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TWO PARAMETERS AND TWO POINTS REPRESENTATIONS
OF ABSOLUTELY CONTINUOUS FUNCTIONS WITH
INTEGRAL REMAINDER

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we establish some two parameters two points rep-
resentations with integral remainders for absolutely continuous functions and
apply them for the logarithmic and exponential functions. Some inequalities
for weighted arithmetic and geometric means are provided as well.

1. INTRODUCTION

Throughout this paper the integrals are taken in the Lebesgue sense.
Let f : [a,b] — C be an absolutely continuous function on [a,b] and = € [a,]].
Then for any A; and Ay complex numbers, we have [24]

b
R el Gt R R e R AVICE

+ R(.’E,(Lb;)\l, )‘2) )
where the reminder R (z,a,b; A1, A2) is given by

R (x,a,b; A1, \2)

¥ b
:bia/a (t*a)[f'(t)f/\l]dwbia/w (t—b) [f (t) — Ao dt.

With the above assumption for f, we have for any A € C that

a+b

(1.2) f(m)b_la/abf(t)dwr(a:2>/\+R(x,a,b;>\)

where

(1.3) R(x,a,b;\)

o oA = oo - A
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2 S.S. DRAGOMIRY2

If we take A = 0 in (1.3), then we get Montgomery’s identity for absolutely
continuous functions, namely

1 b
b_a/af(t)dt
1
b—a/a (t—a)f' (t dt+7/ (t—2>)f
for « € [a,b].

We have the following midpoint representation as well:

(1.4)  f(z) =

+

(1.5) f<a;rb> [ /f dt+8(b—a)()\1 A2)
a-2i—b b
+bia/a t—a)lf' (t) - A]dt+b% %(t—b)[f’(t)—)\g}dt

for any )\1, )\2 eC
In particular, if Ay = Ay = A, then we have the equality

(1.6) f<a+b>

a+b
1

b
+b—a/a (t—a)[f' (t) — A]dt—kbi/Q(t—b)[f/(t)—A]dt.

Using the representation (1.1) we can prove the following Ostrowski type in-
equality:

Theorem 1 (Dragomir, 2003 [20]). Let f : [a,b] — R be an absolutely continuous
function on [a,b] and x € [a,b]. Suppose that there exist the functions m;, M; :
[a,b] — R (i =1,2) with the properties:

(1.7) my (x) < f'(t) < My (z) for a.e. t € |a,1]
and
(1.8) mo () < f/ (t) < My (z) for a.e. t € (x,b].

Then we have the inequalities:

ﬁ [ml (2) (x — a)® — My (z) (b — xﬂ

b
O AL

< ﬁ [Ml (2) (z — a)? — ma () (b— x)ﬂ .

(1.9)

The constant % is sharp on both sides.

In the case that the derivative is globally bounded on [a,b] by two constants,
then we have:
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Corollary 1. If f : [a,b] — R is absolutely continuous on [a,b] and the derivative
1" [a,b] — R is bounded above and below, that is, there exists the constants M > m
such that

(1.10) —oco<m< f'(t) <M < oo for a.e. t€ la,b],

then we have the inequality

(1.11) ﬁ [m(x—a)z—M(b—x)Q]
<f(w)—b_1a/abf(t)dt
< 2(%_@ [M(a:fa)zfm(bfm)ﬂ

for all © € [a,b]. The constant  is the best in both inequalities.

If we assume that || f'|| , := ess sup |f’ ()| < oo, then obviously we may choose
t€la,b]

in (1.11) m = —||f'||,, and M = |/ f'||, obtaining Ostrowski’s inequality for
absolutely continuous functions whose derivatives are essentially bounded:
I 11 > 2
1.12 - — t)ydt) < —/—=- — b—
() f@ - [ o) < g -+ 0-op]

2
1 x — atb
- 4+< b_;) (- a)fl.e.
for all z € [a,b] .

For other Ostrowski type inequalities see [1]-[19] and [21]-[44].

Let f : I — C be a locally absolutely continuous function on I , the interior of
the interval I. In this paper we consider the alternative problem of approximating
an absolutely continuous function by using an affine combination of the values in
two points f (a), f (b) where a, b € I and two free parameters §, ~v € C as follows

fa)= A =X f(a)+Af(O)+ (A=A (z—a)d—A(b—=)y

for A € C\{0,1} and = € I. Some inequalities for bounded derivatives and appli-
cations for weighted means are also given.

2. SOME IDENTITIES
We start with the following representation result:

Theorem 2. Let f: I — C be a locally absolutely continuous function on f, the
interior of the interval I. Then for any x, a, b € I and A € C\ {0,1}, 4, v € C we
have

2.1) f(z) =1 =X f(a)+Af (0)+(1 = A) (z —a) 6=A (b —z) y+5x (2,0,;0,7),

where the remainder Sy (x,a,b;d,v) is given by

(2.2) Sx (zya,b;0,7) = (1= N) (z — a)/o [f (1 —s)a+sx)—4d]ds

1
Jr)\(b—z)/o [v = f ((1 = 8)x + sb)] ds.
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Proof. For any integrable function h on an interval and any distinct numbers ¢, d
in that interval, we have, by the change of variable t = (1 — s) ¢+ sd, s € [0, 1] that

d 1
/ h(t)dt:(dfc)/ h((1—s)c+ sd)ds.
c 0

Using this property we have

(2.3) (l—A)(x—a)/ [ (1 = s)a+ sz) — ] ds

0

:(1—)\)(:c—a)/0 F((=s)atse)ds—(1—2)(z—a)d

:(1—)\)/£f’(t)dt—(1—)\)(x—a)6
==X @) - @)= 1=V (@-a)

and

(2.4) )\(b—x)/o = F (1= )z + sb)] ds
=Ab—x)y— )\b—:z:/f (1—s)xz+sb)ds

A(b—a)y— )\/f tydt = A(b—z)v— AL (b) — f ()]

for any z, a, bel and \ e C\{0,1}, 0,y €C.
If we add the equalities (2.3) and (2.4) we get

(I—A)(x—a)/o [f ((1—s)a+ sz)—d]ds

1
A(b— /o [y — f ((1 — )z + sb)] ds

x)
( Nl @) = f@)]-(1-N(x—-a)d
A —z)y = Al (b) = [ (2)]

*f() (L= f(a) =Af(0) = (A=A (z—a)d + A(b—1x)7,
which is equivalent to the desired result (2.1). O

Corollary 2. Let f : I — C be a locally absolutely continuous function on I. Then
for any x, a, b€ I and §, v € C we have

(25) )= [b-2) fa) + - a) ) + LD s )
+ 51 (z,a,b;6,7),
where the remainder Sy (x,a,b;8,7) is given by
(2.6) Sy (z,a,b;0,7)
_ (b—2)(z—a)
b—a

X [/01[f'((l—S)a+S$)—5]d8+/01[v—f’((l—S)Hsb)]dS
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Alternatively, we have
C1) f@ = (@) f(@)+ - 2) )
1
b—a

where the remainder Ss (x,a,b;d,7) is given by

+ [(I*G)Q(;*(bfl')z’y}+Sg(.’1§,a,b;5,"}/),

(2.8) Sy (z,a,b;8,7) == ﬁ {(;v — a)2/0 [f' (1—s)a+sz)—d)ds

o0 [ s (= oy snlas]

r—a

Proof. Follows by Theorem 2 on taking A = 7=

and A = Z:—z, respectively. O
The following particular case is of interest as well:

Corollary 3. Let f I — C be alocally absolutely continuous function on I. Then
for any a, be I, A €[0,1] and §, v € C we have

(2.9) fF(A=XNa+X)=10-Nf@+AfO)+DA-MNADb—-a)(d—7)
+Sl,)\ (aab;577)7

where the remainder Sy x (a,b;d,7) is given by

(2.10) Sy (a,b;8,7) =1 —=X)A(b—a)
1
X {/0 [f' ((1 —s\)a+ s\b) — & ds

1
+/ ['y—f'((l—s—)\+s>\)a+()\+s—s)\)b)}ds] .
0
Alternatively, we have
(211)  fAa+ (1 —A)b)=(1—X) f(a)+\f(b)+ (b—a) (1—)\)25—)\27}
+ S2,/\ (a7 b; 5,7) )

where the remainder Sz  (a,b;d,7) is given by

(2.12) Soi(z,a,b;0,7) = (b—a)
— )2 g —s5+Xs)a —\)sb) — dlds
x[(l A /0 /(1= s+ As)at (1—A)sb)—6]d

+)\2/01[v—f’((l—s))\a—i—(l—)\—i—)\s)b)]ds .

Remark 1. Let f be as in Theorem 2, then for any a, b€ I and X € C\ {0,1}, 4,
~v € C we have

213 1(55) == NS @A 0+ 50125 -]
+S)\ (a,b;é,’y),
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where the remainder Sy (a,b;,7) is given by

(2.14) Sy (a,b; 6,7) ::%(bfa) {(1)\)/01 {f’ ((15)a+sa;rb> 5] ds

+/\/01 {'yf’ <(ls)a;b+sb)]ds].

The case 6 = v = 0 in (2.1) produces the following simple identities for each
distinct z, a, b € I and X € C\ {0,1}

(2.15) fx) =@ =X)f(a) +Af(b) + Sx (2,a,b),

where the remainder S (z,a,b) is given by

1
(2.16) Sx(zya,b) := (1 —N\) (x — a)/o f (1 —s)a+ sz)ds

—)\(b—x)/o F (1= 8)z + sb) ds.

We then have for each distinct z, a, b € I
1

(2.17) fl@)=p—I[b—2)f(a) +(@~a) f(O)] + L(z,a,b),

where

(2.18) L(z,a,b)
'_—(b—x)(a:—a) L —s)a+ sz)ds — L —s)x + sb)ds
=D [ ek soas— [ -

and

(219 f@) =) f @)+ (- 2)f O]+ Prab),

where

(2.20) P(zx,a,b)

1 5 (1, . 1
.b_a[(xa) /0 ff{1-s)a+sx)ds— (b—x) /o (1 —s)x + sb)ds| .

We also have
(2.21) FA=XNa+X)=(1=2X) f(a)+ Af(b)+ Sx(a,b),

where the remainder S) (a,b) is given by

1
(2.22) Sx(a,b) :=(1=X)A(b—a) [/0 F (1 —sX\)a+ s\b)ds

1
7/ F((I=s=X+sN)a+ (A+s—sA)b)ds
0
and

(2.23) FA=XNb+Xa)=(1=X) f(a)+ Af(b) + Py (a,b),
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where the remainder Py (a,b) is given by
1
(2.24) Py (a,b):=(b—a) [(1 - )\)2/ F(1=s+As)a+ (1 —N)sb)ds
0

—)\2/1]"((1—s))\a—i—(l—)\—i—)\s)b)ds .
0

Moreover, if we take in (2.15) z = 2t for each distinct a, b € I and \ €
R\ {0,1}, then we have

(2.25) F(*57) = 0= NI @+ A )+ ) ).

where the remainder S) (a,b) is given by

(2.26)  Sh (a,b) := % (b—a)

X {(1)\)/Olf'<(1s)a+sa;rb)ds>\/01f’((ls)a;bJrsb)ds].

In particular, for A = % we have

(2.27) f (”b) _S@OHTO)  g),

2 2
where

(2.28) S(a,b) = i(b —a)

« [/Olf’((1—s)a+sa;b>ds—/01f’((l—s)a;—b—i—sb)ds].

3. INEQUALITIES FOR BOUNDED DERIVATIVES

Now, for ¢, ® € C and [ an interval of real numbers, define the sets of complex-
valued functions (see for instance [25])

Up (6, )
= {g : I — C|Re {(@ —g(1) (m—@)] > 0 for almost every t € I}

and

Arod)={g:1-¢l g0 - 257

The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that Ur (¢, ®) and A (¢, ®)
are nonempty, convexr and closed sets and

1
S§|<I>—qz5| fora.e.tel}.

Proof. We observe that for any z € C we have the equivalence
P 1
22 Loy
2 2

if and only if
Re[(® —2)(z—¢)] = 0.
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This follows by the equality

2

1 o+ _
fo-of = o= 230 —re@ -9 s- 0)
that holds for any z € C.
The equality (3.1) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 4. For any ¢, ® € C, ¢ # ®,we have that

(3.2) Ur(¢,®) ={g: I —C| (Re®—-Reg(t)) (Reg(t) — Reo)
+(Im® —Img(¢)) (Img(t) —Ime¢p) >0 for a.e. t € I}.

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

(3-3) S1(¢,®) :={g: I —C| Re(®) > Reg(t) > Re(9)
and Im (®) > Img (¢t) > Im (¢) for a.e. t € I}.

One can easily observe that S (¢, ®) is closed, convex and
The following result holds:

Theorem 3. Let f : I — C be a locally absolutely continuous function on I and
with the property that there exists complex numbers ¢, ® € C such that the derivative
f eUr(¢,®). Then for any z, a, b€ I and X € C\{0,1} we have

b+ @

(3.5) f) = (=X f(a) = Af(b) = [z = (1=A)a— )

1
< 5@ =011 =\ fe —al + || b~ al]
mac {[1= Al A} (j2 — ] +[b —2]),
< Nip g d (=27 Y (=l o — 2]
-2 pa>1, 5+ =1,

(11 = Al + [A]) max {[x — af , [b — [} .
Proof. From the representation (2.1) we have

(3.6)  f(@)=(1—=A)fla)+Af(0)+(1—A)(z—a)
+ Sx(z,a,b;0,7)

o+ P
2

==X f(a)+Af(b) +
+S)\ (xyaab;¢aq))7

[x—(1—=X)a— A
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where the remainder S (z, a, b; ¢, @) is given by

6+ @

(3.7) S,\(x,a,b;é,y)::(I—A)(x—a)/o [f ((l—s)a+sx)—2}ds

+)\(b—x)/01 [QS;(I)—f’((l—s)x—&-sb)] ds

and z, a, b € I while A € C\{0,1}, ¢, ® € C. )
Therefore, by taking the modulus and utilizing the fact that f' € Uy (¢, @), we
have

o+
2

‘f(w) @A) fla) = AF(b) -
- |S)\ (.’.137(1, b§ ¢7®)|

s‘(l—»(x—a)/ol 7= s)as) -

[x—(l—)\)a—)\b]’

o+
—5 ]ds‘

+‘>\(b—x)/ [M—f ((1—s)m+sb)} ds.

P
((1-s a+sx)—¢% ds

<j1-

MY |b—x|/
0

1
< 5 1@ = 9l{I1 = Allz —af + [A][b — z]]

—— — f'((1 —s)x + sb)|ds

for any x, a, b€ I and X € C\ {0,1}.
This proves the first inequality in (3.5).
The last part is obvious by Holder’s inequality

max {c,u} (d + v)
cd+uv <

(cp—l—up)l/p (d? +vq)1/q, p, q¢>1,

Remark 2. For p = q =2 we have for X € [0,1] and = € [a,b] with a < b that
o+ P
2

| = ¢[[(1 =) (& —a) + A(b— )]

1/2 o\ 1/2
1 1\? 1 a+b
[ — - - - .
<| ¢|<4+<>\ 2)) <4—|—<x 2))
Corollary 5. With the assumptions of Theorem 8 for the function f, we have for

any x, a, b € I that

1
b—a

(3-8) @) =1 =X) f(a) = Af(b) =

[x—(l—)\)a—)\b]’

M\H

[(bz)f(a)+($a)f(b)]‘ §|(I)gb||(b|z)—(xa|a)|

39 |7~
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and

(3.10) 'f(z)bia[(xa)f(a)Jr(ba:)f(b)](¢+<I>) <xa+b)‘

2
2
1 x — afb
<|o— g 4+< b_;) b—al.

r—a

Proof. Follows by Theorem 3 on taking A = 7= and A = Z:—z, respectively. O

Corollary 6. With the assumptions of Theorem 3 for the function f, we have for
any a, b € I and A € [0,1] that

B11)  [F((A=Na+Ab) = (1=X)f(a) = Af ()] < |®—g[ (1 =A)A[b—aq]

and

312 [£(@= N0+ = (1= 07 (@) =2 0~ 0+ 9)(0-0) (3 - A)|

1 1\?

Remark 3. If we take A\ = % in either of the inequalities from Corollary 6 we get

(3.13) ’f(“?)—f(a);f(b)‘giléwllb_al

<@ - ¢

or any a, b€ 1. e constant 7 1s best possible in (3.13).
f ya, bel. Th 1 is best possibl (3.13)
Indeed, if we consider the absolutely continuous function f (x) = |x — ‘%"b , then
f'(x)=1 forx> %rb and ' (z) = —1 forx < “TH’. Taking ¢ = —1 and ® =1 in
) we obtain in both terms the same quantity 5 |b — a| that proves the sharpness
3.13 btain in both t th tity 3 |b that the sh
of the constant %.

If the function f is real-valued locally absolutely continuous function on I and
(3.14) —00 < k < f'(z) < K < oo for almost every z € I,
then we have from (3.5) that

(3.15) F@) - (=N f(a)-rf@) - EER

[x—(1—=X)a—\)]
< 3 (K = k)11 = Al lz — al +[]b — o]

max {|1 = Al A} (Jz — al + b — 2[),

1 1
1 (1= AP+ A (Jz = a” + b — 2|9,

~ (K —k
2 ) pg>1, s+ 1 =1,

IN

(It = Al + [A) max {[z — al , [b — z[},

for any z, a, befand)\eR\{O,l}.
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Now, if m, M € R with m < M and f : [m, M] — R is a convex function, then
for any x, a, b € [m, M] we have from (3.15) for k = f! (m) and K = f’ (M) that

AGORY AL

(316) |7 (@) -(1-NF@=-r7 ) e - a-
< (£ (M) 4 (m)) 1= Al —al + | o — 2]
masc {|1 = Al A} (|2 — al +[b— )
_ )P PP 1 ald _ g|nye
<gton=som) G AN el e

q
(It = Al + [A) max {|z — al , [b — 2|},

for any A € R\ {0,1}.
For real-valued functions we have the following result as well:

Theorem 4. Let f : I — R be a locally absolutely continuous function on I and
with the property that there exists real numbers k, K such that the condition (3.14)
is valid. Then for all a, b € I with a < b, z € [a,b] and X € [0, 1] we have

(3.17) f@=>20=Nfl@+AXfO)+1=-N(x—a)k—X(b—2)K.
Proof. From (2.1) we have
(3.18) f@)=0=XNf(a)+AfO)+ (1 =N(z—a)k—-A(b—2)K

+ Sy (z,a,b;k, K),

for all ¢, b € I with a < b, € [a,b] and A\ € [0,1], where the remainder
Sy (z,a,b; k, K) is given by

(3.19) Sy (zya,b;k, K) = (1= )) (azfa)/o [f' (1 —s)a+sx)—k|ds

+>\(b—m)/0 (K — ' (1 — 5) 3+ sb)] ds.

Since for all x € [a,b] we have f' (1 —s)a+sz) > kand K > f'((1—s)z + sb)
for almost every s € [0,1], then Sy (z,a,b;k, K) > 0 for every A € [0,1] and by
(3.18) we get the desired result (3.17). O

Corollary 7. With the assumptions of Theorem 4 for the function f we have
1 _(b—2)(z—a)

(320) @)= (62 f @)+ @ a) f ) - T (K 1y
and
(3.21)
F@) > o (= a) Fa) + (b —) O]+ s [ = a)*k— (b~ K]

for any x € [a,b].

We also have
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Corollary 8. With the assumptions of Theorem 4 for the function f we have
(3.22) FA=XNa+M)>0=XNf(a)+Af(B)—1=XNA(b—a)(K—k)
and

(3.23) f@a+ﬂ—Aﬂ02G—Aﬂﬂn+xﬂm+@—awﬂ—Afk—VK}

for any a, b e I with a < b and X € [0,1].

4. SOME EXAMPLES

Let a, b, x € [m,M] C (0,00), then by writing the inequality (3.16) for the

convex function f (t) = —Int, t > 0, we have
m+ M
(4.1) (I1-X)na+Alnb—Inx + Y [ —(1—=X)a— b
M —m
< 1— _ _
< S [(1= ) fe—al + Alb - al]

max {1 — A\, A} (|z —a| +|b—z|),

IA

)1
+a == 1,
max {|x —al, |b—z|},

for any X € [0,1].
If we take x = (1 — A)a + Ab in (4.1), where a, b € [m, M] and X € [0,1], then
we get

M—m

(4.2) 0<In((1-XNa+Ab)—(1—ANIna—Alnb < (I=X)A
that is equivalent to
A)\ (a7 ) -m
4. 1< 1-—
(43) < G <o | -

for any a, b € [m, M] C (0,00) and A € [0,1], where Ay (a,b) := (1 —X)a+ A\ is
the weighted arithmetic mean and G\ (a,b) := a'~*b* is the weighted geometric
mean.

If we take in (4.1) z = G (a,b), then we get

(4.4) 0 < Ay (a,b) — G (a,b)

S 0= X6 (@ 8) ] + Alb— G (a,B)]

M-m (1 1
< il _Z _
—m+M(2+"\ 2D|b al

for any a, b € [m, M] C (0,00) and A € [0,1].

<
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If we take © = Aa+ (1 — \)b in (4.1), where a, b € [m, M] and X\ € [0, 1], then
we get

(45) !m(;iﬁf;)—?iﬁlw-@(k—iﬂ
SA;&W[i+(A—;y1w—ak

Let ¢, d, y € [k, K] C R, then by writing the inequality (3.16) for the convex
function f (y) = expy, y € R, we have

expk +exp K

(4.6) exp (y) — (1 — A)expe— Aexpd — 5

[y —(1=X)c— ]

1
< 5 (exp K —expk) [[1 = Ally — c| + [A[]d — y]]
max {[1 = Al |A[} (ly — ¢ +[d = y]),

(L= AP+ AP (fy = e + |d — y|)™7,
p,a>1, s +1=1,

IN

1
A (exp K — expk)

max {|y —cf, [d — y[} (|1 = A[+[A]),

for any A € R\ {0,1}.
If a, b, z € [m, M] C (0,00), then by taking c=Ina,d=Inb, y=Inz, k=Inm
and K =In M we get

+M
(4.7) T (1= N)a— - l(wimﬂ
1 [ T b
§2@4mXHMPWJ+M|mxH
max{\l—)\|,|)\\}(’ln§|+|lng),
1/q
< Lar (TN AP (] 8)
2 pa>1 y+g=1
max{|ln§|,}ln§|}(\l—>\|+|)\|),

for any A € R\ {0,1}.
Now, if a, b, © € [m, M] C (0,00) and A € [0,1] then by taking z = a!=*v* =
G (a,b) in the first part of (4.7) we get

(4.8) 0< Ay (a,b) — Gy (a,b) < (M —m) (1 — A)A|lnb— lnal.

Also, if a, b, x € [m, M| C (0,00) and A € [0,1] then by taking x = (1 — X)a +
Ab = Ay (a,b) in the first part of (4.7) we get

—m

— |:(1 o /\) A)\ (aa b)

a

In In

(49 1< m < exp [%

42

)
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Since
[(1—/\) mW‘ +A IHAA(ba’b)H
<max {1l -\ A} HlnA*(a’b)‘ + I Aj (a,b) H
a b
1 1

<= - _

< <2+ A 2’) [lnb —Inal,
hence by (4.9) we get

A)\ (a’a b) 1 1 M—m
4.1 1< 227 < = L M=m, 1
(410) S antan S\ 3T |) 2| par b vl
for any a, b € [m, M] C (0,00) and A € [0,1].
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