQUALITIES 3

Assume that A is a positive operator on the Hilbert space H. If p € (0,1) and
q € (1,00), then for each x € H with ||z|| = 1 we have the inequality

(1.10) (APTag, z) — (AP, ) (A%, )

> (A2, x) — (Ax, 2)?) [(Ax, )’ — (APz,2)] > 0.
If A is positive definite and p > 1, ¢ < 0, then
(1.11) (AP, z) (A%, ) — (APT9z, x)

> [(A%z,x) — (Az, z)?]| [(APz, x) — (Az,2)"] > 0

for each x € H with ||z|| = 1.
Assume that A is positive definite and p > 1. Then also

(1.12) (APlog Az, x) — (APz, ) (log Az, x)
> [(APz, x) — (Ax, z)P] [log (Ax, x) — (log Az, z)] > 0

for each x € H with ||z|| = 1.

In order to extend these results in the more general case of Hermitian unital
Banach x-algebras and for positive linear functionals we need the following prepa-
ration.

2. SOME FacTs oN HERMITIAN UNITAL BANACH *ALGEBRA

Let A be a unital Banach *-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

In what follows we assume that A is a Hermitian unital Banach x-algebra.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0,00) . We say that a is positive and write a > 0ifa > 0and 0 ¢ o (a) . Thus
a > 0 implies that its inverse a~! exists. Denote the set of all invertible elements
of A by Inv (A).If a, b € Inv (A), then ab € Inv (A) and (ab) ™" = b~1a"!. Also,
saying that a > b means that a — b > 0 and, similarly a > b means that a — b > 0.

The Shirali-Ford theorem asserts that [32] (see also [2, Theorem 41.5])

(SF) a*a > 0 for every a € A.

Based on this fact, Okayasu [27], Tanahashi and Uchiyama [33] proved the following
fundamental properties (see also [20]):
(i) If a, b€ A, thena >0, b > 0 imply a+ b > 0 and « > 0 implies aa > 0;
(ii) If a, b € A, then @ > 0, b > 0 imply a + b > 0;
(iii) If a, b € A, then either a > b >0 or a > b > 0 imply a > 0;
(iv) If @ > 0, then a=! > 0;
(v) If ¢ > 0, then 0 < b < a if and only if cbe < cac, also 0 < b < a if and only
if ebe < cac;
(vi) If0 <a <1, then 1 <a™};
(vii) f 0 <b<a,then0<a ! <b ! alsoif 0<b<a,then0<a ! <bl
In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].
Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € o (a)} > 0 and sup{z : z € 0 (a)} < co. Choose v to
be close rectifiable curve in {Rez > 0}, the right half open plane of the complex

\4
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plane, such that o (a) C ins(v), the inside of 4. Let G be an open subset of C with
o(a) CG. If f: G — C is analytic, we define an element f (a) in A by

f@) =5 [ 1) -0 d

T 2mi
It is well known (see for instance [6, pp. 201-204]) that f (a) does not depend on
the choice of v and the Spectral Mapping Theorem (SMT)

o (f(a)) = f(o(a))
holds.
For any o € R we define for ¢ € A and a > 0, the real power

1 _
a®:=— [ 2%(z—a) Ydz,
2mi J,
where z® is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z* is analytic in {Rez > 0}, then by (SMT) we have

o(a®)=(o(a)*={2*:2€0(a)} C(0,00).
Following [20], we list below some important properties of real powers:

(viii) If 0 < @ € A and a € R, then a®* € A with a® > 0 and (a2)1/2 = a, [33,
Lemma 6];
(ix) If0 < a € A and «, B € R, then a®a® = a**+7;
(x) f0<a€ Aand a €R, then (a®)”' = (@) =a™

(xi) If0 < a, b€ A, a, B€R and ab = ba, then a*b® = b7a®.

Okayasu [27] showed that the Lowner-Heinz inequality remains valid in a Her-
mitian unital Banach x-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (aP > bP).

Now, assume that f(-) is analytic in G, an open subset of C and for the real
interval I C G assume that f(z) > 0 for any z € I. If u € A such that o (u) C I,
then by (SMT) we have

o (f(u) = f(o(w)c f)cC0,00)
meaning that f (u) > 0 in the order of A.

Therefore, we can state the following fact that will be used to establish various
inequalities in A, see also [18].

Lemma 1. Let f(z) and g (z) be analytic in G, an open subset of C and for the
real interval I C G, assume that f(z) > g(z) for any z € I. Then for any u € A
with o (u) C I we have f (u) > g (u) in the order of A.

Definition 1. Assume that A is a Hermitian unital Banach *-algebra. A linear
functional ¢ : A — C is positive if for a > 0 we have ¥ (a) > 0. We say that it is
normalized if 1 (1) = 1. The functional v is called faithful if a > 0 and 1 (a) =0
implies that a = 0. The functional ¥ is called tracial if ¥ (ab) = ) (ba) for any
a,be A

We observe that the positive linear functional v preserves the order relation,
namely if @ > b then ¢ (a) > ¢ (b) and if 8 > a > «a with «, 8 real numbers, then
B > v (a) > «, provided % is normalized. If the positive linear functional v is
faithful and a > 0 then v (a) > 0.
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3. CEBYSEV TYPE INEQUALITIES FOR POSITIVE FUNCTIONALS
We have the following result:

Theorem 3. Let f (z) and g (z) be analytic in G, an open subset of C and the real
interval I C G. If f and g are synchronous (asynchronous) on the interval I and ¢,
¥ : A — C are positive normalized linear functionals on A, then for any selfadjoint
elements a, b € A with o (a), o (b) C I,

B-1) ¢(f(a)g(a) +¢(f(b)g(b) = (<) e (f(a)P(g(b)+@(g(a)) ¥ (f (b))

In particular, we have

32) ¢ (f(a)g(a)) +v(f(a)g(a)) = (<) (f(a))(g(a)) +v(g(a))(f(a)).

Proof. We consider only the case of synchronous functions. In this case we have
that

(3-3) F@)g@)+f(s)g(s) = f()g(s)+f(s)g(t)

for each t, s € I.
Fix s € I. By utilizing Lemma 1 and the inequality (3.3) we obtain in the order
of A that

fla)g(a)+f(s)g(s) = g(s) f(a)+ f(s)g(a)
for any @ € A with ¢ (a) C I and any s € I.

If we apply to this inequality the functional ¢ : A — C that is positive, normal-
ized and linear, we get

(3-4) e(f(a)g(a))+f(s)g(s) = g(s)e(f(a))+ f(s)p(g(a))

for any s € I.
If we apply Lemma 1 again and the inequality (3.4), we get in the order of A
that

(3-5) @ (fla)g(a))+ f(b)g () = ¢(f(a))g(b)+¢(g(a))f(b)

for any b € A with o (b) C I.
If we apply to this inequality the functional ¢ : A — C that is positive, normal-
ized and linear, we get the desired result (3.1). O

Remark 1. If we take in (3.1) ¥ = ¢, then we get
(36) ¢(fla)g(a))+e(f(0)g(b) = (<)@ (f(a)e(g(b)+¢(g(a))e(f (b))

and in particular, for b= a we get the Cebysev type inequality

(Ce) ¢ (f(a)g(a)) = (<)@ (f(a))¢(g(a))

for ¢ : A — C a positive normalized linear functional on A and for any selfadjoint
element a € A with o (a) C I.

If ¢ is a positive linear functional (non-necessary normalized) and ¥ (1) > 0
then

(Cel) Y)Y (fla)g(a)) = ()P (f(a)P(g(a),

provided [ and g are synchronous (asynchronous) on the interval I and the selfad-
joint element a € A with o (a) C I.
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If0<pe Aand ¢ : A— C is a positive linear functional on A with ¢ (p) > 0
(it suffices for ¢ to be faithful), then the functional ¥, (v) := ¢ (pl/prl/Q) s a
positive linear functional with 1, (1) = ¢ (p) > 0 and by (Ce) we have

(Cep) o @) (P2 (@ g(@)p"2) = () (P72 (@)p2) 0 (429 ()p/2).
Moreover, if ¢ is tracial then by (Cep) we have

(Cept) e ¢ (pf(a)g(a) > ()¢ (pf(a) ¢ (pg(a)).

We will use only the inequality (Cep) to exemplify the Cebysev type inequalities
obtained above.

Proposition 1. Let 0 <p € A and ¢ : A — C a faithful positive linear functional
on A.
(i) If0<a€ A anda, >0, then

(3.7) o (p) ey (p1/2a““3p1/2) > (pl/Qaapl/Q) @ (pl/gaﬁpm) :

(i) If 0 < a € A and o, B < 0, then the inequality (3.7) also holds.

(ii) If 0 < a € A and either o > 0, § < 0 or a« < 0, 8 > 0, then the reverse
inequality holds in (3.7).

(iw) If0 < a € A and a > 0, then

(38 e (P2 @ ma)p?) = o (p2ap2) o (52 (a) p'/?).
(v) If 0 < a € A and a < 0,then the reverse inequality holds in (3.8).

These results generalize the corresponding inequalities from (1.3)-(1.5).
Let w; € A, j =1, ..., k satisfy the property

k
(3.9) > wiw; =1y,
=1

The map ¢,, : A — C defined by

Mw

¢ (wizw;)
j=1
where ¢ : A — C is a positive normalized linear functionals on A, is linear, positive
and normalized.
Let f(z) and g (z) be analytic in G, an open subset of C and the real interval
I C G.If f and g are synchronous (asynchronous) on the interval I, then by (Ce)
we have for ¢ : A — C a positive normalized linear functional on A

(3.10) Zsﬂwf > thwf a) w; Zs@ wig(a

for any selfadpmt element a € A with o (a) cl.
If, moreover 0 < a € A, and «, § > 0, then by (3.10) we get

k k
(3.11) Zw* ;| > ¢ Zw}‘ao‘wj @ Zw;‘aﬁwj
j=1 j=1
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Moreover, if 0 < a € A, ¢ is faithful and either & > 0, 3 <0 oror a <0, 5 > 0,
then the reverse inequality holds in (3.11).

In the later case, if we take the square root in (3.11) and use the arithmetic
mean-geometric mean inequality, we get

k k
v a L (a*+aP
(3.12) /2 (E wia +ﬁwj) < (E w; ( 5 )wj) .
=1 j=1

4. SOME RELATED RESULTS

‘We have:

Theorem 4. Let f (2) and g(2) be analytic in G, an open subset of C and the real
interval I C G. If f and g are synchronous (asynchronous) on the interval I and p,
¥ : A — C are positive normalized linear functionals on A, then for any selfadjoint
elements a, b € A with o (a), o (b) C I,

(4.1) % (f(b)g®)+ [f(e(a))g(e(a)) = f(p(a)(g(b)+g(pa)v(f (D).

In particular,

(4.2) o (f(B)g®)+ f(p(a)glp(a) > f(p(a))e(g®)+g(p(a))e(f(?)

and

(4.3) ¥ (fla)g(a))+ f(p(a))g(e(a)) = fle(a) v (g(a)) +g(e(a) ¥ (f(a)).

Proof. Since o (a) is compact and o (a) C I, there exist the real numbers m < M
such that o (a) C [m, M] C I. This implies that m < a < M in the order of A,
hence by taking the functional ¢ we have ¢ (a) € [m, M] C I.

We consider only the case of synchronous functions. In this case we have that

[f (2) = f (@ (a)]]g(2) —g (¢ (a))] =0

for any z € I.
This can be written as

(4.4) f(2)g9(2) + f(p(a))g(e(a)) = flpla) g(2) +9(p(a)) f(2)

for any z € I.
By utilizing Lemma 1 and the inequality (4.4) we obtain in the order of A that

(4.5) F®)g @)+ fp(a)g(p(a)) > f(p(a)g®d)+g(p(a))f(b)
for any o (b) C I.
If we take the functional ¢ in (4.5), then we get the desired result (4.1). O

Corollary 1. Let f (z) and g (z) be analytic in G, an open subset of C and the real
interval I C G. Assume that ¢ : A — C is a positive normalized linear functional
on A and the selfadjoint element a € A with o (a) C I.

(i) If f and g are synchronous on the interval I, then

(4.6) ¢ (f(a)g(a)) — ¢ (f(a)¢(g(a)
> (f(p(a)) —¢(f(a)) (¢ (g(a)) — g (p(a))).
(ii) If f and g are asynchronous on the interval I, then
(4.7) ¢(f(a)¢(g(a)) —¢(f(a)g(a))
> (¢ (f(a)) = f(p(a)) (¢ (g(a)) —g(p(a))).
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Proof. If we take in (4.

(4.8) ¢ (f(a)g(a))
By subtracting in (4

which proves (4.6).
The inequality can be proved in a similar way and we omit the details. O

We need the following Jensen’s type inequality for convex functions on a Her-
mitian unital Banach x-algebra :

Lemma 2. Let f (2) be analytic in G, an open subset of C and the real interval
I C G. If f is convex (in the usual sense) on the interval I and ¢ : A — C is a
positive normalized linear functional on A, then for any selfadjoint element c € A
with o (¢) C I,

(4.9) V(f(e)=f(s)+ [ (s)(W(c) —s)
for any s € 1.

In particular, we have the Jensen inequality
(4.10) U (f(e) > f@(c)).

Proof. Since f is differentiable and convex on I we have by the gradient inequality
that
fF@) = f(s)+(t—s)f (s)
for any t, s € I.
Fix s € I and apply Lemma 1 for the analytic functions f(z) and gs (z) :=
f(s)+ f'(s)(z—s) to get for c € A with o (c) C I that the following inequality
holds

(4.11) fl@zf(s)+f (s)(c—s)

in the order of A and for any s € I.
If we take the functional ¢ on (3.5) we get

b (f(e) Zv[f(s)+ [ (s) (c—s)]
=f()v D)+ 1 (5) (P (c) =9 (1))
= f(s)v+ £ (s) (¥ (c) = s)
and the inequality (4.9) is proved.

Since o (¢) is compact and o (¢) C I, then there exists the real numbers m,
M with o (¢) C [m,M] C I. This means that we have m < ¢ < M in the order
of A and by taking the functional ¢, we have m < 9 (¢) < M, meaning that
P (c) € [m,M] C I. Therefore, by taking s = v (c) € [m, M] in (4.9) we get
(4.10). O

We can establish now some refinements of the Cebysev type inequality (Ce) when
some convexity properties are assumed.
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Corollary 2. Let f (2) and g (2) be analytic in G, an open subset of C and the real
interval I C G. Assume that ¢ : A — C is a positive normalized linear functional
on A and the selfadjoint element a € A with o (a) C I.

(i) If f and g are synchronous on the interval I and one is convex while the
other is concave on I, then

(4.12) ¢ (f(a)g(a)) — ¢ (f(a)p(g(a))
> (f(p(a) —¢(f(a)(p(g(a)) —g(p(a))) >0.

(ii) If f and g are asynchronous and either both of them are convex or both of
them concave on the interval I, then

(4.13) ¢ (f(a)p(g(a)) —e(f(a)g(a))
> (¢ (f(a) = f(p(a)(p(g(a)) —g(p(a)) > 0.

The proof follows by Corollary 1 and Lemma 2.
Assume that a € A is a selfadjoint element with o (a) C I.
If 4 is a positive linear functional (non-necessary normalized) and ¢ (1) > 0 then

(4.14) v (fla)g(a)) ¢ (f(a) ¥ (g(a))

¥ (1) v(1) (1)
w(a)> B ¢(f(a))> (w(g(a)) B <¢(a)>>
= (1 (5m) - ) (o (b)) =0
provided f and g are synchronous on the interval I and one is convex while the
other is concave on I.

If f and g are asynchronous and either both of them are convex or both of them
concave on the interval I, then

(4.15) Y (f(a)¥(g(a) ¢ (f(a)g(a))

v(a) (1) ¥ (1)
v (f(a) ,(¢(a) v(g(a) (¥ (a)
> (S -1 (5m)) (-0 (5@)) 2o
If0<pe Aand ¢: A — C is a positive linear functional on A with ¢ (p) >0
(it suffices for ¢ to be faithful), then

(4.16) o (01 @ (@p'"?) @ @] (@)p") ¢ (0?9 (a)*/?)

¢ (p) ¢ (p) ¢ (p)

e (0 7ap'?)\ 0 (0] (a)p'?)
Z<f< ¢ (p) ) v (p) )

y <so (' (@)p') (@ (p1/2ap1/2)>>

¢ (p) ¢ (p)

>0

provided f and g are synchronous on the interval I and one is convex while the
other is concave on I.
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If f and g are asynchronous and either both of them are convex or both of them
concave on the interval I, then

D) ¢ (p) ¢ (p)

1/2 1/2
)

e (p

o (
< ( 1/2 1/2
>
(SD(PI/Z 1/2 (cp 1/2 1/2 ))
X -9
> 0.

(4.17) o (012f (@)p'?) ¢ (01?9 ()p'?) ¢ (p/*f (a) g (a)p'?)

¢ (p

We can give the following simple examples:
If0<ae€ A ae(0,1) and 8 > 1, then by (4.16) we have

(4.18) ¥ (p1/2a0+5p1/2) oy (p1/2aap1/2) o (pl/Zaﬁpl/Q)
¢ (p) ¢ (p) ¢ (p)

N w(puzapuz) « ¢(p1/2aap1/2)
_<< ¢ () ) e )

0 (p1/2a/3p1/2) <Lp(p1/2ap1/2)>ﬁ

¢ (p) ¢ (p)

Vv
o

provided 0 < p € A and ¢ : A — C is a positive linear functional on A with

¢ (p) > 0.
If0<a€e A a<0and > 1, then by (4.17)

0 (p1/2aap1/2) 0 (p1/2aﬁp1/2) L (p1/2aa+ﬁp1/2)
¢ (p) ¢ (p) ¢ (p)

N Lp(pl/zw)zpyz)_ (p(p1/2ap1/2) @
- ¢ (p) ¢ (p)

0 (p1/2a6p1/2) <<p(p1/2ap1/2)>ﬁ

(4.19)

¢ (p) ¢ (p)

Y
=

provided 0 < p € A and ¢ : A — C is a positive linear functional on A with
¢ (p) > 0.
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If 0 <a€ Aand 8> 1, then by (4.16)
o (pV/2 (aPIna) pi/2) o (p1/2aPpV/2) ¢ (pV/? (Ina) p/2)

20) ¢ (p) ¢ (p) ¢ (p)
0 (p1/2ap1/2) 0 (p1/2 (Ina) p1/2)
> (1 -
- ¢ (p) ¢ (p)
y 0 (p1/2a6p1/2) e (p1/2ap1/2) B
¢ (p) ¢ (p)
>0

provided 0 < p € A and ¢ : A — C is a positive linear functional on A with
¢ (p) > 0.

(1]

These results generalize the corresponding inequalities from (1.10)-(1.12).
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