INEQUALITIES FOR OPERATOR NONCOMMUTATIVE PERSPECTIVES OF CONTINUOUSLY DIFFERENTIABLE FUNCTIONS WITH APPLICATIONS

S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper we obtain some inequalities for operator perspectives of continuously differentiable functions. Applications for weighted operator geometric mean and relative operator entropy are also provided.

1. Introduction

Let f be a continuous function defined on the interval I of real numbers, B a self-adjoint operator on the Hilbert space H and A a positive invertible operator on H. Assume that the spectrum Sp $\left(A^{-1/2}BA^{-1/2}\right) \subset I$. Then by using the continuous functional calculus, we can define the perspective $\mathcal{P}_f(B,A)$ by setting

$$\mathcal{P}_f(B,A) := A^{1/2} f\left(A^{-1/2} B A^{-1/2}\right) A^{1/2}.$$

If A and B are commutative, then

$$\mathcal{P}_f(B,A) = Af(BA^{-1})$$

provided Sp $(BA^{-1}) \subset I$.

It is well known that (see [7] and [6] or [8]), if f is an operator convex function defined in the positive half-line, then the mapping

$$(B,A) \to \mathcal{P}_f(B,A)$$

defined in pairs of positive definite operators, is convex.

In the recent paper [1] we established the following reverse inequality for the perspective $\mathcal{P}_f(B, A)$.

Let $f:[m,M] \to \mathbb{R}$ be a *convex function* on the real interval [m,M], A a positive invertible operator and B a selfadjoint operator such that

$$(1.1) mA < B < MA,$$

then we have

$$(1.2) 0 \leq \frac{1}{M-m} \left[f(m) (MA-B) + f(M) (B-mA) \right] - \mathcal{P}_f(B,A)$$

$$\leq \frac{f'_-(M) - f'_+(m)}{M-m} \left(MA^{1/2} - BA^{-1/2} \right) \left(A^{-1/2}B - mA^{1/2} \right)$$

$$\leq \frac{1}{4} (M-m) \left[f'_-(M) - f'_+(m) \right] A.$$

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A30, 15A60,.26D15, 26D10.

Key words and phrases. Operator noncommutative perspectives, Young's inequality, Convex functions, Arithmetic mean-Geometric mean inequality.

Let $f: J \subset \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on the interval \mathring{J} , the interior of J. Suppose that there exists the constants d, D such that

(1.3)
$$d \le f''(t) \le D \text{ for any } t \in \mathring{J}.$$

If A is a positive invertible operator and B a selfadjoint operator such that the condition (1.1) is valid with $[m, M] \subset \mathring{J}$, then we have the following result as well [2]

$$(1.4) \qquad \frac{1}{2}d\left(MA^{1/2} - BA^{-1/2}\right)\left(A^{-1/2}B - mA^{1/2}\right)$$

$$\leq \frac{1}{M-m}\left[f\left(m\right)\left(MA - B\right) + f\left(M\right)\left(B - mA\right)\right] - \mathcal{P}_{f}\left(B, A\right)$$

$$\leq \frac{1}{2}D\left(MA^{1/2} - BA^{-1/2}\right)\left(A^{-1/2}B - mA^{1/2}\right).$$

If d > 0, then the first inequality in (1.4) is better than the same inequality in (1.2).

Motivated by the above results, we give in this paper some integral representations for the perspective $\mathcal{P}_f(B,A)$ of continously differentiable functions f and apply them in obtaining various norm and vector inequalities including the cases of weighted operator geometric mean and operator relative entropy.

2. Some Identities

We have the following lemma that is of interest in itself:

Lemma 1. Let $f: I \to \mathbb{C}$ be a continuously differentiable function on \mathring{I} the interior of I. If T is a selfadjoint operator such that the spectrum $\operatorname{Sp}(T) \subset \mathring{I}$, then for any $a \in I$ and $\mu \in \mathbb{C}$ we have

(2.1)
$$f(T) = f(a) I + \mu (T - aI) + (T - aI) \int_{0}^{1} [f'((1 - t) aI + tT) - \mu I] dt.$$

In particular, for any $x \in H$, ||x|| = 1 we have

(2.2)
$$f(T) = f(\langle Tx, x \rangle) I + \mu (T - \langle Tx, x \rangle I) + (T - \langle Tx, x \rangle I) \int_{0}^{1} [f'((1-t)\langle Tx, x \rangle I + tT) - \mu I] dt.$$

Proof. We have, by the change of variable $[0,1] \ni t \longmapsto s = (1-t)a + tb$ that

$$f(b) - f(a) = \int_{a}^{b} f'(s) ds = (b - a) \int_{0}^{1} f'((1 - t) a + tb) dt$$

giving that

(2.3)
$$f(b) = f(a) + (b-a) \int_0^1 f'((1-t)a + tb) dt$$

for any $a, b \in \mathring{I}$

Fix $a \in I$, and take the real numbers m, M such that $\operatorname{Sp}(T) \subseteq [m, M] \subset \mathring{I}$. If $\{E_{\lambda}\}_{{\lambda} \in \mathbb{R}}$ is the spectral family of the operator T, then by the spectral representation

theorem (SRT) we have

$$f(T) = \int_{m-0}^{M} f(\lambda) dE_{\lambda} := \lim_{\varepsilon \to 0+} \int_{m-\varepsilon}^{M} f(\lambda) dE_{\lambda},$$

where the integral is taken in the Riemann-Stieltjes sense.

Let $\varepsilon > 0$ small enough such that $[m - \varepsilon, M] \subset I$, then by integrating the equality (2.3) on the interval $[m - \varepsilon, M]$ and using the Fubini theorem, we have

(2.4)
$$\int_{m-\varepsilon}^{M} f(\lambda) dE_{\lambda}$$

$$= f(a) \int_{m-\varepsilon}^{M} dE_{\lambda} + \int_{m-\varepsilon}^{M} \left(\int_{0}^{1} (\lambda - a) f'((1-t) aI + t\lambda) dt \right) dE_{\lambda}$$

$$= f(a) \int_{m-\varepsilon}^{M} dE_{\lambda} + \int_{0}^{1} \left(\int_{m-\varepsilon}^{M} (\lambda - a) f'((1-t) aI + t\lambda) dE_{\lambda} \right) dt$$

for any $a \in \mathring{I}$.

Taking the limit over $\varepsilon \to 0+$ in (2.4) we get by SRT that

$$(2.5) f(T) = f(a) I + \int_0^1 (T - aI) f'((1 - t) aI + tT) dt$$

$$= f(a) I + (T - aI) \int_0^1 [\mu I + f'((1 - t) aI + tT) - \mu I] dt$$

$$= f(a) I + \mu (T - aI) + (T - aI) \int_0^1 [f'((1 - t) aI + tT) - \mu I] dt$$

and the identity (2.1) is obtained.

Now, since $\operatorname{Sp}(T) \subseteq [m, M] \subset \mathring{I}$ where m, M is as above, then $\langle Tx, x \rangle \in [m, M]$ for any $x \in H$, ||x|| = 1 and by taking $a = \langle Tx, x \rangle$ in (2.1) we get the desired result (2.1).

Corollary 1. With the assumptions of Theorem 1 we have for any $x, y \in H$, that

(2.6)
$$\langle f(T) x, y \rangle = f(a) \langle x, y \rangle + \mu (\langle Tx, y \rangle - a \langle x, y \rangle) + \int_{0}^{1} \langle f'((1-t) aI + tT) x - \mu x, Ty - ay \rangle dt$$

and, in particular,

(2.7)
$$\langle f(T)z, z \rangle = f(a) + \mu (\langle Tz, z \rangle - a) + \int_{0}^{1} \langle f'(1-t)aI + tT \rangle z - \mu z, Tz - az \rangle dt$$

and

(2.8)
$$\langle f(T)z, z \rangle = f(\langle Tz, z \rangle) + \int_{0}^{1} \langle f'((1-t)\langle Tz, z \rangle I + tT) z - \mu z, Tz - \langle Tz, z \rangle z \rangle dt$$

for any $z \in H$ with ||z|| = 1.

Proof. By using the identity (2.1) we have

$$\langle f(T)x,y\rangle = f(a)\langle x,y\rangle + \mu\langle (T-aI)x,y\rangle$$

$$+ \left\langle \left((T-aI) \int_0^1 \left[f'((1-t)aI + tT) - \mu I \right] dt \right) x,y \right\rangle$$

$$= f(a)\langle x,y\rangle + \mu\langle (T-aI)x,y\rangle$$

$$+ \left\langle \left(\int_0^1 \left[f'((1-t)aI + tT) - \mu I \right] dt \right) x, (T-aI)y \right\rangle$$

$$= f(a)\langle x,y\rangle + \mu\langle (T-aI)x,y\rangle$$

$$+ \int_0^1 \langle f'((1-t)aI + tT)x - \mu x, (T-aI)y\rangle dt$$

for any $x, y \in H$, which proves the equality (2.6).

The rest is obvious.

Remark 1. If T is such that $mI \leq T \leq MI$ with $[m,M] \subset \mathring{I}$ and $f:I \to \mathbb{C}$ is a continuously differentiable function on \mathring{I} , then we also have

$$(2.9) f(T) = f\left(\frac{m+M}{2}\right)I + \mu\left(T - \frac{m+M}{2}I\right)$$

$$+ \left(T - \frac{m+M}{2}I\right)\int_0^1 \left[f'\left((1-t)\frac{m+M}{2}I + tT\right) - \mu I\right]dt,$$

$$(2.10) \langle f(T)x,y\rangle = f\left(\frac{m+M}{2}\right)\langle x,y\rangle + \mu\left(\langle Tx,y\rangle - \frac{m+M}{2}\langle x,y\rangle\right) + \int_{0}^{1} \left\langle f'\left((1-t)\frac{m+M}{2}I + tT\right)x - \mu x, Ty - \frac{m+M}{2}y\right\rangle dt$$

and

$$(2.11) \quad \langle f\left(T\right)z,z\rangle = f\left(\frac{m+M}{2}\right) + \mu\left(\langle Tz,z\rangle - \frac{m+M}{2}\right) \\ + \int_{0}^{1} \left\langle f'\left((1-t)\frac{m+M}{2}I + tT\right)z - \mu z, Tz - \frac{m+M}{2}z\right\rangle dt,$$

for any $x, y \in H$ and any $z \in H$ with ||z|| = 1.

We say that the function defined an interval I containing the real number 1 is normalized, if f(1) = 0. In this situation, the equality (2.1) has a simpler form,

(2.12)
$$f(T) = \mu(T - I) + (T - I) \int_0^1 [f'((1 - t)I + tT) - \mu I] dt,$$

the equality (2.6) becomes

(2.13)
$$\langle f(T)x, y \rangle = \mu \left(\langle Tx, y \rangle - \langle x, y \rangle \right) + \int_0^1 \langle f'(1-t)I + tT \rangle x - \mu x, Ty - y \rangle dt$$

for any $x, y \in H$, while (2.7) can be written as

$$(2.14) \quad \langle f(T)z,z\rangle = \mu\left(\langle Tz,z\rangle - 1\right) + \int_0^1 \langle f'\left((1-t)I + tT\right)z - \mu z, Tz - z\rangle dt$$

for any $z \in H$ with ||z|| = 1.

Corollary 2. If T is such that $mI \leq T \leq MI$ with $[m, M] \subset \mathring{I}$ and $f: I \to \mathbb{C}$ is a continuously differentiable function on \mathring{I} , then we have

$$(2.15) f(T) = \frac{1}{M-m} \int_{m}^{M} f(u) du I + \mu \left(T - \frac{m+M}{2} I \right)$$

$$+ \frac{1}{M-m} \int_{m}^{M} \left[(T-uI) \int_{0}^{1} \left[f'((1-t)uI + tT) - \mu I \right] dt \right] du$$

$$= \frac{1}{M-m} \int_{m}^{M} f(u) du I + \mu \left(T - \frac{m+M}{2} I \right)$$

$$+ \frac{1}{M-m} \int_{0}^{1} \left[\int_{m}^{M} (T-uI) \left[f'((1-t)uI + tT) - \mu I \right] du \right] dt.$$

The proof follows by taking the integral mean in the equality (2.1) and using Fubini's theorem.

Now, let A be a positive invertible operator, B a selfadjoint operator such that the spectrum $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset \mathring{I}$ and $f:I\to\mathbb{C}$ be a continuously differentiable function on \mathring{I} . We define, by the use of continuous functional calculus, the noncommutative perspective of f and A, B as

(2.16)
$$P_{f}(B,A) := A^{1/2} f\left(A^{-1/2} B A^{-1/2}\right) A^{1/2}.$$
If $f_{\nu} : [0,\infty) \to [0,\infty), f_{\nu}(t) = t^{\nu}, \nu \in [0,1], \text{ then}$

$$P_{f_{\nu}}(B,A) := A^{1/2} \left(A^{-1/2} B A^{-1/2}\right)^{\nu} A^{1/2} =: A \sharp_{\nu} B,$$

the weighted operator geometric mean of the positive invertible operators A and B with the weight ν .

We define the weighted operator arithmetic mean by

$$A\nabla_{\nu}B := (1 - \nu) A + \nu B, \ \nu \in [0, 1].$$

It is well known that the following Young's type inequality holds:

$$A\sharp_{\nu}B \leq A\nabla_{\nu}B$$

for any $\nu \in [0, 1]$.

If we take the function $f = \ln$, then

$$P_{\ln}(B,A) := A^{1/2} \ln \left(A^{-1/2} B A^{-1/2} \right) A^{1/2} =: S(A|B),$$

the relative operator entropy, for positive invertible operators A and B.

Kamei and Fujii [9], [10] defined the relative operator entropy S(A|B), for positive invertible operators A and B, which is a relative version of the operator entropy considered by Nakamura-Umegaki [22].

Theorem 1. Let A be a positive invertible operator, B a selfadjoint operator such that the spectrum $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset \mathring{I}$ and $f:I\to\mathbb{C}$ be a continuously differentiable function on \mathring{I} . Then for any $a\in I$ and $\mu\in\mathbb{C}$ we have

(2.17)
$$P_{f}(B,A) = f(a) A + \mu (B - aA) + (BA^{-1} - aI) \int_{0}^{1} P_{f'-\mu} ((aA) \nabla_{t} B, A) dt.$$

Proof. If we take $T = A^{-1/2}BA^{-1/2}$ in (2.1), then we have

$$(2.18) \ f\left(A^{-1/2}BA^{-1/2}\right)$$

$$= f(a) I + \mu \left(A^{-1/2}BA^{-1/2} - aI\right)$$

$$+ \left(A^{-1/2}BA^{-1/2} - aI\right) \int_0^1 \left[f'\left((1-t)aI + tA^{-1/2}BA^{-1/2}\right) - \mu I \right] dt$$

$$= f(a) I + \mu A^{-1/2} (B - aA) A^{-1/2}$$

$$+ A^{-1/2} (B - aA) A^{-1/2} \int_0^1 \left[f'\left(A^{-1/2} \left[(1-t)aA + tB\right]A^{-1/2}\right) - \mu I \right] dt.$$

If we multiply both sides of (2.18) by $A^{1/2}$ we get

$$\begin{split} &A^{1/2} f\left(A^{-1/2} B A^{-1/2}\right) A^{1/2} \\ &= f\left(a\right) A + \mu \left(B - a A\right) \\ &+ \left(B - a A\right) A^{-1/2} \int_{0}^{1} \left[f'\left(A^{-1/2} \left[\left(1 - t\right) a A + t B\right] A^{-1/2}\right) - \mu I\right] A^{1/2} dt \\ &= f\left(a\right) A + \mu \left(B - a A\right) \\ &+ \left(B A^{-1} - a I\right) \int_{0}^{1} A^{1/2} \left[f'\left(A^{-1/2} \left[\left(1 - t\right) a A + t B\right] A^{-1/2}\right) - \mu I\right] A^{1/2} dt \end{split}$$

and the representation (2.17) is obtained.

We observe that if $1 \in I$ and the function f is normalized, then the equality (2.17) has a simpler form

(2.19)
$$P_{f}(B,A) = \mu(B-A) + (BA^{-1} - I) \int_{0}^{1} P_{f'-\mu}(A\nabla_{t}B,A) dt.$$

Corollary 3. Let A be a positive invertible operator, B a selfadjoint operator such that

$$(2.20) mA \le B \le MA$$

for some real numbers m, M with $[m, M] \subset \mathring{I}$ and $f: I \to \mathbb{C}$ be a continuously differentiable function on \mathring{I} . Then for any $\mu \in \mathbb{C}$ we have

$$(2.21) P_f(B,A) = f\left(\frac{m+M}{2}\right)A + \mu\left(B - \frac{m+M}{2}A\right)$$

$$+ \left(BA^{-1} - \frac{m+M}{2}I\right) \int_0^1 P_{f'-\mu}\left(\left(\frac{m+M}{2}A\right)\nabla_t B, A\right) dt$$

and

$$(2.22) P_{f}(B,A) = \left(\frac{1}{M-m} \int_{m}^{M} f(u) du\right) A + \mu \left(B - \frac{m+M}{2}A\right)$$

$$+ \frac{1}{M-m} \int_{m}^{M} \left[\left(BA^{-1} - uI\right) \int_{0}^{1} P_{f'-\mu} \left((uA) \nabla_{t}B, A\right) dt \right] du$$

$$= \left(\frac{1}{M-m} \int_{m}^{M} f(u) du\right) A + \mu \left(B - \frac{m+M}{2}A\right)$$

$$+ \frac{1}{M-m} \int_{0}^{1} \left[\int_{m}^{M} \left(BA^{-1} - uI\right) P_{f'-\mu} \left((uA) \nabla_{t}B, A\right) du \right] dt.$$

From the condition (2.20) we have by multiplying both sides with $A^{-1/2}$ that $mI \le A^{-1/2}BA^{-1/2} \le MI$. If we take $T = A^{-1/2}BA^{-1/2}$ and use the inequalities (2.9) and (2.15) we get (2.21) and (2.22).

Corollary 4. With the assumptions of Theorem 1 we have for any $x \in H$, $x \neq 0$ that

$$(2.23) P_f(B,A) = f\left(\frac{\langle Bx, x\rangle}{\langle Ax, x\rangle}\right) A + \mu \left(B - \frac{\langle Bx, x\rangle}{\langle Ax, x\rangle}A\right)$$

$$+ \left(BA^{-1} - \frac{\langle Bx, x\rangle}{\langle Ax, x\rangle}I\right) \int_0^1 P_{f'-\mu}\left(\left(\frac{\langle Bx, x\rangle}{\langle Ax, x\rangle}A\right)\nabla_t B, A\right) dt$$

and

$$\begin{split} (2.24) & \langle P_{f}\left(B,A\right)x,x\rangle \\ &= f\left(\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}\right)\langle Ax,x\rangle \\ &+ \int_{0}^{1}\left\langle P_{f'-\mu}\left(\left(\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}A\right)\nabla_{t}B,A\right)x,BA^{-1}x - \frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}x\right\rangle dt. \end{split}$$

Proof. Since $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset \mathring{I}$ then there exists some real numbers m,M such that $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subseteq [m,M]\subset \mathring{I}$.

Let $x \in H$, $x \neq 0$ and put

$$\begin{array}{ll} a & = & \frac{\left\langle Bx,x\right\rangle}{\left\langle Ax,x\right\rangle} = \frac{\left\langle A^{1/2} \left(A^{-1/2}BA^{-1/2}\right)A^{1/2}x,x\right\rangle}{\left\langle A^{1/2}x,A^{1/2}x\right\rangle} \\ & = & \frac{\left\langle \left(A^{-1/2}BA^{-1/2}\right)A^{1/2}x,A^{1/2}x\right\rangle}{\left\|A^{1/2}x\right\|^2} = \left\langle \left(A^{-1/2}BA^{-1/2}\right)u,u\right\rangle \in [m,M] \end{array}$$

where $u = \frac{A^{1/2}x}{\|A^{1/2}x\|^2} \neq 0$ and $\|u\| = 1$.

Now, by taking $a = \frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}$ in (2.17) we get (2.23).

The equality (2.24) follows by (2.23) on taking the inner product $\langle P_f(B, A) x, x \rangle$ and doing the appropriate calculation in the right side. The details are omitted. \square

3. Inequalities for Bounded Derivatives

Now, for ϕ , $\Phi \in \mathbb{C}$ and I an interval of real numbers, define the sets of complex-valued functions (see for instance [5])

$$\begin{split} \bar{U}_{I}\left(\phi,\Phi\right) \\ &:= \left\{g: I \to \mathbb{C} | \operatorname{Re}\left[\left(\Phi - g\left(t\right)\right) \left(\overline{g\left(t\right)} - \overline{\phi}\right)\right] \geq 0 \text{ for almost every } t \in I\right\} \end{split}$$

and

$$\bar{\Delta}_{I}\left(\phi,\Phi\right):=\left\{g:I\rightarrow\mathbb{C}|\;\left|g\left(t\right)-\frac{\phi+\Phi}{2}\right|\leq\frac{1}{2}\left|\Phi-\phi\right|\;\text{for a.e. }t\in I\right\}.$$

The following representation result may be stated.

Proposition 1. For any ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$, we have that $\bar{U}_I(\phi, \Phi)$ and $\bar{\Delta}_I(\phi, \Phi)$ are nonempty, convex and closed sets and

(3.1)
$$\bar{U}_{I}(\phi, \Phi) = \bar{\Delta}_{I}(\phi, \Phi).$$

Proof. We observe that for any $z \in \mathbb{C}$ we have the equivalence

$$\left|z - \frac{\phi + \Phi}{2}\right| \le \frac{1}{2} \left|\Phi - \phi\right|$$

if and only if

$$\operatorname{Re}\left[\left(\Phi - z\right)\left(\bar{z} - \phi\right)\right] \ge 0.$$

This follows by the equality

$$\frac{1}{4} \left| \Phi - \phi \right|^2 - \left| z - \frac{\phi + \Phi}{2} \right|^2 = \operatorname{Re} \left[(\Phi - z) \left(\bar{z} - \phi \right) \right]$$

that holds for any $z \in \mathbb{C}$.

The equality (3.1) is thus a simple consequence of this fact.

On making use of the complex numbers field properties we can also state that:

Corollary 5. For any ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$, we have that

(3.2)
$$\bar{U}_{I}(\phi, \Phi) = \{g : I \to \mathbb{C} \mid (\operatorname{Re} \Phi - \operatorname{Re} g(t)) (\operatorname{Re} g(t) - \operatorname{Re} \phi) + (\operatorname{Im} \Phi - \operatorname{Im} g(t)) (\operatorname{Im} g(t) - \operatorname{Im} \phi) \geq 0 \text{ for a.e. } t \in I\}.$$

Now, if we assume that $\operatorname{Re}(\Phi) \ge \operatorname{Re}(\phi)$ and $\operatorname{Im}(\Phi) \ge \operatorname{Im}(\phi)$, then we can define the following set of functions as well:

(3.3)
$$\bar{S}_{I}(\phi, \Phi) := \{g : I \to \mathbb{C} \mid \operatorname{Re}(\Phi) \ge \operatorname{Re}g(t) \ge \operatorname{Re}(\phi)$$
 and $\operatorname{Im}(\Phi) \ge \operatorname{Im}g(t) \ge \operatorname{Im}(\phi)$ for a.e. $t \in I\}$.

One can easily observe that $\bar{S}_{I}(\phi, \Phi)$ is closed, convex and

$$\emptyset \neq \bar{S}_I(\phi, \Phi) \subseteq \bar{U}_I(\phi, \Phi).$$

We need the following lemma:

Lemma 2. Let T be a selfadjoint operator and $A \geq 0$. Then we have

$$(3.5) -A^{1/2} |T| A^{1/2} \le A^{1/2} T A^{1/2} \le A^{1/2} |T| A^{1/2}$$

in the operator order, where |T| is the absolute value of T. We also have

(3.6)
$$\|A^{1/2}TA^{1/2}\| \le \|A^{1/2}|T|A^{1/2}\|.$$

Proof. If we use Jensen's operator inequality for the convex function f(t) = |t|, then we have

$$|\langle Ty, y \rangle| \le \langle |T| y, y \rangle$$

for any $y \in H$.

If we take in this inequality $y = A^{1/2}x$, $x \in H$, then we get

$$\left|\left\langle TA^{1/2}x,A^{1/2}x\right
angle
ight|\leq\left\langle \left|T\right|A^{1/2}x,A^{1/2}x\right
angle$$

that is equivalent to

$$\left|\left\langle A^{1/2}TA^{1/2}x,x\right\rangle\right| \leq \left\langle A^{1/2}\left|T\right|A^{1/2}x,x\right\rangle$$

or to

$$-\left\langle A^{1/2}\left|T\right|A^{1/2}x,x\right\rangle \leq\left\langle A^{1/2}TA^{1/2}x,x\right\rangle \leq\left\langle A^{1/2}\left|T\right|A^{1/2}x,x\right\rangle$$

for any $x \in H$, which proves the inequality (3.5).

By taking the supremum over $x \in H$, ||x|| = 1 in (3.7) we obtain the desired inequality (3.6).

Theorem 2. Let A be a positive invertible operator, B a selfadjoint operator such that the spectrum $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset \mathring{I}$ and $f:I\to\mathbb{C}$ be a continuously differentiable function on \mathring{I} and such that $f'\in\bar{\Delta}_{\mathring{I}}\left(\phi,\Phi\right)$ for some $\phi,\Phi\in\mathbb{C},\phi\neq\Phi$. Then for any $a\in I$ we have

(3.8)
$$\left\| P_f(B,A) - f(a)A - \frac{\phi + \Phi}{2} (B - aA) \right\| \le \frac{1}{2} |\Phi - \phi| \|BA^{-1} - aI\| \|A\|.$$

In particular, we have

(3.9)
$$\left\| P_f(B, A) - f\left(\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}\right) A - \frac{\phi + \Phi}{2} \left(B - \frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}A\right) \right\|$$

$$\leq \frac{1}{2} \left| \Phi - \phi \right| \left\| BA^{-1} - \frac{\langle Bx, x \rangle}{\langle Ax, x \rangle} I \right\| \|A\|$$

for any $x \in H$, $x \neq 0$.

Proof. Using the identity (2.17) for $\mu = \frac{\phi + \Phi}{2}$ and taking the operator norm, then we have

for any $a \in I$.

Since $f' \in \bar{\Delta}_{\mathring{I}}(\phi, \Phi)$, then for any $s \in \mathring{I}$ we have

$$\left| f'(s) - \frac{\phi + \Phi}{2} \right| \le \frac{1}{2} \left| \Phi - \phi \right|.$$

We observe that

$$\operatorname{Sp}\left(A^{-1/2}\left[\left(1-t\right)aA+tB\right]A^{-1/2}\right)=\operatorname{Sp}\left(\left(1-t\right)aI+tA^{-1/2}BA^{-1/2}\right)\subset\mathring{I}$$

for any $a \in \mathring{I}$ and $t \in [0,1]$, and by the continuous functional calculus we get from (3.11) that

(3.12)
$$\left| f' \left(A^{-1/2} \left[(1-t) aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right| \le \frac{1}{2} \left| \Phi - \phi \right| I$$

for any $a \in \mathring{I}$ and $t \in [0, 1]$.

Now, multiplying both sides of (3.12) by $A^{1/2}$, we get

$$A^{1/2} \left| f'\left(A^{-1/2} \left[(1-t) \, aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right| A^{1/2} \le \frac{1}{2} \left| \Phi - \phi \right| A^{-1/2} \left| \Phi - \phi \right| A^{-1$$

and by taking the norm in this inequality, we get

(3.13)
$$\left\| A^{1/2} \left| f' \left(A^{-1/2} \left[(1-t) aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right| A^{1/2} \right\|$$

$$\leq \frac{1}{2} \left| \Phi - \phi \right| \|A\|$$

for any $a \in \mathring{I}$ and $t \in [0, 1]$.

Using Lemma 2 we get

$$\begin{aligned} & \left\| A^{1/2} \left[f' \left(A^{-1/2} \left[(1-t) \, aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right] A^{1/2} \right\| \\ & \leq \left\| A^{1/2} \left| f' \left(A^{-1/2} \left[(1-t) \, aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right| A^{1/2} \right\| \\ & \leq \frac{1}{2} \left| \Phi - \phi \right| \left\| A \right\| \end{aligned}$$

and by (3.10) we obtain the desired result (3.1).

From Theorem 2 we have the following particular inequalities of interest:

Corollary 6. Let A be a positive invertible operator, B a selfadjoint operator such that the inequality (2.20) is valid for some real numbers m, M with $[m,M] \subset \mathring{I}$ and $f: I \to \mathbb{C}$ be a continuously differentiable function on \mathring{I} and such that $f' \in \bar{\Delta}_{\mathring{I}}(\phi, \Phi)$ for some ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$. Then for any $\mu \in \mathbb{C}$ we have

and

(3.15)
$$\left\| P_f(B, A) - \left(\frac{1}{M - m} \int_m^M f(u) \, du \right) A - \frac{\phi + \Phi}{2} \left(B - \frac{m + M}{2} A \right) \right\|$$

$$\leq \frac{1}{2} \left| \Phi - \phi \right| \left\| A \right\| \frac{1}{M - m} \int_m^M \left\| B A^{-1} - u I \right\| du.$$

Remark 2. Since $mA \leq B \leq MA$, then

$$\left\|B - \frac{m+M}{2}A\right\| \le \frac{1}{2}\left(M-m\right)\|A\|$$

implying that

$$\begin{aligned} \left\| BA^{-1} - \frac{m+M}{2}I \right\| &= \left\| \left(B - \frac{m+M}{2}A \right) A^{-1} \right\| \\ &\leq \left\| B - \frac{m+M}{2}A \right\| \left\| A^{-1} \right\| \\ &\leq \frac{1}{2} \left(M - m \right) \left\| A \right\| \left\| A^{-1} \right\|. \end{aligned}$$

Therefore by (3.14) we obtain the following simpler (however coarser) inequality

(3.16)
$$\left\| P_f(B, A) - f\left(\frac{m+M}{2}\right) A - \frac{\phi + \Phi}{2} \left(B - \frac{m+M}{2}A\right) \right\|$$

$$\leq \frac{1}{4} \left| \Phi - \phi \right| (M-m) \left\| A \right\|^2 \left\| A^{-1} \right\|.$$

We observe that if $f:[m,M] \to \mathbb{R}$ is a convex function and if $f'_+(m)$ and $f'_+(M)$ are finite, then from the above inequalities we can state the following inequalities that provide a large number of examples:

(3.17)
$$\left\| P_{f}(B,A) - f(a)A - \frac{f'_{+}(m) + f'_{+}(M)}{2} (B - aA) \right\|$$

$$\leq \frac{1}{2} \left[f'_{+}(M) - f'_{+}(m) \right] \left\| BA^{-1} - aI \right\| \|A\|,$$

for any $x \in H$, $x \neq 0$,

and

(3.20)
$$\left\| P_{f}(B,A) - \left(\frac{1}{M-m} \int_{m}^{M} f(u) du \right) A - \frac{f'_{+}(m) + f'_{+}(M)}{2} \left(B - \frac{m+M}{2} A \right) \right\|$$

$$\leq \frac{1}{2} \left[\frac{f'_{+}(M) - f'_{+}(m)}{M-m} \right] \|A\| \int_{m}^{M} \|BA^{-1} - uI\| du.$$

Now, by taking the inner product in the equality (2.17) we have

$$(3.21) \qquad \langle P_{f}(B,A)x,y\rangle = f(a)\langle Ax,y\rangle + \mu(\langle Bx,y\rangle - a\langle Ax,y\rangle)$$

$$+ \left\langle \left(BA^{-1} - aI\right) \int_{0}^{1} P_{f'-\mu}((aA)\nabla_{t}B,A) dtx,y\right\rangle$$

$$= f(a)\langle Ax,y\rangle + \mu(\langle Bx,y\rangle - a\langle Ax,y\rangle)$$

$$+ \int_{0}^{1} \left\langle P_{f'-\mu}((aA)\nabla_{t}B,A)x, \left(BA^{-1} - aI\right)y\right\rangle dt$$

for any $x, y \in H$.

We have:

Theorem 3. Let A be a positive invertible operator, B a selfadjoint operator such that the spectrum $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right)\subset \mathring{I}$ and $f:I\to\mathbb{C}$ be a continuously differentiable function on \mathring{I} and such that $f'\in\bar{\Delta}_{\mathring{I}}(\phi,\Phi)$ for some $\phi,\Phi\in\mathbb{C},\phi\neq\Phi$. Then for any $a\in I$ we have

(3.22)
$$\left| \langle P_{f}(B,A)x,y \rangle - f(a) \langle Ax,y \rangle - \frac{\phi + \Phi}{2} (\langle Bx,y \rangle - a \langle Ax,y \rangle) \right|$$

$$\leq \frac{1}{2} |\Phi - \phi| ||A|| ||BA^{-1}y - ay|| ||x||$$

$$\leq \frac{1}{2} |\Phi - \phi| ||A|| ||BA^{-1} - aI|| ||x|| ||y||$$

for all $x, y \in H$.

In particular, we have

(3.23)
$$\left| \langle P_f(B, A) x, x \rangle - f\left(\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}\right) \langle Ax, x \rangle \right|$$

$$\leq \frac{1}{2} \left| \Phi - \phi \right| \left\| A \right\| \left\| BA^{-1}x - \frac{\langle Bx, x \rangle}{\langle Ax, x \rangle} x \right\|$$

for any $x \in H$, ||x|| = 1.

Proof. By the equality (3.21) we have

$$(3.24) \qquad \left| \langle P_{f}(B,A) x, y \rangle - f(a) \langle Ax, y \rangle - \frac{\phi + \Phi}{2} (\langle Bx, y \rangle - a \langle Ax, y \rangle) \right|$$

$$\leq \int_{0}^{1} \left| \left\langle A^{1/2} \left[f' \left(A^{-1/2} \left[(1-t) aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right] A^{1/2} x,$$

$$(BA^{-1} - aI) y \right| dt$$

$$\leq \left\| \left(BA^{-1} - aI \right) y \right\|$$

$$\times \int_{0}^{1} \left\| A^{1/2} \left[f' \left(A^{-1/2} \left[(1-t) aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right] A^{1/2} x \right\| dt,$$

where for the last inequality we used the Schwarz inequality. Since

$$||(BA^{-1} - aI)y|| \le ||BA^{-1} - aI|| ||y||$$

and

$$\begin{split} & \left\| A^{1/2} \left[f' \left(A^{-1/2} \left[(1-t) \, aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right] A^{1/2} x \right\| \\ & \leq \left\| A^{1/2} \left[f' \left(A^{-1/2} \left[(1-t) \, aA + tB \right] A^{-1/2} \right) - \frac{\phi + \Phi}{2} I \right] A^{1/2} \right\| \left\| x \right\| \\ & \leq \frac{1}{2} \left| \Phi - \phi \right| \left\| x \right\|, \end{split}$$

then by (3.24) we get the desired inequality (3.22).

We notice that, if $f:[m,M] \to \mathbb{R}$ is convex, then by (3.23) we have the following reverse of Jensen's inequality for perspectives

$$(3.25) 0 \leq \langle P_f(B,A)x,x\rangle - f\left(\frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}\right)\langle Ax,x\rangle$$
$$\leq \frac{1}{2}\left[f'_+(M) - f'_+(m)\right] \|A\| \left\|BA^{-1}x - \frac{\langle Bx,x\rangle}{\langle Ax,x\rangle}x\right\|$$

for any $x \in H$, ||x|| = 1, provided $mA \le B \le MA$.

Corollary 7. With the assumptions of Corollary 6 we have

$$\left| \langle P_{f} (B, A) x, y \rangle - f \left(\frac{m+M}{2} \right) \langle Ax, y \rangle \right|$$

$$- \frac{\phi + \Phi}{2} \left(\langle Bx, y \rangle - \frac{m+M}{2} \langle Ax, y \rangle \right) \left| \right|$$

$$\leq \frac{1}{2} |\Phi - \phi| \|A\| \|BA^{-1}y - \frac{m+M}{2}y\| \|x\|$$

$$\leq \frac{1}{2} |\Phi - \phi| \|A\| \|BA^{-1} - \frac{m+M}{2}I\| \|x\| \|y\|$$

$$\leq \frac{1}{4} |\Phi - \phi| (M-m) \|A\|^{2} \|A^{-1}\| \|x\| \|y\|$$

for any $x, y \in H$.

4. Applications for Operator Geometric Mean

If we consider the continuous function $f_{\nu}:[0,\infty)\to[0,\infty)$, $f_{\nu}(t)=t^{\nu}$, $\nu\in[0,1]$, then the operator ν -weighted arithmetic-geometric mean can be interpreted as the perspective $\mathcal{P}_{f_{\nu}}(B,A)$, namely

$$\mathcal{P}_{f_{\nu}}(B,A) = A \sharp_{\nu} B.$$

For recent results on operator Young inequality see [11]-[14], [15] and [23]-[24].

Using the representation (2.17), we have for positive invertible operators A, B that

(4.1)
$$A\sharp_{\nu}B = a^{\nu}A + \mu (B - aA) + (BA^{-1} - aI) \times \int_{0}^{1} A^{1/2} \left[\nu \left(A^{-1/2} \left[(1 - t) aA + tB \right] A^{-1/2} \right)^{\nu - 1} - \mu I \right] A^{1/2} dt,$$

for any a > 0 and $\mu \in \mathbb{R}$.

If we take in this equality a=1 and $\mu=\nu$, then we get the equality

$$\begin{split} A\sharp_{\nu}B &= A + \nu \left(B - A \right) \\ &+ \nu \left(BA^{-1} - I \right) \\ &\times \int_{0}^{1} A^{1/2} \left[\left(A^{-1/2} \left[\left(1 - t \right) A + tB \right] A^{-1/2} \right)^{\nu - 1} - I \right] A^{1/2} dt, \end{split}$$

that is equivalent to

$$(4.2) \quad (0 \le) A \nabla_{\nu} B - A \sharp_{\nu} B$$

$$= \nu \left(I - B A^{-1} \right) \int_{0}^{1} A^{1/2} \left[\left(A^{-1/2} \left[(1 - t) A + t B \right] A^{-1/2} \right)^{\nu - 1} - I \right] A^{1/2} dt.$$

Similar equalities may be obtained by utilizing the other results from the second section, however the details are omitted.

The function $f(t) = -t^{\nu}$, $\nu \in [0,1]$ is convex, and by (3.17)-(3.19) we have

(4.3)
$$\left\| A \sharp_{\nu} B - a^{\nu} A - \nu \frac{m^{\nu-1} + M^{\nu-1}}{2} (B - aA) \right\|$$

$$\leq \frac{1}{2} \nu \left(m^{\nu-1} - M^{\nu-1} \right) \left\| B A^{-1} - aI \right\| \|A\|,$$

for any $x \in H$, $x \neq 0$ and

where A, B are positive invertible operators such that $mA \leq B \leq MA$ and 0 < m < M.

From (3.25) we also have for $\nu \in [0,1]$ that

$$(4.6) 0 \leq \langle Bx, x \rangle^{\nu} \langle Ax, x \rangle^{1-\nu} - \langle A\sharp_{\nu} Bx, x \rangle$$

$$\leq \frac{1}{2} \nu \left(m^{\nu-1} - M^{\nu-1} \right) \|A\| \left\| BA^{-1}x - \frac{\langle Bx, x \rangle}{\langle Ax, x \rangle} x \right\|$$

for any $x \in H$, ||x|| = 1, provided $mA \le B \le MA$.

5. Applications for Relative Operator Entropy

Consider the logarithmic function \ln . Then the relative operator entropy can be interpreted as the permanent of \ln , namely

$$\mathcal{P}_{ln}(B,A) = S(A|B)$$
.

For some recent results on relative operator entropy see [3]-[4], [16]-[17] and [19]-[20].

Using the identity (2.17) for $f = \ln$, we have for the invertible positive operators A, B that

(5.1)
$$S(A|B) = \ln aA + \mu (B - aA) + (BA^{-1} - aI) \int_0^1 A^{1/2} \left[A^{1/2} \left[(1 - t) aA + tB \right]^{-1} A^{1/2} - \mu I \right] A^{1/2} dt$$
$$= \ln aA + \mu (B - aA) + (B - aA) \left(\int_0^1 \left[\left[(1 - t) aA + tB \right]^{-1} - \mu A^{-1} \right] dt \right) A$$

for any a > 0 and $\mu \in \mathbb{R}$.

If we take in (5.1) a=1 and $\mu=1$, then we have the simpler equality

(5.2)
$$S(A|B) = B - A + (B - A) \left(\int_0^1 \left[\left[(1 - t) A + tB \right]^{-1} - A^{-1} \right] dt \right) A.$$

If we consider the convex function $f(t) = -\ln t$ and assume that $mA \le B \le MA$ for 0 < m < M, then by (3.17)-(3.19) we get

(5.3)
$$\left\| S(A|B) - \ln aA - \frac{m+M}{2mM} (B - aA) \right\|$$

$$\leq \frac{M-m}{2mM} \left\| BA^{-1} - aI \right\| \|A\|,$$

for any $x \in H$, $x \neq 0$, and

(5.5)
$$\left\| S(A|B) - \ln\left(\frac{m+M}{2}\right) A - \frac{m+M}{2mM} \left(B - \frac{m+M}{2}A\right) \right\|$$

$$\leq \frac{M-m}{2mM} \left\| BA^{-1} - \frac{m+M}{2}I \right\| \|A\| \leq \frac{(M-m)^2}{4mM} \|A\|^2 \|A^{-1}\|.$$

From (3.25) we also have

(5.6)
$$0 \leq \ln\left(\frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}\right) \langle Ax, x \rangle - \langle S(A|B)x, x \rangle$$
$$\leq \frac{M - m}{2mM} \|A\| \left\|BA^{-1}x - \frac{\langle Bx, x \rangle}{\langle Ax, x \rangle}x\right\|$$

for any $x \in H$, ||x|| = 1, provided $mA \le B \le MA$.

References

- [1] S. S. Dragomir, Some new reverses of Young's operator inequality, RGMIA Res. Rep. Coll. 18 (2015), Art. 130. [Online http://rgmia.org/papers/v18/v18a130.pdf].
- [2] S. S. Dragomir, On new refinements and reverses of Young's operator inequality, RGMIA Res. Rep. Coll. 18 (2015), Art. 135. [Online http://rgmia.org/papers/v18/v18a135.pdf].
- [3] S. S. Dragomir, Some inequalities for relative operator entropy, RGMIA Res. Rep. Coll. 18 (2015), Art. 145. [Online http://rgmia.org/papers/v18/v18a145.pdf].

- [4] S. S. Dragomir, Further inequalities for relative operator entropy, RGMIA Res. Rep. Coll. 18 (2015), Art. 160.[Online http://rgmia.org/papers/v18/v18a160.pdf].
- [5] S. S. Dragomir, M. S. Moslehian and Y. J. Cho, Some reverses of the Cauchy-Schwarz inequality for complex functions of self-adjoint operators in Hilbert spaces. *Math. Inequal. Appl.* 17 (2014), no. 4, 1365-1373. Preprint *RGMIA Res. Rep. Coll.*14 (2011), Art. 84. [Online http://rgmia.org/papers/v14/v14a84.pdf].
- [6] A. Ebadian, I. Nikoufar and M. E. Gordji, Perspectives of matrix convex functions, Proc. Natl. Acad. Sci. USA, 108 (2011), no. 18, 7313-7314.
- [7] E. G. Effros, A matrix convexity approach to some celebrated quantum inequalities, Proc. Natl. Acad. Sci. USA 106 (2009), 1006-1008.
- [8] E. G. Effros and F. Hansen, Noncomutative perspectives, Ann. Funct. Anal. 5 (2014), no. 2, 74–79.
- [9] J. I. Fujii and E. Kamei, Uhlmann's interpolational method for operator means. Math. Japon. 34 (1989), no. 4, 541–547.
- [10] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory. Math. Japon. 34 (1989), no. 3, 341–348.
- [11] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
- [12] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
- [13] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [14] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, *Linear Multilinear Algebra*, 59 (2011), 1031-1037.
- [15] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [16] I. H. Kim, Operator extension of strong subadditivity of entropy, J. Math. Phys. 53(2012), 122204
- [17] P. Kluza and M. Niezgoda, Inequalities for relative operator entropies, Elec. J. Lin. Alg. 27 (2014), Art. 1066.
- [18] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 264 (1980), 205-224.
- [19] M. S. Moslehian, F. Mirzapour, and A. Morassaei, Operator entropy inequalities. Collog. Math., 130 (2013), 159–168.
- [20] I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376-383.
- [21] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.
- [22] M. Nakamura and H. Umegaki, A note on the entropy for operator algebras. Proc. Japan Acad. 37 (1961) 149–154.
- [23] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.H.
- [24] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

 2 School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa