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JENSEN’S AND HERMITE-HADAMARD’S TYPE INEQUALITIES
FOR LOWER AND STRONGLY CONVEX FUNCTIONS ON
NORMED SPACES

SILVESTRU SEVER DRAGOMIR2 AND KAZIMIERZ NIKODEM?3

ABSTRACT. In this paper we obtain some Jensen’s and Hermite-Hadamard’s
type inequalities for lower, upper and strongly convex functions defined on
convex subsets in normed linear spaces. The case of inner product space is
of interest since in these case the concepts of lower convexity and strong con-
vexity coincides. Applications for univariate functions of real variable and the
connections with earlier Hermite-Hadamard’s type inequalities are also pro-
vided.

1. INTRODUCTION

Let X be areal linear space, a,b € X, a # band let [a,b] := {(1 — X)a+ Ab, X € [0,1]}
be the segment generated by a and b. We consider the function f : [a,b] — R and
the attached function g (a,b) : [0,1] — R, g(a,bd) (¢t) := f[(1 —t)a+tb], t € [0, 1].

It is well known that f is convex on [a, b] iff g (a,b) is convex on [0,1], and the
following lateral derivatives exist and satisfy the properties:

(i) g% (a,0) (s) = (VS [(1 = s)a+sb]) (b—a), s € (0,1);
(i) g4 (a,0) (0) = (V+.f (a) (b—a);
(i) g” (a,0) (1) = (V- f (b)) (b —a);
where (V4 f (z)) (y) are the Géteauz lateral derivatives. Recall that

(V+f (@) ) = lim [f (@+hy) = f ("”‘)] ,

h—0+ h

(V- @) )= i [FEEEZLO e x

k—0—

Now, assume that (X, ||-||) is a normed linear space. The function fy (s) = 3 =2,
x € X is convex and thus the following limits exist
lim

(V) (@), = (T+fo (1) (@) = lim |Losteliloln,

(V) (2.9); = (V-fo (v)) (x) = lim [M] :

for any x, y € X. They are called the lower and upper semi-inner products
associated to the norm ||-||.

For the sake of completeness we list here some of the main properties of these
mappings that will be used in the sequel (see for example [3]), assuming that p,

q € {s,if and p # ¢
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(z,2), = ||| for all z € X;

(o, ﬁy> = aﬁ(m,y>p ifa,f>0and z, y € X;

‘(w o| < el Iy for all &, y € X;

<am+y,x>p = a(m,m)I) + <y,x)p ifz, y € X and a € R;

—x,y>p =— (ac,y>q for all z, y € X;

r+y,z), <z llz]| + (y,2), for all z, y, z € X;

(vaa) The mapping (-,-), is continuous and subadditive (superadditive) in the
first variable for p = s (or p = i);

(ax) If the norm ||-|| is induced by an inner product (-,-), then (y,z), = (y,z) =
(y,x), for all z,y € X.

The following inequality is the well-known Hermite-Hadamard integral inequality
for convex functions defined on a segment [a,b] C X :

(HH) f<“+b> /f 1—ta+tb]dt<w,

which easily follows by the classical Hermite-Hadamard inequality for the convex
function g (a,b) : [0,1] — R. For other related results see the monograph on line
[11].

Applying inequality (HH) for the convex function fo (z) = ||z , one may deduce
the inequality

T +y 2
2

2 2
)™ + Nyl

(1.1) .

1
g/ (1 —t)x + ty|* dt <
0

for any z, y € X. The same (HH) inequality applied for f; () = ||z, will give the
following refinement of the triangle inequality:

“yH /|| Do yla < WLy e x

(1.2)

The distance between the first and second term in (1.1) has the lower and upper
bounds [6]

(13)  0<illy-my+a), —ly-myta)

20 < Ly - -

1
g/ (1= )2 + ty|> dt —
0

while the distance between the second and third term in (1.1) has the same upper
and lower bounds, namely [7]

(14) 0< é[(y—x y+z),—(y—z,y+a)]
HJC“ + ||y|| / (1 —¢t)z+ t?/H dt < i (y —z,y), — (y —z,x) ]

for any x, y € X. The multiplicative constants % and % are best possible in (1.3)
and (1.4).
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2. SOME JENSEN’S TYPE INEQUALITIES

Let (X, ||-]|) be a real or complex normed linear space, C C X a convex subset
of X and f: C — R. Let m, M € R. The mapping f will be called m-lower
convex on C'if f — ||I” is a convex mapping on C. The mapping f will be called
M-upper conver on C' if % ||H2 — f is a convex mapping on C. The mapping f will
be called (m, M)- convex on C if it is both m-lower convex and M-upper convex
on C. Note that if f is (m, M)-convex on C, then m < M.

Further, assume that ¢ is a positive constant. A function f : C' — R is called:
strongly convex with modulus c if

(2.1) fltw+ (1= t)y) < tf(x) + A=) f(y) — ct(l = t)llz — y|?

forall z, y € C and t € [0,1]. Also, it is called: strongly Jensen-convex with modulus
c if (2.1) is assumed only for ¢ = £, that is

(2.2) f (“y) < J@)+ /) —gllx—yIIQ, for all 7, y € C.

2 2

The usual concepts of convexity and Jensen-convexity correspond to the case
¢ = 0, respectively. The notion of strongly convex functions have been introduced
by Polyak [18] and they play an important role in optimization theory and mathe-
matical economics. Many properties and applications of them can be found in the
literature (see, for instance, [2], [15], [17], [18], [19], [20], [21]). Let us mention also
the paper [16] by the second author which is a survey article devoted to strongly
convex functions and related classes of functions.

Denote by SC(C,c) the class of all functions f : C' — R strongly convex with
modulus ¢ and by £C(C,m) the class of all functions f : C — R m-lower convex.
It is known that [17], if X is an inner product space then

m

8C(C, 5) = £C(Cym).

However, in arbitrary normed spaces the above classes differ in general.
The following examples shows that neither LC(C,m) is included in SC(C, %),
nor conversely.

Example 1 ([17]). Let X = R? and ||z| = |z1| + |22|, for = (x1,72). Take
F=1"1? Theng= f—|-||? is convex being the zero function. However, f is not
strongly convex with modulus 1. Indeed, for x = (1,0) and y = (0,1) we have

f(gJQH/>=1>on_1

_ 2
LI eyl

which contradicts (2.1).

Example 2. Let X = R? and ||z| = |21] + |22, for & = (z1,22). Take f(z) =
22 + 3. Then f is strongly convexr with modulus ¢ = % Indeed, for arbitrary
= (z1,22) and y = (y1,y2) in R? we have

T+ 1
f( 2y) :Z(zf+2x1y1+yf+z§+2$2y2+y§)
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and
fl@)+fly) 1 1
I 1 ey
3 1
=3 (xl + 3 +x2+y2) Jrz(fﬂlyl + zoys — |T1 — Y1 llze — v2|)
Hence
flx)+ f(y 11 T+y 1
T EIW) L Dy () = L) o - el 200

This shows that f is strongly midconvex with modulus ¢ = 5. Since f is continuous,
it is also strongly convex with modulus ¢ = % On the other hand, the function

g=[f— 21| is not convez. Indeed, for v = (—1,1) and y = (1,1) we have

g<w;ry>;>09($);9(y)_

The following Jensen’s type inequality holds [4].
Proposition 1. Let f : C € X — R, C be conver on X, z; € C, p;, > 0
(t=1,..,n) with > p;=1.
i=1

(¢) If f is m-lower convex on C, then we have the following inequality (for
m > 0 - refinement of Jensen’s inequality)

(2.3) % > pilla]? - <Y pif(w)—f (Zpixi> :
i=1 =1 i=1

(i) If f is M-upper convex on C, then we have the following inequality (which
is a counterpart of Jensen’s inequality if f is conver)

@0 Sonste) s (Sma) < [Smtalt-
=1 =1 =1

(#i3) If f is (m, M)-convex on C, then we have the following sandwich inequality

(2.5) % > opillll® - <> pif(zi)—f (ZP#&)
i=1 i=1 i=1

n

M
<5 | Xpillal -

i=1

T

(T

i

" 2
E piZ;
i=1

The following corollary for inner product spaces holds.
Corollary 1. Let (X,{-,-)) be an inner product space, ||| == /{-,-), C C X a

conver subset on X, f:C - Randz; € C,p; >0 (i =1,...,n) with > p; = 1.
i=1
(2) If f is m-lower convex on C, then

(2'6) Z pipj sz - x]” < sz mz (ZPN«H) .

1<7.<j<n
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(13) If f is M-upper convex on C, then

(27) sz xz (sz$z> S 7 Z DiPj ‘1’1 .’E]” .

1<i<j<n

(292) If f is (m, M)-convex on C, then

IN

m 2
(2.8) 5 > vy llwi— |

1<i<j<n

sz xz <sz$z>
< % Z pip; ||z — ;.

1<i<j<n

The case of the mappings defined on real intervals have been obtained by Andrica
and Rasa in [1].

Furthermore, let us assume that A (z) := maxi<;<j<n ||z; — 2;| and § (z) =
mini<;<;<n [|2; — ;|| . The following corollary also holds.

Corollary 2. Let X, C, f, x;, p; (i=1,...,n) be as in Corollary 1.

(1) If f is m-lower convex on C with m > 0, then we have the following refine-
ment of Jensen’s inequality:

(29) 0< % (1 - ;pf) ( < sz ZCZ (szxz> .

(13) If f is convex and M-upper convex on C, then we have the following con-
verse inequality:

(2.10) 0< Zpl ;) (Zm%) < — (1 - sz>

(#i7) If f is (m, M)—convex on C with m > 0, then we have the following estimate

(2.11) % (1 - Z;ﬁ) (6 (2))? < sz () <szxz>
i=1

Sf(l—gp?> (A (z

We can state the following Jensen’s type inequality for strongly convex function
with modulus c.

Theorem 1. Let f: C C X — R be a function strongly convex with modulus ¢ on
C' that is open and convex in X, the normed linear space (X, ||-|), z; € C, p; > 0

(t=1,..,n) with sz =1 and T, = szxL € C. Then we have the following
i=1 i=1
reﬁnement of Jensen’s inequality

(2.12) Zpif (zi) — f (@p) > CZpi | —fp”2 .
i=1 i=1
If y € C is such that

(2.13) Zpi (Vo f (@) (W) =D pi (V4 f (@) (),

i=1
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where (71 f (1)) (+) is Gateaux lateral derivative of f, then the following refinement
of Slater’s inequality holds

n n
(2.14) fy) - CZI% i — yl* > sz‘f (i) .
i=1 i=1
We have the following reverse of Jensen’s inequality as well

(2.15) D opi(Vaf @) (x:) = Y pi (Ve f (@) (@) = Y pilles =Tl
i=1

i=1 i=1
> pif (@) — £ (@),
=1

Proof. By the definition of ¢-strongly convex function on C, we have
t(f () = F (@) = F(L=t)a+1ty) — f(x) +ct(1 = t)]Ja —y|?
for any z, y € C and ¢ € [0,1]. This implies that
c+t(y—=x)) — f(x
F)— f @)z LEHEZ D) 2T @)

t
for t € (0,1).
Since f is convex on open convex subset C, then the lateral derivative (V4 f (2)) (y — z)
exists for any x, y € C and by taking the limit over ¢ — 0+ we get the gradient
inequality

(2.16) Fy) = f@) > (7+f (@) (y—2)+clly —=|
for any x, y € C.

If we take in (2.16) y = x;, @ € {1,...,n} and = T,, then we get
(2.17) F@i) = (@) 2 (V+f (@) (w5 = Tp) + cllws — T

for any i € {1,...,n}.
Multiply (2.17) by p; > 0,4 € {1,...,n} and sum over i from 1 to n to get

+e(l =)z -y

n

(2.18) szf (zi) — f(Tp) 2 Zpi (V+f @) (i —Tp) + Czpinxi - jp||2~
i=1 i=1 i=1
This is an inequality of interest in itself.
Since (V4 f (Tp)) (+) is a subadditive and positive homogeneous functional on X
we have

S0 (T4 @) (i~ ) > (74.f (7)) <Zpixi - w)
=1 i=1

= (V4 (@) (0) =0
and by the inequality (2.18) we get the desired result (2.12).
From (2.16) we have for any z;, y € C, i € {1,...,n}, that

F) = f () + (4 f (22) (y — 23) + cllzi —y)?
for any ¢ € {1,...,n}. If we multiply this inequality by p; > 0, i € {1,...,n} and
sum over ¢ from 1 to n, then we get

(2.19) fy) > Zpif (z:) + Zpi (V4 f () (y — @) + CZpillxi —yl*
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By the subadditivity of (V4 f (2;)) (-) we have

(Vi (@) (y — i) = (VS (23) () = (V4 f () (i),
which implies that

n

Dopi(vaf @) (y—m) =D pi (VS @) () = D> pi (Vi f (@) (w0),

i=1 i=1 i=1
and by (2.19) we get

n

(2200 F) 23 opd @)+ D pi (VS (@) () = Dopi (V] (i) ()

i=1
n
+ CZPiHCEi —yl?,
i=1

for any x;, y € C,i € {l,....,n}and p; > 0,4 € {1,...,n} with > p; = 1. This is an
i=1
inequality of interest in itself.
If the condition (2.13) is valid for some y € C, then by (2.20) we get the desired
result (2.14).

Now, if we take in (2.20) y =%, € C, then we get

n

(221)  f(zp) = Zpif(xi) + Zpi (VS (@) (@) = Y i (Vo f () (w3)

i=1
n
+e> pille — T
i=1
that is equivalent to the desired result (2.15). O

Remark 1. For inequalities in terms of the Gdteaux derivatives for convexr func-
tions on linear spaces see [8] while for Slater’s type inequalities for convex functions
defined on linear spaces and applications, see [9]. The inequalities (2.12)-(2.15)
are improvements of the corresponding inequalities for convex functions on normed
spaces in which the term ¢y p; ||z — y||* vanishes. We observe that, if X is an
inner product space, then by using the inner product properties we have that

n n n

= 112 2
Yoville = Tl* =D il — | piwi
i=1 i=1 i=1

and the inequality (2.8) for m > 0 and the inequality (2.12) for ¢ = % are the

same. However, in the general case of normed spaces they are different. Inequality
(2.12) in the case where X is an inner product space was obtained in [13].

2

2
= Y pipjllw— ]

1<i<j<n

3. SOME HERMITE-HADAMARD’S TYPE INEQUALITIES
‘We have:

Theorem 2. Let f : C C X — R, where C is a convex subset in the normed linear
space (X, |||]) and z, y € C with x # y. Assume also that 0 < m < M.
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(1) If f is m-lower convex on C, then

(3.1) 05 semlly = oy +a), — (y— oy +2)]

ml/ 11— t) @ + ty|* dt — H H
/Of[(l—t)x-i-ty]dt_f(x;'y)

(3.2) 0< emlly—ay+3), ~ {y—zy+2),

1
L [M|+w /” z+w”ﬁ]

L /f [(1—1)x + ty] dt.

(id) If f is M-upper convex on C, then
1
(3.3) /0 f[(l—t):c—l—ty]dt—f(x;_y)

r+y 2
2

I /\

IN

and

| /\

<

1 1
s2ML/|a—wx+wWﬁ—
0

< M [ty - 20), - (- 2.3))
and

M_/lf[(l—t)x+ty]dt

PMI+MH /m| x+w”ﬁ]

My —=y);, —(y—z,2)].

(#it) If f is (m, M)-convex on C, then the pair of inequalities (5.1), (3.3) and
(3.2), (3.4) hold simultaneously.

Proof. (i) The first two inequalities in (3.1) and (3.2) follows by (1.3) and (1.4).
Since f is m-lower convex on C, hence g (z) := f (z) — 3m ||| is convex on C.
By using the Hermite-Hadamard inequality (HH) we have
1

() -3
<3 7@ = gmllel + £ ) - gml?].

which imply the third inequalities in (3.1) and (3.2).
(ii) Follows in a similar way by considering the convex function k (z) := 1 M ||| 2
fz),zeC. O

IN

IN

Ly
2
1
8

r+y 2
2

s%ﬁ(ﬂu—ox+mA—§mM1—ﬂw+ww)ﬁ
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Remark 2. If the positivity condition for m is dropped, then only the third in-
equalities in (3.1) and (3.2) remain true. If M is not positive, then only the first
inequalities in (3.3) and (3.4) remain true.

Corollary 3. Let f: C C X — R, where C is a convex subset in the inner product
space (X, {(-,-)) and x, y € C with x # y. Assume also that 0 < m < M.

(¢) If f is m-lower convex on C, then

1 X
(35) gimle=ol*< [ ria-nasaja-r(25Y)
and
Loty < L@@ d
a0 gl < HETE g na s
(13) If f is M-upper convex on C, then
1
(3.7 [ s = 0w v uia -5 (T52) < gl -l
and
f@)+f(y

(38) - [ fla-ve s ala < 35 lo -,

(#i3) If f is (m, M)-convex on C, then the pair of inequalities (3.5), (3.7) and
(3.6), (3.8) hold simultaneously.

Proof. Since (X, (-,-)) is an inner product, then for any z, y
1
/ (1 —t)a +ty|* dt
0
1
= [ 0= 0P el + 26 1= O Re o) + 2 o]
0
1 1 1
- ||g;||2/ (1—t)2dt+2Re<x,y>/ t(l—t)dt+||y||2/ 2t
0 0 0

1
= 3 (Ie)* + Re 2. 9) + 19l°)

Therefore, for any z, y

1
/ (1 —t) @+ ty| dt —
0

2

Tty
2

|

1
= 3 (2> + Re(z9) + 19l*) = 7 (Il + 2Re (@,9) + 1y)*)

1 2 2y 1 2
— — (le)* = 2Re (z,y) + Iyl*) = 75 Il — vl
and

2 2 1
x||” +
LIV -
0

1 2 2 1 2 2
= 5 (Il + 1y1*) = 5 (el + Re (z9) + Iyl

Lz -y
=—|lz - .
6 Y
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By using Theorem 2 we get the desired results (3.5)-(3.8). O

Remark 3. If f : [a,b] C R — R is twice differentiable and f" (t) > m for any
t € [a,b], then by (3.5) and (8.6) we have

b
(3.9) im (b—a)® < ﬁ/ f(s)ds—f (a;—b) , see [5, Eq. (5.1)]

and

1 2_fl@+f0) 1 /b
. — — < — . .
(3.10) 12m(b a)” < 5 e f(s)ds, see[10], [11, p. 40]
If f : [a,b] C R — R is twice differentiable and f" (t) < M for any t € [a,b], then
by (8.7) and (3.8) we have

b
(3.11) ﬁ/ f(s)ds—f <a+b> < iM (b—a)?, see[5, Eq. (5.1)]

2 — 24
and
b
(3.12) f(“);f(b) _ bia f(s)ds < %M(b—a)z, see [10], [11, p. 40].

We also have:

Theorem 3. Let f: C C X — R be a function strongly conver with modulus ¢ on

C' that is open and convex in the normed linear space (X, ||-|) and z, y € C with
x #y. Then

1
(3.13) LI [ ria-ve+uld = gello - ol
and
(3.14) /0 Fll=t)x+ ty) dt—f(a;;y> > %c”x—yHQ.

Proof. If we integrate condition (2.1) in the definition of strongly convex functions,
we have

fz) +

(3.15) 2f(y) —/0 f(tm+(1—t)y)dt2c\|x—y||2/0 t(1 — t)dt

1 2
= sl =yl

for any x, y € C, which proves (3.13).
By taking in the definition of strong convexity t = %, we have

(3.16) HALIO - (*52) = Sha- vl

for all a, b € C.
If we take in (3.16) a = (1 —t)x +ty and b =tz + (1 — ) y, then we get

(317) f((l_t)x+ty);f(t$+(1_t)y) _f<332+y> Zc(t—;) ||$—y||2

for any z, y € C and ¢ € [0,1].
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Integrating over ¢ € [0,1], we have

(3.18) % [/Olf((l —t)x+ty)dt+/01f(t$+(1_t)y)dt] _y (x-;-y>
>ele—l* [ (1-3)
and since

! 1 1 2
/0 f((l_t)$+t2/)dt=/o ftx + (1 —t)y)dt and /0 <t—;) dt:%,
then by (3.18) we get (3.14). 0

Remark 4. If f : [a,b] C R — R is a function strongly convex with modulus ¢ on
the interval [a,b], then by (3.13) and (3.14) we get

b
(3.19) f(“);f(“)—bia/ f(s)dsZéc(b—a)Q

and

(3.20) b_la/abﬂs)ds—f(“;b)zlgcw—a)?

These inequalities were obtained in this form in [13].
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