FUNCTIONS GENERATING (m, M, Ψ) -SCHUR-CONVEX SUMS

SILVESTRU SEVER DRAGOMIR AND KAZIMIERZ NIKODEM

ABSTRACT. The notion of (m, M, Ψ) -Schur-convexity is introduced and functions generating (m, M, Ψ) -Schur-convex sums are investigated. An extension of the Hardy-Littlewood-Pólya majorization theorem is obtained. A counterpart of the result of Ng stating that a function generates (m, M, Ψ) -Schur-convex sums if and only if it is (m, M, ψ) -Wright-convex is proved and a characterization of (m, M, ψ) -Wright-convex functions is given.

1. INTRODUCTION

Let $(X, \|\cdot\|)$ be a real normed space. Assume that D is a convex subset of X and c is a positive constant. A function $f: D \to \mathbb{R}$ is called:

- strongly convex with modulus c if

(1)
$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - ct(1-t)||x-y||^2$$

for all $x, y \in D$ and $t \in [0, 1]$;

- strongly Wright-convex with modulus c if

(2)
$$f(tx + (1-t)y) + f((1-t)x + ty) \le f(x) + f(y) - 2ct(1-t)||x-y||^2$$

for all $x, y \in D$ and $t \in [0, 1]$;

- strongly Jensen-convex with modulus c if (1) is assumed only for $t = \frac{1}{2}$, that is

(3)
$$f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} - \frac{c}{4}\|x-y\|^2, \ x,y \in D.$$

The usual concepts of convexity, Wright-convexity and Jensen-convexity correspond to the case c = 0, respectively. The notion of strongly convex functions have been introduced by Polyak [21] and they play an important role in optimization theory and mathematical economics. Many properties and applications of them can be found in the literature (see, for instance, [10], [15], [19], [21], [22], [23], [26]). Let us mention also the paper [18] by the second author which is a survey article devoted to strongly convex functions and related classes of functions.

In [1] the first author introduced the following concepts of (m, ψ) -lower convex, (M, ψ) upper convex and (m, M, ψ) -convex functions (see also [2], [3], [4]): Assume that D is a convex subset of a real linear space $X, \psi : D \to \mathbb{R}$ is a convex function and $m, M \in \mathbb{R}$. A function $f: D \to \mathbb{R}$ is called (m, ψ) -lower convex $((M, \psi)$ -upper convex) if the function $f - m\psi$ (the function $M\psi - f$) is convex. We say that $f: D \to \mathbb{R}$ is (m, M, ψ) -convex if it

²⁰¹⁰ Mathematics Subject Classification. Primary 26A51. Secondary 39B62.

Key words and phrases. Strongly convex functions, (m, M, Ψ) – convex (Jensen-convex, Wrightconvex) functions, (m, M, Ψ) – Schur-convexity.

is (m, ψ) -lower convex and (M, ψ) -upper convex. Denote the above classes of functions by:

$$\mathcal{L}(D, m, \psi) = \{f : D \to \mathbb{R} \mid f - m\psi \text{ is convex}\},\$$

$$\mathcal{U}(D, M, \psi) = \{f : D \to \mathbb{R} \mid M\psi - f \text{ is convex}\},\$$

$$\mathcal{B}(D, m, M, \psi) = \mathcal{L}(D, m, \psi) \cap \mathcal{U}(D, M, \psi).$$

Let us observe that if $f \in \mathcal{B}(D, m, M, \psi)$ then $f - m\psi$ and $M\psi - f$ are convex and then $(M - m)\psi$ is also convex, implying that $M \ge m$ whenever ψ is not trivial (i.e. is not the zero function).

If m > 0 and $(X, \|\cdot\|)$ is an inner product space (that is, the norm $\|\cdot\|$ in X is induced by an inner product: $\|x\| = \sqrt{\langle x, x \rangle}$) the notions of $m - \|\cdot\|^2$ -lower convexity and strong convexity with modulus m coincide. Namely, in this case the following characterization was proved in [19]: A function f is strongly convex with modulus c if and only if $f - c \|\cdot\|^2$ is convex (for $X = \mathbb{R}^n$ this result can be also found in [8, Prop. 1.1.2]). However, if $(X, \|\cdot\|)$ is not an inner product space, then the two notions are different. There are functions $f \in \mathcal{L}(D, m, \|\cdot\|^2)$ which are not strongly convex with modulus m, as well as there are functions strongly convex with modulus m which do not belong to $\mathcal{L}(D, m, \|\cdot\|^2)$ (see the examples given in [6]).

If M > 0 and $f \in \mathcal{U}(D, M, \psi)$, then f is a difference of two convex functions. Such functions are called *d.c. convex* or δ -convex and play an important role in convex analysis (cf. e.g. [25] and the reference therein). Functions from the class $\mathcal{U}(D, M, \|\cdot\|^2)$ with M > 0 were also investigated in [13] under the name approximately concave functions.

In [5] Dragomir and Ionescu introduced the concept of g-convex dominated functions, where g is a given convex function. Namely, a function f is called g-convex dominated, if the functions g + f and g - f are convex. Note that this concept can be obtained as a particular case of (m, M, Ψ) -convexity by choosing m = -1, M = 1 and $\psi = g$. Observe also (cf. [1]), that in the case where $I \subset \mathbb{R}$ is an open interval and $f, \psi : I \to \mathbb{R}$ are twice differentiable, then $f \in \mathcal{B}(I, m, M, \psi)$ if and only if

$$m\psi''(t) \le f''(t) \le M\psi''(t)$$
, for all $t \in I$.

In particular, if $I \subset (0, \infty)$, $f : I \to \mathbb{R}$ is twice differentiable and $\psi(t) = -\ln t$, then $f \in \mathcal{B}(I, m, M, -\ln)$ if and only if

(4)
$$m \le t^2 f''(t) \le M$$
, for all $t \in I$,

which is a convenient condition to verify in applications.

Let $I \subset \mathbb{R}$ be an interval and $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in I^n$, where $n \geq 2$. Following I. Schur (cf. e.g. [24], [12]) we say that x is majorized by y, and write $x \leq y$, if there exists a doubly stochastic $n \times n$ matrix P (i.e. matrix containing nonnegative elements with all rows and columns summing up to 1) such that $x = y \cdot P$. A function $F: I^n \to \mathbb{R}$ is said to be Schur-convex if $F(x) \leq F(y)$ whenever $x \leq y, x, y \in I^n$.

It is known, by the classical works of Schur [24], Hardy–Littlewood–Pólya [7] and Karamata [9] that if a function $f: I \to \mathbb{R}$ is convex then it generates Schur-convex sums, that is the function $F: I^n \to \mathbb{R}$ defined by

$$F(x) = F(x_1, \dots, x_n) = f(x_1) + \dots + f(x_n)$$

is Schur-convex. It is also known that the convexity of f is a sufficient but not necessary condition under which F is Schur-convex. A full characterization of functions generating Schur-convex sums was given by C. T. Ng [16]. Namely, he proved that a function f: $I \to \mathbb{R}$ generates Schur-convex sums if and only if it is Wright-convex. Recently Nikodem, Rajba and Wąsowicz [20] obtained similar results connected with strong convexity in inner product spaces.

The aim of this paper is to present some generalizations and counterparts of the mentioned above results related to (m, ψ) -lower convexity, (M, ψ) -upper convexity and (m, M, ψ) -convexity. We introduce the notion of (m, M, Ψ) -Schur-convex functions and give a sufficient and necessary condition for a function f to generate (m, M, Ψ) -Schurconvex sums. As a corollary we obtain a counterpart of the classical Hardy-Littlewood-Pólya majorization theorem. Finally we introduce the concept of (m, M, ψ) -Wrightconvex functions, prove a representation theorem for them and present an Ng-type characterization of functions generating (m, M, Ψ) -Schur-convex sums. It is worth to underline, that our results concern a few different classes of functions related to convexity and are formulated in vector spaces, that is in much more general setting than the original ones.

2. Main results

Let X be a real vector space. Similarly as in the classical case we define the majorization in the product space X^n . Namely, given two *n*-tuples $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in X^n$ we say that x is majorized by y, written $x \leq y$, if

$$(x_1,\ldots,x_n)=(y_1,\ldots,y_n)\cdot P$$

for some doubly stochastic $n \times n$ matrix P.

In what follows we will assume that D is a convex subset of a real vector space X, $\psi: D \to \mathbb{R}$ is a convex function and $m, M \in \mathbb{R}$. For any $n \geq 2$ define $\Psi_n: D^n \to \mathbb{R}$ by $\Psi_n(x_1, \ldots, x_n) = \psi(x_1) + \cdots + \psi(x_n), x_1, \ldots, x_n \in D$. We say that a function $F: D^n \to \mathbb{R}$ is $(m, M, \Psi_n) - Schur-convex$ if for all $x, y \in D$

(5)
$$x \preceq y \implies F(x) \leq F(y) - m(\Psi_n(y) - \Psi_n(x))$$

and

(6)
$$x \preceq y \implies F(x) \ge F(y) - M(\Psi_n(y) - \Psi_n(x))$$

In only condition (5) (condition (6)) is satisfied, we say that F is (m, Ψ_n) -lower $((M, \Psi_n)$ -upper) Schur-convex.

Note that if $x \leq y$ then $\Psi_n(x) \leq \Psi_n(y)$. It follows from the fact that the function ψ is convex and so it generates Schur-convex sums Ψ_n .

Given a function $f: D \to \mathbb{R}$ and an integer $n \ge 2$ we define the function $F_n: D^n \to \mathbb{R}$ by

(7)
$$F_n(x_1, \dots, x_n) = f(x_1) + \dots + f(x_n), \quad x_1, \dots, x_n \in D.$$

Now, we will prove that (m, M, ψ) -convex functions generate (m, M, Ψ_n) -Schur-convex sums.

Theorem 1. (i) If $f \in \mathcal{L}(D, m, \psi)$, then the function F_n defined by (7) is (m, Ψ_n) -lower Schur-convex;

- (ii) If $f \in \mathcal{U}(D, M, \psi)$, then the function F_n defined by (7) is (M, Ψ_n) -upper Schurconvex;
- (iii) If $f \in \mathcal{B}(D, m, M, \psi)$, then the function F_n defined by (7) is (m, M, Ψ_n) -Schurconvex.

Proof. To prove (i) fix $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in D^n with $x \leq y$. There exists a doubly stochastic $n \times n$ matrix $P = [t_{ij}]$ such that $x = y \cdot P$. Then

$$x_j = \sum_{i=1}^n t_{ij} y_i, \quad j = 1, \dots, n.$$

Since $f \in \mathcal{L}(D, m, \psi)$, the function $g = f - m\psi$ is convex and hence

$$g(x_1) + \dots + g(x_n) = \sum_{j=1}^n g\left(\sum_{i=1}^n t_{ij} y_i\right) \le \sum_{j=1}^n \sum_{i=1}^n t_{ij} g(y_i)$$
$$= \sum_{i=1}^n \sum_{j=1}^n t_{ij} g(y_i) = \sum_{i=1}^n g(y_i) \sum_{j=1}^n t_{ij} = g(y_1) + \dots + g(y_n).$$

Consequently,

$$F_{n}(x) = f(x_{1}) + \dots + f(x_{n})$$

= $g(x_{1}) + \dots + g(x_{n}) + m(\psi(x_{1}) + \dots + \psi(x_{n}))$
 $\leq g(y_{1}) + \dots + g(y_{n}) + m(\psi(x_{1}) + \dots + \psi(x_{n}))$
= $f(y_{1}) + \dots + f(y_{n}) - m(\psi(y_{1}) + \dots + \psi(y_{n})) + m(\psi(x_{1}) + \dots + \psi(x_{n}))$
= $F_{n}(y) - m(\Psi_{n}(y) - \Psi_{n}(x)).$

This shows that F_n satisfies (5), i.e. it is (m, Ψ_n) -lower Schur-convex.

The proof of part (ii) is similar. Since $f \in \mathcal{U}(D, M, \psi)$, the function $h = M\psi - f$ is convex. Hence, for x and y as previously, we have

$$F_{n}(x) = f(x_{1}) + \dots + f(x_{n})$$

= $+M(\psi(x_{1}) + \dots + \psi(x_{n}) - h(x_{1}) - \dots - h(x_{n}))$
 $\geq M(\psi(x_{1}) + \dots + \psi(x_{n})) - h(y_{1}) - \dots - h(y_{n})$
= $M(\psi(x_{1}) + \dots + \psi(x_{n})) - M(\psi(y_{1}) + \dots + \psi(y_{n})) + f(y_{1}) + \dots + f(y_{n}))$
= $F_{n}(y) - M(\Psi_{n}(y) - \Psi_{n}(x)).$

Part (iii) follows from (i) and (ii).

As an immediate consequence of the above theorem, we obtain the following counterpart of the classical Hardy-Littlewood-Pólya majorization theorem [7].

Corollary 2. Let $I \subset \mathbb{R}$ be an interval and $n \geq 2$. Assume that $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in I^n$ satisfy:

(a) $x_1 \leq \cdots \leq x_n, y_1 \leq \cdots \leq y_n;$ (b) $y_1 + \cdots + y_k \leq x_1 + \cdots + x_k, k = 1, ..., n - 1;$ (c) $y_1 + \cdots + y_n = x_1 + \cdots + x_n.$ Assume also that $f, \psi: I \to \mathbb{R}$ and ψ is convex.

(i) If
$$f \in \mathcal{L}(D, m, \psi)$$
, then
 $f(x_1) + \dots + f(x_n) \le f(y_1) + \dots + f(y_n) - m(\Psi_n(y) - \Psi_n(x));$
(ii) If $f \in \mathcal{U}(D, M, \psi)$, then
 $f(x_1) + \dots + f(x_n) \ge f(y_1) + \dots + f(y_n) - M(\Psi_n(y) - \Psi_n(x));$
(iii) If $f \in \mathcal{B}(D, m, M, \psi)$, then
 $f(y_1) + \dots + f(y_n) - M(\Psi_n(y) - \Psi_n(x)) \le f(x_1) + \dots + f(x_n) \le f(y_1) + \dots + f(y_n) - m(\Psi_n(y) - \Psi_n(x)).$

Proof. Note that assumptions (a)-(c) imply $x \leq y$ (see e.g. [12]) and apply Theorem 1. \Box

Remark 3. Specifying the functions ψ and f in the above Corollary 2, one can get various analytic inequalities. For example, if $I \subset (0, \infty)$ and $f \in \mathcal{B}(I, m, M, -\ln)$, then for all $(x_1, ..., x_n), (y_1, ..., y_n) \in I^n$ satisfying conditions (a)-(c), we get

$$m\ln\prod_{i=1}^{n}\left(\frac{x_i}{y_i}\right) \le \sum_{i=1}^{n} f\left(y_i\right) - \sum_{i=1}^{n} f\left(x_i\right) \le M\ln\prod_{i=1}^{n}\left(\frac{x_i}{y_i}\right),$$

or, equivalently,

(8)
$$\prod_{i=1}^{n} \left(\frac{x_i}{y_i}\right)^m \le \frac{\exp\left[\sum_{i=1}^{n} f\left(y_i\right)\right]}{\exp\left[\sum_{i=1}^{n} f\left(x_i\right)\right]} \le \prod_{i=1}^{n} \left(\frac{x_i}{y_i}\right)^M.$$

If we take, for instance, $I = [k, K] \subset (0, \infty)$ and $f(t) = \frac{1}{p(p-1)}t^p$, with $p > 0, p \neq 1$, then $t^2 f''(t) = t^p \in [k^p, K^p]$, which means (cf. (4)) that $f \in \mathcal{B}(I, k^p, K^p, -\ln)$. Therefore, by (8), we then have

$$\prod_{i=1}^{n} \left(\frac{x_i}{y_i}\right)^{p(p-1)k^p} \le \frac{\exp\left(\sum_{i=1}^{n} y_i^p\right)}{\exp\left(\sum_{i=1}^{n} x_i^p\right)} \le \prod_{i=1}^{n} \left(\frac{x_i}{y_i}\right)^{p(p-1)K^p}.$$

One can give other examples by choosing $f(t) = t^q$ with q < 0, $f(t) = t \ln t$, etc.

We say that a function $f : D \to \mathbb{R}$ is (m, ψ) -lower Jensen-convex $((M, \psi)$ -upper Jensen-convex) if the function $f - m\psi$ (the function $M\psi - f$) is Jensen-convex, i.e. satisfies (3) with c = 0. We say that $f : D \to \mathbb{R}$ is (m, M, ψ) -Jensen-convex if it is (m, ψ) -lower Jensen-convex and (M, ψ) -upper Jensen-convex.

In the next theorem we show that functions generating (m, M, Ψ_n) -Schur-convex sums must be (m, M, ψ) -Jensen-convex.

Theorem 4. Let $f : D \to \mathbb{R}$.

- (i) If for some $n \ge 2$ the function F_n defined by (7) is (m, Ψ_n) -lower Schur-convex, then f is (m, ψ) -lower Jensen-convex;
- (ii) If for some $n \ge 2$ the function F_n defined by (7) is (M, Ψ_n) -upper Schur-convex, then f is (M, ψ) -upper Jensen-convex;
- (iii) If for some $n \ge 2$ the function F_n defined by (7) is (m, M, Ψ_n) Schur-convex, then f is (m, M, ψ) - Jensen-convex.

Proof. To prove (i) take $y_1, y_2 \in D$ and put $x_1 = x_2 = \frac{1}{2}(y_1 + y_2)$. Consider the points

$$y = (y_1, y_2, y_2, \dots, y_2), \quad x = (x_1, x_2, y_2, \dots, y_2)$$

(if n = 2, then we take $y = (y_1, y_2)$, $x = (x_1, x_2)$). One can check easily that $x \preceq y$. Therefore, by (5),

$$F_n(x) \le F_n(y) - m\big(\Psi_n(y) - \Psi_n(x)\big),$$

that is

$$2f\left(\frac{y_1+y_2}{2}\right) \le f(y_1) + f(y_2) - m\left(\psi(y_1) + \psi(y_2) - 2\psi\left(\frac{y_1+y_2}{2}\right)\right).$$

Hence, for $g = f - m\psi$ we have

$$2g\left(\frac{y_1+y_2}{2}\right) = 2f\left(\frac{y_1+y_2}{2}\right) - 2m\psi\left(\frac{y_1+y_2}{2}\right)$$

$$\leq f(y_1) + f(y_2) - m\left((\psi(y_1) + \psi(y_2)\right) = g(y_1) + g(y_2)$$

which means that f is (m, ψ) -lower Jensen-convex. The proof of part (ii) is similar. Part (iii) follows from (i) and (ii).

We say that a function $f : D \to \mathbb{R}$ is (m, ψ) -lower Wright-convex $((M, \psi)$ -upper Wright-convex) if the function $f - m\psi$ (the function $M\psi - f$) is Wright-convex, i.e. satisfies (2) with c = 0. We say that $f : D \to \mathbb{R}$ is (m, M, ψ) -Wright-convex if it is (m, ψ) -lower Wright-convex and (M, ψ) -upper Wright-convex.

As was shown above in Theorem 1 and Theorem 2, if a function $f : D \to \mathbb{R}$ is (m, M, ψ) -convex, then for every $n \geq 2$ the corresponding function F_n defined by (7) is (m, M, Ψ_n) -Schur-convex and if for some $n \geq 2$ the function F_n is (m, M, Ψ_n) -Schur-convex, then f is (m, M, ψ) -Jensen-convex. The next theorem characterizes all the functions f for which F_n are (m, M, Ψ_n) -Schur-convex. It is a counterpart of the result of Ng [16] on functions generating Schur-convex sums.

Recall also that a subset D of a vector space X is said to be algebraically open if for every $x \in D$ and for every $y \in X$ there exists $\varepsilon > 0$ such that

$$\{ty + (1-t)x \mid t \in (-\varepsilon, \varepsilon)\} \subset D.$$

Theorem 5. Let $f : D \to \mathbb{R}$, where D is an algebraically open convex subset of a vector space X. Then:

- (i) If f is (m, ψ) -lower Wright-convex, then for every $n \ge 2$ the function F_n defined by (7) is (m, Ψ_n) -lower Schur-convex. Conversely, if for some $n \ge 2$ the function F_n is (m, Ψ_n) -lower Schur-convex, then f is (m, ψ) -lower Wright-convex;
- (ii) If f is (M, ψ) -upper Wright-convex, then for every $n \ge 2$ the function F_n defined by (7) is (M, Ψ_n) -upper Schur-convex. Conversely, if for some $n \ge 2$ the function F_n is (M, Ψ_n) -upper Schur-convex, then f is (M, ψ) -upper Wright-convex;
- (iii) If f is (m, M, ψ) Wright-convex, then for every $n \ge 2$ the function F_n defined by (7) is (m, M, Ψ_n) – Schur-convex. Conversely, if for some $n \ge 2$ the function F_n is (m, M, Ψ_n) – Schur-convex, then f is (m, M, ψ) – Wright-convex.

Proof. To prove (i) assume that f is (m, ψ) -lower Wright-convex and fix an $n \ge 2$. Since the function $g = f - m\psi$ is Wright-convex, it is of the form $g = g_1 + a$, where g_1 is convex and a is additive (cf. [11]; here the assumption that D is algebraically open is needed).

Therefore it generates Schur-convex sums. Thus, for $x = (x_1, \ldots, x_n) \preceq y = (y_1, \ldots, y_n)$, we have

$$g(x_1) + \dots + g(x_n) \le g(y_1) + \dots + g(y_n).$$

Hence

$$f(x_1) + \dots + f(x_n) - m\big(\psi(x_1) + \dots + \psi(x_n)\big) \le g(y_1) + \dots + g(y_n) - m\big(\psi(y_1) + \dots + \psi(y_n)\big),$$

which means that

$$F_n(x) \le F_n(y) - m\big(\Psi_n(y) - \Psi_n(x)\big),$$

that is F_n is (m, Ψ_n) -lower Schur-convex. Now, assume that for some $n \ge 2$ the function F_n is (m, Ψ_n) -lower Schur-convex. Take $y_1, y_2 \in D$ and $t \in (0, 1)$. Put

$$x_1 = ty_1 + (1-t)y_2, \quad x_2 = (1-t)y_1 + ty_2$$

and, if n > 2, take additionally $x_i = y_i = z \in D$ for i = 3, ..., n. Then $x = (x_1, ..., x_n) \preceq y = (y_1, ..., y_n)$. Therefore, by (5),

$$F_n(x) \le F_n(y) - m\big(\Psi_n(y) - \Psi_n(x)\big),$$

that is

$$f(ty_1 + (1-t)y_2) + f((1-t)y_1 + ty_2) \le f(y_1) + f(y_2) - m(\psi(y_1) + \psi(y_2) - \psi(x_1) - \psi(x_2)).$$

Hence, for $g = f - m\psi$ we get

$$g(ty_1 + (1 - t)y_2) + g((1 - t)y_1 + ty_2)$$

= $f(ty_1 + (1 - t)y_2) + f((1 - t)y_1 + ty_2) - m\psi(ty_1 + (1 - t)y_2) - m\psi((1 - t)y_1 + ty_2)$
 $\leq f(y_1) + f(y_2) - m\psi(y_1) - m\psi(y_2) = g(y_1) + g(y_2).$

Thus g is Wright-convex, which means that f is (m, ψ) -lower Wright-convex. The proof of part (ii) is similar. Part (iii) follows from (i) and (ii).

Remark 6. In the special case where $(X, \|\cdot\|)$ is an inner product space, $\psi = \|\cdot\|^2$ and m = c > 0, the parts (i) of the above Theorems 1, 4, 5 reduces to the results obtained in [20] for strong Schur-convexity. For m = 0 and $X = \mathbb{R}^n$ they coincide with the Ng theorem [16].

Finally, we give a representation theorem for (m, M, ψ) -Wright-convex functions. It is known (and easy to check) that every convex function is Wright-convex, and every Wright-convex function is Jensen-convex, but not the converse (some examples can be found in [18]). In [16] Ng proved that a function f defined on a convex subset of \mathbb{R}^n is Wright-convex if and only if it can be represented in the form $f = f_1 + a$, where f_1 is a convex function and a is an additive function (see also [18]). Kominek [11] extended that result to functions defined on algebraically open subset of a vector space. Analogous result for strongly Wright-convex functions was obtained in [14]. In the next theorem we give a similar representation for (m, M, ψ) -Wright-convex functions. In the proof we will use the following fact:

Lemma 7. Assume that $f, g: D \to \mathbb{R}$ are convex functions, $a: X \to \mathbb{R}$ is additive and a(x) = f(x) - g(x) for all $x \in D$. Then a is an affine function on D.

Proof. Fix $x, y \in D$ and consider the function $\varphi : [0,1] \to \mathbb{R}$ defined by

$$\varphi(s) = a(sx + (1-s)y) = f(sx + (1-s)y) - g(sx + (1-s)y), \ s \in [0,1].$$

As a difference of convex functions on [0, 1], φ is continuous on (0, 1). Fix any $t \in (0, 1)$ and take a sequence (q_n) on rational numbers in (0, 1) tending to t. By the additivity of a we have

$$a(q_n x + (1 - q_n)y) = q_n a(x) + (1 - q_n)a(y)$$

whence

$$\varphi(q_n) = q_n a(x) + (1 - q_n)a(y).$$

Going to the limit we get

$$\varphi(t) = ta(x) + (1-t)a(y).$$

Hence

$$a(tx + (1 - t)y) = ta(x) + (1 - t)a(y),$$

which proves that a is affine on D.

Theorem 8. Let $f : D \to \mathbb{R}$, where D is an algebraically open convex subset of a vector space X. Then:

- (i) f is (m, ψ) -lower Wright-convex if and only if $f = g_1 + a_1$, where $g_1 \in \mathcal{L}(D, m, \psi)$ and $a_1 : X \to \mathbb{R}$ is additive;
- (ii) f is (M, ψ) -upper Wright-convex if and only if $f = g_2 + a_2$, where $g_2 \in \mathcal{U}(D, M, \psi)$ and $a_2 : X \to \mathbb{R}$ is additive;
- (iii) f is (m, M, ψ) Wright-convex if and only if f = g + a, where $g \in \mathcal{B}(D, m, M, \psi)$ and $a : X \to \mathbb{R}$ is additive.

Proof. To prove (i) assume first that f is (m, ψ) -lower Wright-convex, that is $h = f - m\psi$ is Wright-convex. By the Ng representation theorem [16] (extended by Kominek [11] to functions defined on algebraically open domains), there exist a convex function $h_1: D \to \mathbb{R}$ and an additive function $a_1: X \to \mathbb{R}$ such that $h = h_1 + a_1$ on D. Then $g_1 = h_1 + m\psi$ belongs to $\mathcal{L}(D, m, \psi)$ and

$$f = h + m\psi = h_1 + a_1 + m\psi = g_1 + a_1,$$

which was to be proved. Conversely, if $f = g_1 + a_1$ with some $g_1 \in \mathcal{L}(D, m, \psi)$ and a_1 additive, then $f - m\psi = g_1 - m\psi + a_1$ is Wright-convex as a sum of a convex function and an additive function. This shows that f is (m, ψ) -lower Wright-convex. The proof of part (ii) is analogous.

Part (iii). If f = g + a, where $g \in \mathcal{B}(D, m, M, \psi)$ and $a : X \to \mathbb{R}$ is additive, then, by (i) and (ii) f is (m, ψ) -lower Wright-convex and (M, ψ) -upper Wright-convex. Consequently, it is (m, M, ψ) -Wright-convex.

The proof in the opposite direction is more delicate. If f is (m, M, ψ) -Wright-convex, then $f - m\psi$ and $M\psi - f$ are Wright-convex. Then

$$f - m\psi = h_1 + a_1$$
 and $M\psi - f = h_2 + a_2$

with some convex functions h_1, h_2 and additive functions a_1, a_2 . Hence

$$a_1 + a_2 = (M - m)\psi - (h_1 + h_2)$$

8

which, by Lemma 5, implies that $A = a_1 + a_2$ is affine. Denote $a = a_1$ and g = f - a. Then

$$g - m\psi = f - a - m\psi = h_1$$

which implies that $g \in \mathcal{L}(D, m, \psi)$ because h_1 is convex. Also

$$M\psi - g = M\psi - f + a = h_2 + a_2 + a = h_2 + A,$$

which implies that $g \in \mathcal{U}(D, m, \psi)$ because $h_2 + A$ is convex. Thus $g \in \mathcal{B}(D, m, \psi)$ and f = g + a, which finishes the proof.

References

- S. S. Dragomir, On the reverse of Jessen's inequality for isotonic linear functionals, J. Inequal. Pure and Appl. Math. 2(3), Art. 36 (2001), 1–13.
- [2] S. S. Dragomir, Some inequalities for (m, M)-convex mappings and applications for Csiszár Φdivergence in information theory, Math. J. Ibaraki Univ. 33, (2001), 35–50.
- [3] S. S. Dragomir, On the Jessen's inequality for isotonic linear functionals, Nonlinear Anal. Forum 7(2), (2002), 139–151.
- [4] S. S. Dragomir, A survey on Jessen's type inequalities for positive functionals, in: P. M. Pardalos at al. (eds) Nonlinear Analysis, 177-232, Springer Optimmization and Its Applications 68, Springer Science + Business Media, LLC 2012.
- [5] S. S. Dragomir, N. M. Ionescu, On some inequalities for convex-dominated functions, L'Anal. Num. Théor. L'Approx. 19(1), (1990), 21–27.
- [6] S. S. Dragomir, K. Nikodem, Jensen's and Hermite-Hadamard's inequalities for lower and strongly convex functions on normed spaces, (in preparation).
- [7] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1952.
- [8] J. B. Hiriart–Urruty, C. Lemaréchal, Fundamentals of convex analysis, Springer–Verlag, Berlin Heidelberg, 2001.
- [9] J. Karamata, Sur une inégalité rélative aux fonctions convexes, Publ. Math. Univ. Belgrade 1 (1932), 145–148.
- [10] M. Klaričić Bakula, K. Nikodem, On the converse Jensen inequality for strongly convex functions, J. Math. Anal. Appl. 434 (2016), 516-522.
- [11] Z. Kominek, On additive and convex functionals, Radovi Mat. 3, (1987), 267–279.
- [12] A. W. Marshall, I. Olkin, Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering 143, Academic Press Inc., New York, 1979.
- [13] N. Merentes, K. Nikodem, Strong convexity and separation theorems, Aequat. Math.90 (2016), 47-55.
- [14] N. Merentes, K. Nikodem, S. Rivas, *Remarks on strongly Wright-convex functions*, Ann. Polon. Math., 103.3 (2011), 271-278.
- [15] L. Montrucchio, Lipschitz continuous policy functions for strongly concave optimization problems, J. Math. Econ. 16 (1987), 259-273.
- [16] C. T. Ng, Functions generating Schur-convex sums, In: General Inequalities 5 (Oberwolfach, 1986), Internat. Ser. Numer. Math. vol80, Birkhäuser Verlag, Basel–Boston, 1987, 433–438.
- [17] K. Nikodem, On some class of midconvex functions, Ann. Polon. Math. 72, (1989), 145–151.
- [18] K. Nikodem, On strongly convex functions and related classes of functions, in: T.M. Rassias (ed.) Handbook of Functional Equations. Functional Inequalities, 365-405, Springer Optimization and Its Application 95, Springer, New York, 2014.
- [19] K. Nikodem and Zs. Páles, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 5 (2011), no.1, 83–87.
- [20] K. Nikodem, T. Rajba and Sz. Wąsowicz, Functions generating strongly Schur-convex sums, C. Bandle et al. (eds.), Inequalities and Applications 2010, International Series of Numerical Mathematics 161, 175–182, Springer Basel 2012.
- [21] B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72–75.
- [22] T. Rajba, Sz. Wąsowicz, Probabilistic characterization of strong convexity, Opuscula Math. 31/1 (2011), 97-103.

- [23] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York–London, 1973.
- [24] I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsber. Berl. Math. Ges. 22 (1923), 9–20.
- [25] L. Veselý, L. Zajíček, Delta-convex mappings between Banach spaces and applications, Dissert. Math. 289, PWN, Warszawa, 1989.
- [26] J. P. Vial, Strong convexity of sets and functions, J. Math. Economy 9 (1982), 187-205.

(Silvestru Sever Dragomir) 1) MATHEMATICS, COLLEGE OF ENGINEERING AND SCIENCE, VICTO-RIA UNIVERSITY, PO BOX 14428, MELBOURNE VIC 8001, AUSTRALIA, 2) DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE AND APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG, PRIVATE BAG 3, WITS 2050, SOUTH AFRICA

E-mail address: sever.dragomir@vu.edu.au

(Kazimierz Nikodem) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BIELSKO-BIALA, UL. WILLOWA 2, 43-309 BIELSKO-BIALA, POLAND

E-mail address: knikodem@ath.bielsko.pl