
FUNCTIONS GENERATING (m,M,Ψ)−SCHUR-CONVEX SUMS

SILVESTRU SEVER DRAGOMIR AND KAZIMIERZ NIKODEM

Abstract. The notion of (m,M,Ψ)−Schur-convexity is introduced and functions gen-
erating (m,M,Ψ)−Schur-convex sums are investigated. An extension of the Hardy-
Littlewood-Pólya majorization theorem is obtained. A counterpart of the result of
Ng stating that a function generates (m,M,Ψ)−Schur-convex sums if and only if it is
(m,M,ψ)−Wright-convex is proved and a characterization of (m,M,ψ)−Wright-convex
functions is given.

1. Introduction

Let (X, ∥ · ∥) be a real normed space. Assume that D is a convex subset of X and c is
a positive constant. A function f : D → R is called:

– strongly convex with modulus c if

(1) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)∥x− y∥2

for all x, y ∈ D and t ∈ [0, 1];

– strongly Wright-convex with modulus c if

(2) f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y)− 2ct(1− t)∥x− y∥2

for all x, y ∈ D and t ∈ [0, 1];

– strongly Jensen-convex with modulus c if (1) is assumed only for t = 1
2
, that is

(3) f

(
x+ y

2

)
≤ f(x) + f(y)

2
− c

4
∥x− y∥2, x, y ∈ D.

The usual concepts of convexity, Wright-convexity and Jensen-convexity correspond to
the case c = 0, respectively. The notion of strongly convex functions have been introduced
by Polyak [21] and they play an important role in optimization theory and mathematical
economics. Many properties and applications of them can be found in the literature (see,
for instance, [10], [15], [19], [21], [22], [23], [26]). Let us mention also the paper [18] by the
second author which is a survey article devoted to strongly convex functions and related
classes of functions.
In [1] the first author introduced the following concepts of (m,ψ)−lower convex, (M,ψ)−

upper convex and (m,M,ψ)−convex functions (see also [2], [3], [4]): Assume that D is a
convex subset of a real linear space X, ψ : D → R is a convex function and m,M ∈ R. A
function f : D → R is called (m,ψ)−lower convex ((M,ψ)−upper convex ) if the function
f−mψ (the functionMψ−f) is convex. We say that f : D → R is (m,M,ψ)−convex if it
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is (m,ψ)−lower convex and (M,ψ)−upper convex. Denote the above classes of functions
by:

L(D,m,ψ) = {f : D → R | f −mψ is convex},
U(D,M,ψ) = {f : D → R |Mψ − f is convex}

B(D,m,M,ψ) = L(D,m,ψ) ∩ U(D,M,ψ).

Let us observe that if f ∈ B(D,m,M,ψ) then f − mψ and Mψ − f are convex and
then (M −m)ψ is also convex, implying that M ≥ m whenever ψ is not trivial (i.e. is
not the zero function).
If m > 0 and (X, ∥ · ∥) is an inner product space (that is, the norm ∥ · ∥ in X is induced

by an inner product: ∥x∥ =
√
⟨x, x⟩ ) the notions of m−∥·∥2−lower convexity and strong

convexity with modulus m coincide. Namely, in this case the following characterization
was proved in [19]: A function f is strongly convex with modulus c if and only if f−c∥·∥2 is
convex (for X = Rn this result can be also found in [8, Prop. 1.1.2]). However, if (X, ∥ · ∥)
is not an inner product space, then the two notions are different. There are functions
f ∈ L(D,m, ∥ · ∥2) which are not strongly convex with modulus m, as well as there are
functions strongly convex with modulus m which do not belong to L(D,m, ∥ · ∥2) (see the
examples given in [6]).
If M > 0 and f ∈ U(D,M,ψ), then f is a difference of two convex functions. Such

functions are called d.c. convex or δ-convex and play an important role in convex analysis
(cf. e.g. [25] and the reference therein). Functions from the class U(D,M, ∥ · ∥2) with
M > 0 were also investigated in [13] under the name approximately concave functions.
In [5] Dragomir and Ionescu introduced the concept of g-convex dominated functions,

where g is a given convex function. Namely, a function f is called g-convex dominated, if
the functions g + f and g − f are convex. Note that this concept can be obtained as a
particular case of (m,M,Ψ)−convexity by choosing m = −1, M = 1 and ψ = g. Observe
also (cf. [1]), that in the case where I ⊂ R is an open interval and f, ψ : I → R are twice
differentiable, then f ∈ B(I,m,M,ψ) if and only if

mψ′′(t) ≤ f ′′(t) ≤Mψ′′(t), for all t ∈ I.

In particular, if I ⊂ (0,∞), f : I → R is twice differentiable and ψ(t) = − ln t, then
f ∈ B(I,m,M,− ln) if and only if

(4) m ≤ t2f ′′(t) ≤M, for all t ∈ I,

which is a convenient condition to verify in applications.

Let I ⊂ R be an interval and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ In, where n ≥ 2.
Following I. Schur (cf. e.g. [24], [12]) we say that x is majorized by y, and write x ≼ y,
if there exists a doubly stochastic n × n matrix P (i.e. matrix containing nonnegative
elements with all rows and columns summing up to 1) such that x = y · P . A function
F : In → R is said to be Schur-convex if F (x) ≤ F (y) whenever x ≼ y, x, y ∈ In.
It is known, by the classical works of Schur [24], Hardy–Littlewood–Pólya [7] and Kara-

mata [9] that if a function f : I → R is convex then it generates Schur-convex sums, that
is the function F : In → R defined by

F (x) = F (x1, . . . , xn) = f(x1) + · · ·+ f(xn)



FUNCTIONS GENERATING (m,M,Ψ)−SCHUR-CONVEX SUMS 3

is Schur-convex. It is also known that the convexity of f is a sufficient but not necessary
condition under which F is Schur-convex. A full characterization of functions generating
Schur-convex sums was given by C. T. Ng [16]. Namely, he proved that a function f :
I → R generates Schur-convex sums if and only if it is Wright-convex. Recently Nikodem,
Rajba and Wa̧sowicz [20] obtained similar results connectet with strong convexity in inner
product spaces.

The aim of this paper is to present some generalizations and counterparts of the men-
tioned above results related to (m,ψ)−lower convexity, (M,ψ)−upper convexity and
(m,M,ψ)−convexity. We introduce the notion of (m,M,Ψ)−Schur-convex functions and
give a sufficient and necessary condition for a function f to generate (m,M,Ψ)−Schur-
convex sums. As a corollary we obtain a counterpart of the classical Hardy-Littlewood-
Pólya majorization theorem. Finally we introduce the concept of (m,M,ψ)−Wright-
convex functions, prove a representation theorem for them and present an Ng-type char-
acterization of functions generating (m,M,Ψ)−Schur-convex sums. It is worth to under-
line, that our results concern a few different classes of functions related to convexity and
are formulated in vector spaces, that is in much more general setting than the original
ones.

2. Main results

LetX be a real vector space. Similarly as in the classical case we define the majorization
in the product space Xn. Namely, given two n–tuples x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Xn we say that x is majorized by y, written x ≼ y, if

(x1, . . . , xn) = (y1, . . . , yn) · P
for some doubly stochastic n× n matrix P .
In what follows we will assume that D is a convex subset of a real vector space X,

ψ : D → R is a convex function and m,M ∈ R. For any n ≥ 2 define Ψn : Dn → R by
Ψn(x1, . . . , xn) = ψ(x1)+· · ·+ψ(xn), x1, . . . , xn ∈ D . We say that a function F : Dn → R
is (m,M,Ψn)−Schur-convex if for all x, y ∈ D

(5) x ≼ y =⇒ F (x) ≤ F (y)−m
(
Ψn(y)−Ψn(x)

)
and

(6) x ≼ y =⇒ F (x) ≥ F (y)−M
(
Ψn(y)−Ψn(x)

)
.

In only condition (5) (condition (6)) is satisfied, we say that F is (m,Ψn)−lower ((M,Ψn)−upper)
Schur-convex.
Note that if x ≼ y then Ψn(x) ≤ Ψn(y). It follows from the fact that the function ψ is

convex and so it generates Schur-convex sums Ψn.

Given a function f : D → R and an integer n ≥ 2 we define the function Fn : Dn → R
by

(7) Fn(x1, . . . , xn) = f(x1) + · · ·+ f(xn), x1, . . . , xn ∈ D.

Now, we will prove that (m,M,ψ)−convex functions generate (m,M,Ψn)−Schur-convex
sums.

Theorem 1. (i) If f ∈ L(D,m,ψ), then the function Fn defined by (7) is (m,Ψn)−lower
Schur-convex;
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(ii) If f ∈ U(D,M,ψ), then the function Fn defined by (7) is (M,Ψn)−upper Schur-
convex;

(iii) If f ∈ B(D,m,M,ψ), then the function Fn defined by (7) is (m,M,Ψn)−Schur-
convex.

Proof. To prove (i) fix x = (x1, . . . , xn) and y = (y1, . . . , yn) in Dn with x ≼ y. There
exists a doubly stochastic n× n matrix P = [tij] such that x = y · P . Then

xj =
n∑

i=1

tijyi, j = 1, . . . , n.

Since f ∈ L(D,m,ψ), the function g = f −mψ is convex and hence

g(x1) + · · ·+ g(xn) =
n∑

j=1

g
( n∑

i=1

tijyi

)
≤

n∑
j=1

n∑
i=1

tijg(yi)

=
n∑

i=1

n∑
j=1

tijg(yi) =
n∑

i=1

g(yi)
n∑

j=1

tij = g(y1) + · · ·+ g(yn).

Consequently,

Fn(x) = f(x1) + · · ·+ f(xn)

= g(x1) + · · ·+ g(xn) +m
(
ψ(x1) + · · ·+ ψ(xn

)
≤ g(y1) + · · ·+ g(yn) +m

(
ψ(x1) + · · ·+ ψ(xn)

)
= f(y1) + · · ·+ f(yn)−m

(
ψ(y1) + · · ·+ ψ(yn)

)
+m

(
ψ(x1) + · · ·+ ψ(xn)

)
= Fn(y)−m

(
Ψn(y)−Ψn(x)

)
.

This shows that Fn satisfies (5), i.e. it is (m,Ψn)−lower Schur-convex.
The proof of part (ii) is similar. Since f ∈ U(D,M,ψ), the function h = Mψ − f is

convex. Hence, for x and y as previously, we have

Fn(x) = f(x1) + · · ·+ f(xn)

= +M
(
ψ(x1) + · · ·+ ψ(xn

)
− h(x1)− · · · − h(xn)

≥M
(
ψ(x1) + · · ·+ ψ(xn)

)
− h(y1)− · · · − h(yn)

=M
(
ψ(x1) + · · ·+ ψ(xn)

)
−M

(
ψ(y1) + · · ·+ ψ(yn)

)
+ f(y1) + · · ·+ f(yn)

= Fn(y)−M
(
Ψn(y)−Ψn(x)

)
.

Part (iii) follows from (i) and (ii). �

As an immediate consequence of the abowe theorem, we obtain the following counter-
part of the classical Hardy-Littlewood-Pólya majorization theorem [7].

Corollary 2. Let I ⊂ R be an interval and n ≥ 2. Assume that x = (x1, ..., xn), y =
(y1, ..., yn) ∈ In satisfy:

(a) x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn;
(b) y1 + · · ·+ yk ≤ x1 + · · ·+ xk, k = 1, ..., n− 1;
(c) y1 + · · ·+ yn = x1 + · · ·+ xn.

Assume also that f, ψ : I → R and ψ is convex.
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(i) If f ∈ L(D,m,ψ), then

f(x1) + · · ·+ f(xn) ≤ f(y1) + · · ·+ f(yn)−m
(
Ψn(y)−Ψn(x)

)
;

(ii) If f ∈ U(D,M,ψ), then

f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn)−M
(
Ψn(y)−Ψn(x)

)
;

(iii) If f ∈ B(D,m,M,ψ), then

f(y1) + · · ·+ f(yn)−M
(
Ψn(y)−Ψn(x)

)
≤ f(x1) + · · ·+ f(xn)

≤ f(y1) + · · ·+ f(yn)−m
(
Ψn(y)−Ψn(x)

)
.

Proof. Note that assumptions (a)-(c) imply x ≼ y (see e.g. [12]) and apply Theorem 1. �

Remark 3. Specifying the functions ψ and f in the above Corollary 2, one can get various
analytic inequalities. For example, if I ⊂ (0,∞) and f ∈ B(I,m,M,− ln), then for all
(x1, ..., xn), (y1, ..., yn) ∈ In satisfying conditions (a)-(c), we get

m ln
n∏

i=1

(
xi
yi

)
≤

n∑
i=1

f (yi)−
n∑

i=1

f (xi) ≤M ln
n∏

i=1

(
xi
yi

)
,

or, equivalently,

(8)
n∏

i=1

(
xi
yi

)m

≤ exp [
∑n

i=1 f (yi)]

exp [
∑n

i=1 f (xi)]
≤

n∏
i=1

(
xi
yi

)M

.

If we take, for instance, I = [k,K] ⊂ (0,∞) and f (t) = 1
p(p−1)

tp, with p > 0, p ̸= 1, then

t2f ′′ (t) = tp ∈ [kp, Kp] , which means (cf. (4)) that f ∈ B(I, kp, Kp,− ln). Therefore, by
(8), we then have

n∏
i=1

(
xi
yi

)p(p−1)kp

≤ exp (
∑n

i=1 y
p
i )

exp (
∑n

i=1 x
p
i )

≤
n∏

i=1

(
xi
yi

)p(p−1)Kp

.

One can give other examples by choosing f (t) = tq with q < 0, f (t) = t ln t, etc.

We say that a function f : D → R is (m,ψ)−lower Jensen-convex ((M,ψ)−upper
Jensen-convex ) if the function f − mψ (the function Mψ − f) is Jensen-convex, i.e.
satisfies (3) with c = 0. We say that f : D → R is (m,M,ψ)−Jensen-convex if it is
(m,ψ)−lower Jensen-convex and (M,ψ)−upper Jensen-convex.
In the next theorem we show that functions generating (m,M,Ψn)−Schur-convex sums

must be (m,M,ψ)−Jensen–convex.

Theorem 4. Let f : D → R.
(i) If for some n ≥ 2 the function Fn defined by (7) is (m,Ψn)−lower Schur-convex,

then f is (m,ψ)−lower Jensen-convex;
(ii) If for some n ≥ 2 the function Fn defined by (7) is (M,Ψn)−upper Schur-convex,

then f is (M,ψ)−upper Jensen-convex;
(iii) If for some n ≥ 2 the function Fn defined by (7) is (m,M,Ψn)− Schur-convex, then

f is (m,M,ψ)− Jensen-convex.
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Proof. To prove (i) take y1, y2 ∈ D and put x1 = x2 =
1
2
(y1 + y2). Consider the points

y = (y1, y2, y2, . . . , y2), x = (x1, x2, y2, . . . , y2)

(if n = 2, then we take y = (y1, y2), x = (x1, x2)). One can check easily that x ≼ y.
Therefore, by (5),

Fn(x) ≤ Fn(y)−m
(
Ψn(y)−Ψn(x)

)
,

that is

2f
(y1 + y2

2

)
≤ f(y1) + f(y2)−m

(
ψ(y1) + ψ(y2)− 2ψ

(y1 + y2
2

))
.

Hence, for g = f −mψ we have

2g
(y1 + y2

2

)
= 2f

(y1 + y2
2

)
− 2mψ

(y1 + y2
2

)
≤ f(y1) + f(y2)−m

(
(ψ(y1) + ψ(y2)

)
= g(y1) + g(y2)

which means that f is (m,ψ)−lower Jensen-convex.
The proof of part (ii) is similar. Part (iii) follows from (i) and (ii). �

We say that a function f : D → R is (m,ψ)−lower Wright-convex ((M,ψ)−upper
Wright-convex ) if the function f − mψ (the function Mψ − f) is Wright-convex, i.e.
satisfies (2) with c = 0. We say that f : D → R is (m,M,ψ)−Wright-convex if it is
(m,ψ)−lower Wright-convex and (M,ψ)−upper Wright-convex.
As was shown above in Theorem 1 and Theorem 2, if a function f : D → R is

(m,M,ψ)−convex, then for every n ≥ 2 the corresponding function Fn defined by (7)
is (m,M,Ψn)−Schur-convex and if for some n ≥ 2 the function Fn is (m,M,Ψn)−Schur-
convex, then f is (m,M,ψ)−Jensen-convex. The next theorem characterizes all the func-
tions f for which Fn are (m,M,Ψn)− Schur–convex. It is a counterpart of the result of
Ng [16] on functions generating Schur–convex sums.
Recall also that a subset D of a vector space X is said to be algebraically open if for

every x ∈ D and for every y ∈ X there exists ε > 0 such that

{ty + (1− t)x | t ∈ (−ε, ε)} ⊂ D.

Theorem 5. Let f : D → R, where D is an algebraically open convex subset of a vector
space X. Then:

(i) If f is (m,ψ)−lower Wright-convex, then for every n ≥ 2 the function Fn defined
by (7) is (m,Ψn)−lower Schur-convex. Conversely, if for some n ≥ 2 the function
Fn is (m,Ψn)−lower Schur-convex, then f is (m,ψ)−lower Wright-convex;

(ii) If f is (M,ψ)−upper Wright-convex, then for every n ≥ 2 the function Fn defined
by (7) is (M,Ψn)−upper Schur-convex. Conversely, if for some n ≥ 2 the function
Fn is (M,Ψn)−upper Schur-convex, then f is (M,ψ)−upper Wright-convex;

(iii) If f is (m,M,ψ)− Wright-convex, then for every n ≥ 2 the function Fn defined by
(7) is (m,M,Ψn)− Schur-convex. Conversely, if for some n ≥ 2 the function Fn is
(m,M,Ψn)− Schur-convex, then f is (m,M,ψ)− Wright-convex.

Proof. To prove (i) assume that f is (m,ψ)−lower Wright-convex and fix an n ≥ 2. Since
the function g = f −mψ is Wright-convex, it is of the form g = g1+a, where g1 is convex
and a is additive (cf. [11]; here the assumption that D is algebraically open is needed).
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Therefore it generates Schur-convex sums. Thus, for x = (x1, . . . , xn) ≼ y = (y1, . . . , yn),
we have

g(x1) + · · ·+ g(xn) ≤ g(y1) + · · ·+ g(yn).

Hence

f(x1)+ · · ·+f(xn)−m
(
ψ(x1)+ · · ·+ψ(xn)

)
≤ g(y1)+ · · ·+g(yn)−m

(
ψ(y1)+ · · ·+ψ(yn)

)
,

which means that

Fn(x) ≤ Fn(y)−m
(
Ψn(y)−Ψn(x)

)
,

that is Fn is (m,Ψn)−lower Schur-convex. Now, assume that for some n ≥ 2 the function
Fn is (m,Ψn)−lower Schur-convex. Take y1, y2 ∈ D and t ∈ (0, 1). Put

x1 = ty1 + (1− t)y2, x2 = (1− t)y1 + ty2

and, if n > 2, take additionally xi = yi = z ∈ D for i = 3, . . . , n. Then x = (x1, . . . , xn) ≼
y = (y1, . . . , yn). Therefore, by (5),

Fn(x) ≤ Fn(y)−m
(
Ψn(y)−Ψn(x)

)
,

that is

f(ty1+(1− t)y2)+ f((1− t)y1+ ty2) ≤ f(y1)+ f(y2)−m
(
ψ(y1)+ψ(y2)−ψ(x1)−ψ(x2)

)
.

Hence, for g = f −mψ we get

g(ty1 + (1− t)y2) + g((1− t)y1 + ty2)

= f(ty1 + (1− t)y2) + f((1− t)y1 + ty2)−mψ(ty1 + (1− t)y2)−mψ((1− t)y1 + ty2)

≤ f(y1) + f(y2)−mψ(y1)−mψ(y2) = g(y1) + g(y2).

Thus g is Wright-convex, which means that f is (m,ψ)−lower Wright-convex.
The proof of part (ii) is similar. Part (iii) follows from (i) and (ii). �

Remark 6. In the special case where (X, ∥ · ∥) is an inner product space, ψ = ∥ · ∥2 and
m = c > 0, the parts (i) of the above Theorems 1, 4, 5 reduces to the results obtained
in [20] for strong Schur-convexity. For m = 0 and X = Rn they coincide with the Ng
theorem [16].

Finally, we give a representation theorem for (m,M,ψ)−Wright-convex functions. It
is known (and easy to check) that every convex function is Wright-convex, and every
Wright-convex function is Jensen-convex, but not the converse (some examples can be
found in [18]). In [16] Ng proved that a function f defined on a convex subset of Rn is
Wright-convex if and only if it can be represented in the form f = f1 + a, where f1 is
a convex function and a is an additive function (see also [18]). Kominek [11] extended
that result to functions defined on algebraically open subset of a vector space. Analogous
result for strongly Wright-convex functions was obtained in [14]. In the next theorem we
give a similar representation for (m,M,ψ)−Wright-convex functions. In the proof we will
use the following fact:

Lemma 7. Assume that f, g : D → R are convex functions, a : X → R is additive and
a(x) = f(x)− g(x) for all x ∈ D. Then a is an affine function on D.
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Proof. Fix x, y ∈ D and consider the function φ : [0, 1] → R defined by

φ(s) = a(sx+ (1− s)y) = f(sx+ (1− s)y)− g(sx+ (1− s)y), s ∈ [0, 1].

As a difference of convex functions on [0, 1], φ is continuous on (0, 1). Fix any t ∈ (0, 1)
and take a sequence (qn) on rational numbers in (0, 1) tending to t. By the additivity of
a we have

a(qnx+ (1− qn)y) = qna(x) + (1− qn)a(y),

whence

φ(qn) = qna(x) + (1− qn)a(y).

Going to the limit we get

φ(t) = ta(x) + (1− t)a(y).

Hence

a(tx+ (1− t)y) = ta(x) + (1− t)a(y),

which proves that a is affine on D.
�

Theorem 8. Let f : D → R, where D is an algebraically open convex subset of a vector
space X. Then:

(i) f is (m,ψ)−lower Wright-convex if and only if f = g1 + a1, where g1 ∈ L(D,m,ψ)
and a1 : X → R is additive;

(ii) f is (M,ψ)−upper Wright-convex if and only if f = g2 + a2, where g2 ∈ U(D,M,ψ)
and a2 : X → R is additive;

(iii) f is (m,M,ψ)− Wright-convex if and only if f = g + a, where g ∈ B(D,m,M,ψ)
and a : X → R is additive.

Proof. To prove (i) assume first that f is (m,ψ)−lower Wright-convex, that is h = f−mψ
is Wright-convex. By the Ng representation theorem [16] (extended by Kominek [11] to
functions defined on algebraically open domains), there exist a convex function h1 : D → R
and an additive function a1 : X → R such that h = h1 + a1 on D. Then g1 = h1 +mψ
belongs to L(D,m,ψ) and

f = h+mψ = h1 + a1 +mψ = g1 + a1,

which was to be proved. Conversely, if f = g1 + a1 with some g1 ∈ L(D,m,ψ) and a1
additive, then f −mψ = g1 −mψ + a1 is Wright-convex as a sum of a convex function
and an additive function. This shows that f is (m,ψ)−lower Wright-convex.
The proof of part (ii) is analogous.
Part (iii). If f = g + a, where g ∈ B(D,m,M,ψ) and a : X → R is additive,

then, by (i) and (ii) f is (m,ψ)−lower Wright-convex and (M,ψ)−upper Wright-convex.
Consequently, it is (m,M,ψ)−Wright-convex.
The proof in the opposite direction is more delicate. If f is (m,M,ψ)−Wright-convex,

then f −mψ and Mψ − f are Wright-convex. Then

f −mψ = h1 + a1 and Mψ − f = h2 + a2

with some convex functions h1, h2 and additive functions a1, a2. Hence

a1 + a2 = (M −m)ψ − (h1 + h2)



FUNCTIONS GENERATING (m,M,Ψ)−SCHUR-CONVEX SUMS 9

which, by Lemma 5, implies that A = a1 + a2 is affine. Denote a = a1 and g = f − a.
Then

g −mψ = f − a−mψ = h1,

which implies that g ∈ L(D,m,ψ) because h1 is convex. Also

Mψ − g =Mψ − f + a = h2 + a2 + a = h2 + A,

which implies that g ∈ U(D,m,ψ) because h2 + A is convex. Thus g ∈ B(D,m,ψ) and
f = g + a, which finishes the proof.

�
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