
INEQUALITIES FOR OPERATOR NONCOMMUTATIVE
PERSPECTIVES OF CONVEX FUNCTIONS

S. S. DRAGOMIR1;2

Abstract. In this paper we obtain some inequalities for operator noncom-
mutative perspectives of convex functions. Applications for weighted operator
geometric mean and relative operator entropy are also provided.

1. Introduction

If � : I ! R is a convex function on the real interval I and T is a selfadjoint
operator on the complex Hilbert space (H; h�; �i) with the spectrum Sp (T ) � �I the
interior of I; then we have the following 1

(1.1) h� (T )x; xi � � (hTx; xi)

for any x 2 H with kxk = 1:
For various Jensen type inequalities for functions of selfadjoint operators, see the

recent monograph [1] and the references therein.
Let � be a continuous function de�ned on the interval I of real numbers, B

a selfadjoint operator on the Hilbert space H and A a positive invertible opera-
tor on H: Assume that the spectrum Sp

�
A�1=2BA�1=2

�
� �I: Then by using the

continuous functional calculus, we can de�ne the perspective P� (B;A) by setting

P� (B;A) := A1=2�
�
A�1=2BA�1=2

�
A1=2:

If A and B are commutative, then

P� (B;A) = A�
�
BA�1

�
provided Sp

�
BA�1

�
� �I:

It is well known that (see [7] and [6] or [8]), if � is an operator convex function
de�ned in the positive half-line, then the mapping

(B;A)! P� (B;A)

de�ned in pairs of positive de�nite operators, is convex.
In the recent paper [2] we established the following reverse inequality for the

perspective P� (B;A) :
Let � : [m;M ]! R be a convex function on the real interval [m;M ], A a positive

invertible operator and B a selfadjoint operator such that

(1.2) mA � B �MA;
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then we have

0 � 1

M �m [� (m) (MA�B) + � (M) (B �mA)]� P� (B;A)(1.3)

�
�0� (M)� �0+ (m)

M �m

�
MA1=2 �BA�1=2

��
A�1=2B �mA1=2

�
� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
A:

Let � : J � R ! R be a twice di¤erentiable function on the interval �J , the
interior of J . Suppose that there exists the constants d; D such that

(1.4) d � �00 (t) � D for any t 2 �J:
If A is a positive invertible operator and B a selfadjoint operator such that the
condition (1.2) is valid with [m;M ] � �J; then we have the following result as well

1

2
d
�
MA1=2 �BA�1=2

��
A�1=2B �mA1=2

�
(1.5)

� 1

M �m [� (m) (MA�B) + � (M) (B �mA)]� P� (B;A)

� 1

2
D
�
MA1=2 �BA�1=2

��
A�1=2B �mA1=2

�
:

If d > 0; then the �rst inequality in (1.5) is better than the same inequality in
(1.3).
In this paper we obtain some new inequalities for operator noncommutative

perspectives of convex functions. Applications for weighted operator geometric
mean and relative operator entropy are also provided.

2. Operator Inequalities for Perspectives

Suppose that I is an interval of real numbers with interior �I and � : I ! R is
a convex function on I. Then � is continuous on �I and has �nite left and right
derivatives at each point of �I. Moreover, if x; y 2 �I and x < y; then �0� (x) �
�0+ (x) � �0� (y) � �0+ (y) which shows that both �

0
� and �

0
+ are nondecreasing

function on �I. It is also known that a convex function must be di¤erentiable except
for at most countably many points.
For a convex function � : I ! R, the subdi¤erential of � denoted by @� is the

set of all functions ' : I ! [�1;1] such that '
�
�I
�
� R and

(2.1) � (x) � � (a) + (x� a)' (a) for any x; a 2 I:
It is also well known that if � is convex on I; then @� is nonempty, �0�, �

0
+ 2 @�

and if ' 2 @�, then
�0� (x) � ' (x) � �0+ (x) for any x 2 �I.

In particular, ' is a nondecreasing function.
If � is di¤erentiable and convex on �I, then @� = f�0g :
We have:

Theorem 1. Let � : I ! R be a convex function on the interval of real numbers
I, A a positive invertible operator and B a selfadjoint operator such that

(2.2) Am � B �MA
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with [m;M ] � �I; for some real numbers m; M with m < M:

Then for any ' 2 @� and any t 2 �I we have
(2.3) P� (B;A) � � (t)A+ ' (t) (B � tA) :
In particular,

(2.4) P� (B;A) � �
�
m+M

2

�
A+ '

�
m+M

2

��
B � m+M

2
A

�
:

Proof. From (2.1) we have

(2.5) � (x) � � (t) + (x� t)' (t)
for any x 2 [m;M ] and t 2 �I.
Using the continuous functional calculus for a selfadjoint operatorX with Sp (X) �

[m;M ] � �I we have from (2.5) in the operator order that

(2.6) � (X) � � (t) I + ' (t) (X � tI)
for any t 2 �I.
If the condition (2.2) is valid, then by multiplying both sides by A�1=2 we get

mI � A�1=2BA�1=2 �MI:
Now, if we take X = A�1=2BA�1=2 in (2.6), then we get

(2.7) �
�
A�1=2BA�1=2

�
� � (t) I + ' (t)

�
A�1=2BA�1=2 � tI

�
for any t 2 �I.
By multiplying both sides of (2.7) with A1=2 we get

A1=2�
�
A�1=2BA�1=2

�
A1=2 � � (t)A+ ' (t)A1=2

�
A�1=2BA�1=2 � tI

�
A1=2

(2.8)

= �(t)A+ ' (t) (B � tA)

for any t 2 �I and the inequality (2.3) is proved. �
Corollary 1. With the assumptions of Theorem 1, we have for any x 2 H n f0g
that

(2.9) P� (B;A) � �
�
hBx; xi
hAx; xi

�
A+ '

�
hBx; xi
hAx; xi

��
B � hBx; xihAx; xiA

�
:

In particular,

(2.10)
hP� (B;A)x; xi

hAx; xi � �
�
hBx; xi
hAx; xi

�
:

Proof. For x 2 H n f0g we have

tA;B =
hBx; xi
hAx; xi =



A1=2

�
A�1=2BA�1=2

�
A1=2x; x

�

A1=2x;A1=2x

�
=


�
A�1=2BA�1=2

�
A1=2x;A1=2x

�

A1=2x;A1=2x

� =


�
A�1=2BA�1=2

�
A1=2x;A1=2x

�

A1=2x

2 :

If we put

u =
A1=2x

A1=2x

 6= 0;
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then kuk = 1 and

tA;B =
D�
A�1=2BA�1=2

�
u; u

E
2 [m;M ] � �I:

By taking t = tA;B in (2.3) we get (2.9).
The inequality (2.9) is equivalent to

hP� (B;A) y; yi � �
�
hBx; xi
hAx; xi

�
hAy; yi(2.11)

+ '

�
hBx; xi
hAx; xi

��
hBy; yi � hBx; xihAx; xi hAy; yi

�
for any y 2 H:
This is an inequality of interest in itself.
In particular, if we take in (2.11) y = x; then we get the desired result (2.10). �

We also have:

Corollary 2. With the assumptions of Theorem 1, we have

P� (B;A) � 2
 

1

M �m

Z M

m

� (t) dt

!
A(2.12)

� 1

M �m [� (M) (MA�B) + � (m) (B �mB)] :

Proof. If we take the integral mean in the inequality (2.3), then we get

P� (B;A) �
 

1

M �m

Z M

m

� (t) dt

!
A(2.13)

+

 
1

M �m

Z M

m

' (t) dt

!
B �

 
1

M �m

Z M

m

t' (t) dt

!
A:

Observe that

1

M �m

Z M

m

' (t) dt =
�(M)� � (m)

M �m

and

1

M �m

Z M

m

t' (t) dt =
1

M �m

"
t� (t)jMm �

Z M

m

� (t) dt

#

=
M� (M)�m� (m)

M �m � 1

M �m

Z M

m

� (t) dt
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and by (2.13) we get

P� (B;A) �
 

1

M �m

Z M

m

� (t) dt

!
A+

�(M)� � (m)
M �m B

�
 
M� (M)�m� (m)

M �m � 1

M �m

Z M

m

� (t) dt

!
A

= 2

 
1

M �m

Z M

m

� (t) dt

!
A

� 1

M �m [� (M) (MA�B) + � (m) (B �mB)]

that proves the desired result (2.12). �
The following reverse of inequality (2.3) is as follows:

Theorem 2. Let � : I ! R be a continuously di¤erentiable convex function on �I,
A a positive invertible operator and B a selfadjoint operator such that the condition
(2.2) is valid with [m;M ] � �I; for some real numbers m; M with m < M:

Then for any t 2 �I we have
P� (B;A) � � (t)A+ P�0` (B;A)� tP�0 (B;A)(2.14)

� � (t)A+�0 (t) (B � tA) +
�
�0� (M)� �0+ (m)

�
Pj�j;t (B;A) ;

where ` is the identity function, i.e. ` (t) = t and

Pj�j;t (B;A) := A1=2
���A�1=2 (B � tA)A�1=2���A1=2:

In particular, we have

P� (B;A) � �
�
m+M

2

�
A+ P�0` (B;A)�

m+M

2
P�0 (B;A)(2.15)

� �
�
m+M

2

�
A+�0

�
m+M

2

��
B � m+M

2
A

�
+
�
�0� (M)� �0+ (m)

�
Pj�j;m+M

2
(B;A)

� �
�
m+M

2

�
A+�0

�
m+M

2

��
B � m+M

2
A

�
+
1

2
(M �m)

�
�0� (M)� �0+ (m)

�
:

Proof. By the gradient inequality we have

(2.16) �0 (x) (x� t) + � (t) � � (x)
for any x 2 [m;M ] and t 2 �I
Using the continuous functional calculus for a selfadjoint operatorX with Sp (X) �

[m;M ] � �I we have from (2.16) in the operator order that

(2.17) �0 (X) (X � tI) + � (t) I � � (X)
for any t 2 �I.
Now, if we take X = A�1=2BA�1=2 in (2.17), then we get

(2.18) �0
�
A�1=2BA�1=2

��
A�1=2BA�1=2 � tI

�
+�(t) I � �

�
A�1=2BA�1=2

�
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for any t 2 �I.
If we multiply both sides of (2.18) by A1=2; then we obtain

A1=2�0
�
A�1=2BA�1=2

��
A�1=2BA�1=2 � tI

�
A1=2 +�(t)A(2.19)

� A1=2�
�
A�1=2BA�1=2

�
A1=2

for any t 2 �I.
Since

A1=2�0
�
A�1=2BA�1=2

��
A�1=2BA�1=2 � tI

�
A1=2

= P�0` (B;A)� tP�0 (B;A) ;

then by (2.19) we get the �rst inequality in (2.14).
Now, observe also that

A1=2�0
�
A�1=2BA�1=2

��
A�1=2BA�1=2 � tI

�
A1=2 +�(t)A

= A1=2
h
�0
�
A�1=2BA�1=2

�
� �0 (t) I

i �
A�1=2BA�1=2 � tI

�
A1=2

+�0 (t) (B � tA) + � (t)A

for any t 2 �I.
Since �0 is nondecreasing on �I we have for any x 2 [m;M ] and t 2 �I that

0 � (�0 (x)� �0 (t)) (x� t) = j(�0 (x)� �0 (t)) (x� t)j
= j�0 (x)� �0 (t)j jx� tj �

�
�0� (M)� �0+ (m)

�
jx� tj ;

which, as above, implies in the operator order that

A1=2
h
�0
�
A�1=2BA�1=2

�
� �0 (t) I

i �
A�1=2BA�1=2 � tI

�
A1=2

�
�
�0� (M)� �0+ (m)

�
A1=2

���A�1=2BA�1=2 � tI���A1=2
=
�
�0� (M)� �0+ (m)

�
A1=2

���A�1=2 (B � tA)A�1=2���A1=2:
This proves the second inequality in (2.14).
We need to prove only the last part of (2.15).
Since x 2 [m;M ] ; then

��x� m+M
2

�� � 1
2 (M �m) that implies in the operator

order ����A�1=2BA�1=2 � m+M2 I

���� � 1

2
(M �m) I;

which by multiplication on both sides with A1=2 gives that

Pj�j;m+M
2
(B;A) � 1

2
(M �m)A:

�
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Corollary 3. With the assumptions of Theorem 1, we have for any x 2 H n f0g
that

P� (B;A) � �
�
hBx; xi
hAx; xi

�
A+ P�0` (B;A)�

hBx; xi
hAx; xiP�

0 (B;A)(2.20)

� �
�
hBx; xi
hAx; xi

�
A+�0

�
hBx; xi
hAx; xi

��
B � hBx; xihAx; xiA

�
+
�
�0� (M)� �0+ (m)

�
Pj�j; hBx;xihAx;xi

(B;A) :

In particular

hP� (B;A)x; xi(2.21)

� �
�
hBx; xi
hAx; xi

�
hAx; xi+ hP�0` (B;A)x; xi �

hBx; xi
hAx; xi hP�

0 (B;A)x; xi

� �
�
hBx; xi
hAx; xi

�
hAx; xi+

�
�0� (M)� �0+ (m)

��
Pj�j; hBx;xihAx;xi

(B;A)x; x

�
for any x 2 H n f0g :

We also have:

Corollary 4. With the assumptions of Theorem 1, we have

P� (B;A) �
 

1

M �m

Z M

m

� (t) dt

!
A+ P�0` (B;A)�

m+M

2
P�0 (B;A)(2.22)

� 2
 

1

M �m

Z M

m

� (t) dt

!
A

� 1

M �m [� (M) (MA�B) + � (m) (B �mB)]

+
�
�0� (M)� �0+ (m)

� 1

M �m

Z M

m

Pj�j;t (B;A) dt:

Proof. If we take the integral mean in (2.14), then we get

P� (B;A) �
 

1

M �m

Z M

m

� (t) dt

!
A+ P�0` (B;A)�

m+M

2
P�0 (B;A)(2.23)

�
 

1

M �m

Z M

m

� (t) dt

!
A+

1

M �m

Z M

m

�0 (t) (B � tA) dt

+
�
�0� (M)� �0+ (m)

� 1

M �m

Z M

m

Pj�j;t (B;A) dt:

Since, as in the proof of Corollary 2, we have

1

M �m

Z M

m

�0 (t) (B � tA) dt =
 

1

M �m

Z M

m

� (t) dt

!
A

� 1

M �m [� (M) (MA�B) + � (m) (B �mB)] ;

then by (2.23) we get the last part of (2.22). �
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3. Applications for Operator Geometric Mean

Assume that A; B are positive invertible operators on a complex Hilbert space
(H; h�; �i) : We use the following notations for operators [18]

Ar�B := (1� �)A+ �B;
the weighted operator arithmetic mean and

A]�B := A
1=2
�
A�1=2BA�1=2

��
A1=2;

the weighted operator geometric mean, where � 2 [0; 1] : When � = 1
2 we write

ArB and A]B for brevity, respectively.
The de�nition A]�B can be extended accordingly for any real number �:
The following inequality is well as the operator Young inequality or operator

�-weighted arithmetic-geometric mean inequality :

(3.1) A]�B � Ar�B for all � 2 [0; 1] :
For recent results on operator Young inequality see [11]-[14], [15] and [23]-[24].
For x 6= y and p 2 R n f�1; 0g, we de�ne the p-logarithmic mean (generalized

logarithmic mean) Lp(x; y) by

Lp(x; y) :=

�
yp+1 � xp+1
(p+ 1)(y � x)

�1=p
:

In fact the singularities at p = �1; 0 are removable and Lp can be de�ned for
p = �1; 0 so as to make Lp(x; y) a continuous function of p. In the limit as p! 0
we obtain the identric mean I(x; y), given by

(3.2) I(x; y) :=
1

e

�
yy

xx

�1=(y�x)
;

and in the case p! �1 the logarithmic mean L(x; y), given by

L(x; y) :=
y � x

ln y � lnx:

In each case we de�ne the mean as x when y = x, which occurs as the limiting
value of Lp(x; y) for y ! x.
If we consider the continuous function f� : [0;1)! [0;1), f� (x) = x� then the

operator �-weighted arithmetic-geometric mean can be interpreted as the perspec-
tive Pf� (B;A), namely

Pf� (B;A) = A]�B:
Consider the convex function f = �f� : Then by applying the inequalities (2.3)

and (2.4) we have

(3.3) A]�B � (1� �) t�A+ �t��1B = (t�A)r�
�
t��1B

�
;

for any t > 0 and � 2 [0; 1] ; and

(3.4) A]�B � (1� �)
�
m+M

2

��
A+ �

�
m+M

2

���1
B

for any � 2 [0; 1] ; provided the condition (2.2) is valid.
From (2.9) and (2.10) we have for any x 2 H n f0g and � 2 [0; 1] that

(3.5) A]�B � (1� �)
�
hBx; xi
hAx; xi

��
A+ �

�
hAx; xi
hBx; xi

�1��
B
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and

(3.6) hA]�Bx; xi � hAx; xi1�� hBx; xi� ;

for any � 2 [0; 1] :
The Young�s inequality (3.1) can be written as

(3.7) hA]�Bx; xi � (1� �) hAx; xi+ � hBx; xi

for any x 2 H:
By utilizing the scalar arithmetic mean-geometric mean inequality we also have

(3.8) hAx; xi1�� hBx; xi� � (1� �) hAx; xi+ � hBx; xi

for any x 2 H:
Therefore by (3.6) and (3.8) we have the following vector inequality improving

(3.7)

(3.9) hA]�Bx; xi � hAx; xi1�� hBx; xi� � (1� �) hAx; xi+ � hBx; xi

for any x 2 H:
From (2.12) we have

(3.10) A]�B � 2L��(m;M)A�
1

M �m [M� (MA�B) +m� (B �mB)]

for any � 2 (0; 1) :
From the inequality (2.14) we have for any t > 0 and A; B positive invertible

operators that

A]�B � t�A+ �A]�B � �tA]��1B(3.11)

� t�A+ �t��1 (B � tA) + �
�
M��1 �m��1�Pj�j;t (B;A) ;

for any � 2 [0; 1] :
From the �rst inequality in (3.11) we have

A]�B �
1

1� � (t
�A� �tA]��1B)

for any � 2 (0; 1) and t > 0:
If A and B satisfy the condition (2.2), then by (2.15) we have

A]�B �
�
m+M

2

��
A+ �A]�B � �

m+M

2
A]��1B(3.12)

� (1� �)
�
m+M

2

��
A+ �

�
m+M

2

���1
B

+ �
�
M��1 �m��1�Pj�j;m+M

2
(B;A)

� (1� �)
�
m+M

2

��
A+ �

�
m+M

2

���1
B

+
1

2
� (M �m)

�
M��1 �m��1� :
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From the last inequality in (3.12) we get

1

2
� (M �m)

�
M1�� �m1��

m1��M1��

�
(3.13)

� (1� �)
�
m+M

2

��
A+ �

�
m+M

2

���1
B �A]�B � 0;

for any � 2 [0; 1] ; which provides a simple reverse for (3.4).

4. Applications for Relative Operator Entropy

Kamei and Fujii [9], [10] de�ned the relative operator entropy S (AjB) ; for pos-
itive invertible operators A and B; by

(4.1) S (AjB) := A 1
2

�
lnA�

1
2BA�

1
2

�
A

1
2 ;

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[22].
For some recent results on relative operator entropy see [4]-[5], [16]-[17] and

[19]-[20].
Consider the logarithmic function ln : Then the relative operator entropy can be

interpreted as the permanent of ln, namely

Pln (B;A) = S (AjB) :
If we use the inequalities (2.3) and (2.4) for the convex function f = � ln we have
(4.2) S (AjB) � (ln t)A�A+ t�1B;
for any t > 0 and A; B positive invertible operators.
In particular, if A; B satisfy the condition (2.2), then

(4.3) S (AjB) �
�
ln

�
m+M

2

��
A+

�
m+M

2

��1�
B � m+M

2
A

�
:

From the inequalities (2.9) and (2.10) we have

(4.4) S (AjB) � ln
�
hBx; xi
hAx; xi

�
A+

hAx; xi
hBx; xiB �A

and

(4.5) hS (AjB)x; xi � hAx; xi ln
�
hBx; xi
hAx; xi

�
;

for any x 2 H; x 6= 0:
The following inequality for the relative operator entropy is well known

(4.6) S (AjB) � B �A
for any A; B positive invertible operators.
This inequality is equivalent to

(4.7) hS (AjB)x; xi � hBx; xi � hAx; xi
for any x 2 H:
We know the following elementary inequality that holds for the logarithm

ln t � t� 1 for any t > 0:
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If we take in this inequality t = hBx;xi
hAx;xi > 0; x 2 H; x 6= 0 and multiply with

hAx; xi > 0; then we get

(4.8) hAx; xi ln
�
hBx; xi
hAx; xi

�
� hBx; xi � hAx; xi

for any x 2 H; x 6= 0:
Therefore, by (4.5) and (4.8) we have

hS (AjB)x; xi � hAx; xi ln
�
hBx; xi
hAx; xi

�
� hBx; xi � hAx; xi

for any x 2 H; x 6= 0 that is an improvement of (4.7).
From (2.12) we also have

S (AjB) � 2 [ln I (m;M)]A(4.9)

� 1

M �m [lnM (MA�B) + lnM (B �mB)] ;

where I (m;M) is the identric mean de�ned in (3.2) and

1

M �m

Z M

m

ln tdt = ln I (m;M) :

From the inequality (2.14) we have

S (AjB) � (ln t)A+A� tAB�1A(4.10)

� (ln t)A�A+ t�1B � M �m
mM

Pj�j;t (B;A) ;

for any t > 0; where A; B are positive invertible operators satisfying the condition
(2.2)
From (2.15) we also have

S (AjB) �
�
ln

�
m+M

2

��
A+A� m+M

2
AB�1A(4.11)

�
�
ln

�
m+M

2

��
A+

�
m+M

2

��1�
B � m+M

2
A

�
� M �m

mM
Pj�j;m+M

2
(B;A)

�
�
ln

�
m+M

2

��
A+

�
m+M

2

��1�
B � m+M

2
A

�
� 1
2

(M �m)2

mM
;

provided A; B are positive invertible operators satisfying the condition (2.2).
From the last part of (4.11) we get

1

2

(M �m)2

mM
(4.12)

�
�
ln

�
m+M

2

��
A+

�
m+M

2

��1�
B � m+M

2
A

�
� S (AjB)

� 0
that provides a simple reverse of (4.3).
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