
JENSEN�S AND HERMITE-HADAMARD�S TYPE INEQUALITIES
FOR LOWER AND STRONGLY CONVEX FUNCTIONS ON

NORMED SPACES

SILVESTRU SEVER DRAGOMIR1;2 AND KAZIMIERZ NIKODEM3

Abstract. In this paper we obtain some Jensen�s and Hermite-Hadamard�s
type inequalities for lower, upper and strongly convex functions de�ned on
convex subsets in normed linear spaces. The case of inner product space is
of interest since in these case the concepts of lower convexity and strong con-
vexity coincides. Applications for univariate functions of real variable and the
connections with earlier Hermite-Hadamard�s type inequalities are also pro-
vided.

1. Introduction

LetX be a real linear space, a; b 2 X, a 6= b and let [a; b] := f(1� �) a+ �b; � 2 [0; 1]g
be the segment generated by a and b. We consider the function f : [a; b]! R and
the attached function g (a; b) : [0; 1]! R, g (a; b) (t) := f [(1� t) a+ tb], t 2 [0; 1].
It is well known that f is convex on [a; b] i¤ g (a; b) is convex on [0; 1], and the

following lateral derivatives exist and satisfy the properties:

(i) g0� (a; b) (s) = (5�f [(1� s) a+ sb]) (b� a), s 2 (0; 1) ;
(ii) g0+ (a; b) (0) = (5+f (a)) (b� a) ;
(iii) g0� (a; b) (1) = (5�f (b)) (b� a) ;

where (5�f (x)) (y) are the Gâteaux lateral derivatives. Recall that

(5+f (x)) (y) := lim
h!0+

�
f (x+ hy)� f (x)

h

�
;

(5�f (x)) (y) := lim
k!0�

�
f (x+ ky)� f (x)

k

�
; x; y 2 X:

Now, assume that (X; k�k) is a normed linear space. The function f0 (s) = 1
2 kxk

2,
x 2 X is convex and thus the following limits exist

(iv) hx; yis := (5+f0 (y)) (x) = lim
t!0+

h
ky+txk2�kyk2

2t

i
;

(v) hx; yii := (5�f0 (y)) (x) = lim
s!0�

h
ky+sxk2�kyk2

2s

i
;

for any x; y 2 X. They are called the lower and upper semi-inner products
associated to the norm k�k.
For the sake of completeness we list here some of the main properties of these

mappings that will be used in the sequel (see for example [3]), assuming that p;
q 2 fs; ig and p 6= q:
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(a) hx; xip = kxk
2 for all x 2 X;

(aa) h�x; �yip = �� hx; yip if �; � � 0 and x; y 2 X;
(aaa)

���hx; yip��� � kxk kyk for all x; y 2 X;
(av) h�x+ y; xip = � hx; xip + hy; xip if x; y 2 X and � 2 R;
(v) h�x; yip = �hx; yiq for all x; y 2 X;
(va) hx+ y; zip � kxk kzk+ hy; zip for all x; y; z 2 X;
(vaa) The mapping h�; �ip is continuous and subadditive (superadditive) in the

�rst variable for p = s (or p = i);
(ax) If the norm k�k is induced by an inner product h�; �i ; then hy; xii = hy; xi =

hy; xis for all x; y 2 X.
The following inequality is the well-known Hermite-Hadamard integral inequality

for convex functions de�ned on a segment [a; b] � X :

(HH) f

�
a+ b

2

�
�
Z 1

0

f [(1� t) a+ tb] dt � f (a) + f (b)

2
;

which easily follows by the classical Hermite-Hadamard inequality for the convex
function g (a; b) : [0; 1] ! R. For other related results see the monograph on line
[11].
Applying inequality (HH) for the convex function f0 (x) = kxk2 ; one may deduce

the inequality

(1.1)





x+ y2




2 � Z 1

0

k(1� t)x+ tyk2 dt � kxk2 + kyk2

2

for any x; y 2 X. The same (HH) inequality applied for f1 (x) = kxk ; will give the
following re�nement of the triangle inequality:

(1.2)





x+ y2




 � Z 1

0

k(1� t)x+ tyk dt � kxk+ kyk
2

; x; y 2 X:

The distance between the �rst and second term in (1.1) has the lower and upper
bounds [6]

0 � 1

8
[hy � x; y + xis � hy � x; y + xii](1.3)

�
Z 1

0

k(1� t)x+ tyk2 dt�




x+ y2





2 � 1

4
[hy � x; yii � hy � x; xis]

while the distance between the second and third term in (1.1) has the same upper
and lower bounds, namely [7]

0 � 1

8
[hy � x; y + xis � hy � x; y + xii](1.4)

� kxk2 + kyk2

2
�
Z 1

0

k(1� t)x+ tyk2 dt � 1

4
[hy � x; yii � hy � x; xis]

for any x; y 2 X: The multiplicative constants 1
8 and

1
4 are best possible in (1.3)

and (1.4).
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2. Some Jensen�s Type Inequalities

Let (X; k�k) be a real or complex normed linear space, C � X a convex subset
of X and f : C ! R. Let m, M 2 R. The mapping f will be called m-lower
convex on C if f � m

2 k�k
2 is a convex mapping on C. The mapping f will be called

M -upper convex on C if M2 k�k
2�f is a convex mapping on C. The mapping f will

be called (m;M)- convex on C if it is both m-lower convex and M -upper convex
on C. Note that if f is (m;M)-convex on C, then m �M .
Further, assume that c is a positive constant. A function f : C ! R is called:

strongly convex with modulus c if

(2.1) f(tx+ (1� t)y) � tf(x) + (1� t)f(y)� ct(1� t)kx� yk2

for all x; y 2 C and t 2 [0; 1]: Also, it is called: strongly Jensen-convex with modulus
c if (2.1) is assumed only for t = 1

2 ; that is

(2.2) f

�
x+ y

2

�
� f(x) + f(y)

2
� c

4
kx� yk2; for all x; y 2 C:

The usual concepts of convexity and Jensen-convexity correspond to the case
c = 0, respectively. The notion of strongly convex functions have been introduced
by Polyak [18] and they play an important role in optimization theory and mathe-
matical economics. Many properties and applications of them can be found in the
literature (see, for instance, [2], [15], [17], [18], [19], [20], [21]). Let us mention also
the paper [16] by the second author which is a survey article devoted to strongly
convex functions and related classes of functions.
Denote by SC(C; c) the class of all functions f : C ! R strongly convex with

modulus c and by LC(C;m) the class of all functions f : C ! R m-lower convex.
It is known that [17], if X is an inner product space then

SC(C; m
2
) = LC(C;m):

However, in arbitrary normed spaces the above classes di¤er in general.
The following examples shows that neither LC(C;m) is included in SC(C; m2 ),

nor conversely.

Example 1 ([17]). Let X = R2 and kxk = jx1j + jx2j, for x = (x1; x2). Take
f = k � k2. Then g = f �k � k2 is convex being the zero function. However, f is not
strongly convex with modulus 1. Indeed, for x = (1; 0) and y = (0; 1) we have

f

�
x+ y

2

�
= 1 > 0 =

f(x) + f(y)

2
� 1
4
kx� yk2;

which contradicts (2.1).

Example 2. Let X = R2 and kxk = jx1j + jx2j, for x = (x1; x2). Take f(x) =
x21 + x

2
2. Then f is strongly convex with modulus c =

1
2 . Indeed, for arbitrary

x = (x1; x2) and y = (y1; y2) in R2 we have

f

�
x+ y

2

�
=
1

4

�
x21 + 2x1y1 + y

2
1 + x

2
2 + 2x2y2 + y

2
2

�
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and
f(x) + f(y)

2
� 1
2
� 1
4
kx� yk2

=
3

8

�
x21 + y

2
1 + x

2
2 + y

2
2

�
+
1

4
(x1y1 + x2y2 � jx1 � y1jjx2 � y2j) :

Hence
f(x) + f(y)

2
� 1
2
� 1
4
kx� yk2 � f

�
x+ y

2

�
=
1

8
(jx1 � y1j � jx2 � y2j)2 � 0:

This shows that f is strongly midconvex with modulus c = 1
2 . Since f is continuous,

it is also strongly convex with modulus c = 1
2 . On the other hand, the function

g = f � 1
2k � k

2 is not convex. Indeed, for x = (�1; 1) and y = (1; 1) we have

g

�
x+ y

2

�
=
1

2
> 0 =

g(x) + g(y)

2
:

The following Jensen�s type inequality holds [4].

Proposition 1. Let f : C � X ! R, C be convex on X, xi 2 C, pi � 0

(i = 1; :::; n) with
nP
i=1

pi = 1.

(i) If f is m-lower convex on C, then we have the following inequality (for
m � 0 - re�nement of Jensen�s inequality)

(2.3)
m

2

24 nX
i=1

pi kxik2 �






nX
i=1

pixi







2
35 � nX

i=1

pif (xi)� f
 

nX
i=1

pixi

!
:

(ii) If f is M -upper convex on C, then we have the following inequality (which
is a counterpart of Jensen�s inequality if f is convex)

(2.4)
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
� M

2

24 nX
i=1

pi kxik2 �






nX
i=1

pixi







2
35 :

(iii) If f is (m;M)-convex on C, then we have the following sandwich inequality

m

2

24 nX
i=1

pi kxik2 �






nX
i=1

pixi







2
35 � nX

i=1

pif (xi)� f
 

nX
i=1

pixi

!
(2.5)

� M

2

24 nX
i=1

pi kxik2 �






nX
i=1

pixi







2
35 :

The following corollary for inner product spaces holds.

Corollary 1. Let (X; h�; �i) be an inner product space, k�k :=
p
h�; �i; C � X a

convex subset on X, f : C ! R and xi 2 C, pi � 0 (i = 1; :::; n) with
nP
i=1

pi = 1.

(i) If f is m-lower convex on C, then

(2.6)
m

2

X
1�i<j�n

pipj kxi � xjk2 �
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
:



JENSEN�S AND HERMITE-HADAMARD�S TYPE INEQUALITIES 5

(ii) If f is M -upper convex on C, then

(2.7)
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
� M

2

X
1�i<j�n

pipj kxi � xjk2 :

(iii) If f is (m;M)-convex on C, then

m

2

X
1�i<j�n

pipj kxi � xjk2 �
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
(2.8)

� M

2

X
1�i<j�n

pipj kxi � xjk2 :

The case of the mappings de�ned on real intervals have been obtained by Andrica
and Raşa in [1].
Furthermore, let us assume that �(x) := max1�i<j�n kxi � xjk and � (x) :=

min1�i<j�n kxi � xjk : The following corollary also holds.

Corollary 2. Let X; C; f; xi; pi (i = 1; :::; n) be as in Corollary 1.
(i) If f is m-lower convex on C with m > 0, then we have the following re�ne-

ment of Jensen�s inequality:

(2.9) 0 <
m

4

 
1�

nX
i=1

p2i

!
(� (x))

2 �
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
:

(ii) If f is convex and M -upper convex on C, then we have the following con-
verse inequality:

(2.10) 0 �
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
� M

4

 
1�

nX
i=1

p2i

!
(� (x))

2
:

(iii) If f is (m;M)-convex on C with m > 0, then we have the following estimate

m

4

 
1�

nX
i=1

p2i

!
(� (x))

2 �
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
(2.11)

� M

4

 
1�

nX
i=1

p2i

!
(� (x))

2
:

We can state the following Jensen�s type inequality for strongly convex function
with modulus c.

Theorem 1. Let f : C � X ! R be a function strongly convex with modulus c on
C that is open and convex in X; the normed linear space (X; k�k), xi 2 C, pi � 0
(i = 1; :::; n) with

nP
i=1

pi = 1 and xp :=
nP
i=1

pixi 2 C: Then we have the following

re�nement of Jensen�s inequality

(2.12)
nX
i=1

pif (xi)� f (xp) � c
nX
i=1

pi kxi � xpk2 :

If y 2 C is such that

(2.13)
nX
i=1

pi (5+f (xi)) (y) �
nX
i=1

pi (5+f (xi)) (xi) ;



6 SILVESTRU SEVER DRAGOMIR1;2 AND KAZIMIERZ NIKODEM3

where (5+f (�)) (�) is Gâteaux lateral derivative of f , then the following re�nement
of Slater�s inequality holds

(2.14) f (y)� c
nX
i=1

pi kxi � yk2 �
nX
i=1

pif (xi) :

We have the following reverse of Jensen�s inequality as well
nX
i=1

pi (5+f (xi)) (xi)�
nX
i=1

pi (5+f (xi)) (xp)�
nX
i=1

pikxi � xpk2(2.15)

�
nX
i=1

pif (xi)� f (xp) :

Proof. By the de�nition of c-strongly convex function on C; we have

t (f (y)� f (x)) � f((1� t)x+ ty)� f (x) + ct(1� t)kx� yk2

for any x; y 2 C and t 2 [0; 1] : This implies that

f (y)� f (x) � f(x+ t (y � x))� f (x)
t

+ c(1� t)kx� yk2

for t 2 (0; 1) :
Since f is convex on open convex subset C; then the lateral derivative (5+f (x)) (y � x)

exists for any x; y 2 C and by taking the limit over t ! 0+ we get the gradient
inequality

(2.16) f (y)� f (x) � (5+f (x)) (y � x) + cky � xk2

for any x; y 2 C:
If we take in (2.16) y = xi, i 2 f1; :::; ng and x = xp; then we get

(2.17) f (xi)� f (xp) � (5+f (xp)) (xi � xp) + ckxi � xpk2

for any i 2 f1; :::; ng :
Multiply (2.17) by pi � 0; i 2 f1; :::; ng and sum over i from 1 to n to get

(2.18)
nX
i=1

pif (xi)� f (xp) �
nX
i=1

pi (5+f (xp)) (xi � xp) + c
nX
i=1

pikxi � xpk2:

This is an inequality of interest in itself.
Since (5+f (xp)) (�) is a subadditive and positive homogeneous functional on X

we have
nX
i=1

pi (5+f (xp)) (xi � xp) � (5+f (xp))

 
nX
i=1

pixi � xp

!
= (5+f (xp)) (0) = 0

and by the inequality (2.18) we get the desired result (2.12).
From (2.16) we have for any xi; y 2 C; i 2 f1; :::; ng ; that

f (y) � f (xi) + (5+f (xi)) (y � xi) + ckxi � yk2

for any i 2 f1; :::; ng : If we multiply this inequality by pi � 0; i 2 f1; :::; ng and
sum over i from 1 to n; then we get

(2.19) f (y) �
nX
i=1

pif (xi) +
nX
i=1

pi (5+f (xi)) (y � xi) + c
nX
i=1

pikxi � yk2:
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By the subadditivity of (5+f (xi)) (�) we have

(5+f (xi)) (y � xi) � (5+f (xi)) (y)� (5+f (xi)) (xi) ;

which implies that
nX
i=1

pi (5+f (xi)) (y � xi) �
nX
i=1

pi (5+f (xi)) (y)�
nX
i=1

pi (5+f (xi)) (xi) ;

and by (2.19) we get

f (y) �
nX
i=1

pif (xi) +
nX
i=1

pi (5+f (xi)) (y)�
nX
i=1

pi (5+f (xi)) (xi)(2.20)

+ c
nX
i=1

pikxi � yk2;

for any xi; y 2 C; i 2 f1; :::; ng and pi � 0; i 2 f1; :::; ng with
nP
i=1

pi = 1: This is an

inequality of interest in itself.
If the condition (2.13) is valid for some y 2 C, then by (2.20) we get the desired

result (2.14).
Now, if we take in (2.20) y = xp 2 C; then we get

f (xp) �
nX
i=1

pif (xi) +
nX
i=1

pi (5+f (xi)) (xp)�
nX
i=1

pi (5+f (xi)) (xi)(2.21)

+ c

nX
i=1

pikxi � xpk2

that is equivalent to the desired result (2.15). �

Remark 1. For inequalities in terms of the Gâteaux derivatives for convex func-
tions on linear spaces see [8] while for Slater�s type inequalities for convex functions
de�ned on linear spaces and applications, see [9]. The inequalities (2.12)-(2.15)
are improvements of the corresponding inequalities for convex functions on normed
spaces in which the term c

Pn
i=1 pi kxi � yk

2 vanishes. We observe that, if X is an
inner product space, then by using the inner product properties we have that

nX
i=1

pikxi � xpk2 =
nX
i=1

pi kxik2 �






nX
i=1

pixi







2

=
X

1�i<j�n
pipj kxi � xjk2

and the inequality (2.3) for m > 0 and the inequality (2.12) for c = m
2 are the

same. However, in the general case of normed spaces they are di¤erent. Inequality
(2.12) in the case where X is an inner product space was obtained in [13].

3. Some Hermite-Hadamard�s Type Inequalities

We have:

Theorem 2. Let f : C � X ! R, where C is a convex subset in the normed linear
space (X; k�k) and x; y 2 C with x 6= y: Assume also that 0 < m < M:
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(i) If f is m-lower convex on C, then

0 � 1

16
m [hy � x; y + xis � hy � x; y + xii](3.1)

� 1

2
m

"Z 1

0

k(1� t)x+ tyk2 dt�




x+ y2





2
#

�
Z 1

0

f [(1� t)x+ ty] dt� f
�
x+ y

2

�
and

0 � 1

16
m [hy � x; y + xis � hy � x; y + xii](3.2)

� 1

2
m

"
kxk2 + kyk2

2
�
Z 1

0

k(1� t)x+ tyk2 dt
#

� f (x) + f (y)

2
�
Z 1

0

f [(1� t)x+ ty] dt:

(ii) If f is M -upper convex on C, thenZ 1

0

f [(1� t)x+ ty] dt� f
�
x+ y

2

�
(3.3)

� 1

2
M

"Z 1

0

k(1� t)x+ tyk2 dt�




x+ y2





2
#

� 1

8
M [hy � x; yii � hy � x; xis]

and

f (x) + f (y)

2
�
Z 1

0

f [(1� t)x+ ty] dt(3.4)

� 1

2
M

"
kxk2 + kyk2

2
�
Z 1

0

k(1� t)x+ tyk2 dt
#

� 1

8
M [hy � x; yii � hy � x; xis] :

(iii) If f is (m;M)-convex on C, then the pair of inequalities (3.1), (3.3) and
(3.2), (3.4) hold simultaneously.

Proof. (i) The �rst two inequalities in (3.1) and (3.2) follows by (1.3) and (1.4).
Since f is m-lower convex on C, hence g (x) := f (x)� 1

2m kxk
2 is convex on C:

By using the Hermite-Hadamard inequality (HH) we have

f

�
x+ y

2

�
� 1
2
m





x+ y2




2 � Z 1

0

�
f [(1� t)x+ ty]� 1

2
m k(1� t)x+ tyk2

�
dt

� 1

2

�
f (x)� 1

2
m kxk2 + f (y)� 1

2
m kyk2

�
;

which imply the third inequalities in (3.1) and (3.2).
(ii) Follows in a similar way by considering the convex function h (x) := 1

2M kxk2�
f (x) ; x 2 C: �
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Remark 2. If the positivity condition for m is dropped, then only the third in-
equalities in (3.1) and (3.2) remain true. If M is not positive, then only the �rst
inequalities in (3.3) and (3.4) remain true.

Corollary 3. Let f : C � X ! R, where C is a convex subset in the inner product
space (X; h�; �i) and x; y 2 C with x 6= y: Assume also that 0 < m < M:

(i) If f is m-lower convex on C, then

(3.5)
1

24
m kx� yk2 �

Z 1

0

f [(1� t)x+ ty] dt� f
�
x+ y

2

�
and

(3.6)
1

12
m kx� yk2 � f (x) + f (y)

2
�
Z 1

0

f [(1� t)x+ ty] dt:

(ii) If f is M -upper convex on C, then

(3.7)
Z 1

0

f [(1� t)x+ ty] dt� f
�
x+ y

2

�
� 1

24
M kx� yk2

and

(3.8)
f (x) + f (y)

2
�
Z 1

0

f [(1� t)x+ ty] dt � M

12
kx� yk2 :

(iii) If f is (m;M)-convex on C, then the pair of inequalities (3.5), (3.7) and
(3.6), (3.8) hold simultaneously.

Proof. Since (X; h�; �i) is an inner product, then for any x; yZ 1

0

k(1� t)x+ tyk2 dt

=

Z 1

0

h
(1� t)2 kxk2 + 2t (1� t)Re hx; yi+ t2 kyk2

i
dt

= kxk2
Z 1

0

(1� t)2 dt+ 2Re hx; yi
Z 1

0

t (1� t) dt+ kyk2
Z 1

0

t2dt

=
1

3

�
kxk2 +Re hx; yi+ kyk2

�
:

Therefore, for any x; yZ 1

0

k(1� t)x+ tyk2 dt�




x+ y2





2
=
1

3

�
kxk2 +Re hx; yi+ kyk2

�
� 1
4

�
kxk2 + 2Re hx; yi+ kyk2

�
=
1

12

�
kxk2 � 2Re hx; yi+ kyk2

�
=
1

12
kx� yk2

and

kxk2 + kyk2

2
�
Z 1

0

k(1� t)x+ tyk2 dt

=
1

2

�
kxk2 + kyk2

�
� 1
3

�
kxk2 +Re hx; yi+ kyk2

�
=
1

6
kx� yk2 :
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By using Theorem 2 we get the desired results (3.5)-(3.8). �

Remark 3. If f : [a; b] � R ! R is twice di¤erentiable and f 00 (t) � m for any
t 2 [a; b], then by (3.5) and (3.6) we have

(3.9)
1

24
m (b� a)2 � 1

b� a

Z b

a

f (s) ds� f
�
a+ b

2

�
; see [5, Eq. (5.1)]

and

(3.10)
1

12
m (b� a)2 � f (a) + f (b)

2
� 1

b� a

Z b

a

f (s) ds; see [10], [11, p. 40].

If f : [a; b] � R ! R is twice di¤erentiable and f 00 (t) � M for any t 2 [a; b], then
by (3.7) and (3.8) we have

(3.11)
1

b� a

Z b

a

f (s) ds� f
�
a+ b

2

�
� 1

24
M (b� a)2 ; see [5, Eq. (5.1)]

and

(3.12)
f (a) + f (b)

2
� 1

b� a

Z b

a

f (s) ds � 1

12
M (b� a)2 ; see [10], [11, p. 40].

We also have:

Theorem 3. Let f : C � X ! R be a function strongly convex with modulus c on
C that is open and convex in the normed linear space (X; k�k) and x; y 2 C with
x 6= y: Then

(3.13)
f (x) + f (y)

2
�
Z 1

0

f [(1� t)x+ ty] dt � 1

6
c kx� yk2

and

(3.14)
Z 1

0

f [(1� t)x+ ty] dt� f
�
x+ y

2

�
� 1

12
c kx� yk2 :

Proof. If we integrate condition (2.1) in the de�nition of strongly convex functions,
we have

f(x) + f(y)

2
�
Z 1

0

f(tx+ (1� t)y)dt � ckx� yk2
Z 1

0

t(1� t)dt(3.15)

=
1

6
ckx� yk2

for any x; y 2 C; which proves (3.13).
By taking in the de�nition of strong convexity t = 1

2 ; we have

(3.16)
f(a) + f(b)

2
� f

�
a+ b

2

�
� c

4
ka� bk2;

for all a; b 2 C:
If we take in (3.16) a = (1� t)x+ ty and b = tx+ (1� t) y; then we get

(3.17)
f((1� t)x+ ty) + f(tx+ (1� t) y)

2
� f

�
x+ y

2

�
� c

�
t� 1

2

�2
kx� yk2

for any x; y 2 C and t 2 [0; 1] :
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Integrating over t 2 [0; 1] ; we have
1

2

�Z 1

0

f((1� t)x+ ty)dt+
Z 1

0

f(tx+ (1� t) y)dt
�
� f

�
x+ y

2

�
(3.18)

� ckx� yk2
Z 1

0

�
t� 1

2

�2
dt

and sinceZ 1

0

f((1� t)x+ ty)dt =
Z 1

0

f(tx+ (1� t) y)dt and
Z 1

0

�
t� 1

2

�2
dt =

1

12
;

then by (3.18) we get (3.14). �

Remark 4. If f : [a; b] � R ! R is a function strongly convex with modulus c on
the interval [a; b] ; then by (3.13) and (3.14) we get

(3.19)
f (a) + f (a)

2
� 1

b� a

Z b

a

f (s) ds � 1

6
c (b� a)2

and

(3.20)
1

b� a

Z b

a

f (s) ds� f
�
a+ b

2

�
� 1

12
c (b� a)2 :

These inequalities were obtained in this form in [13].
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