Received 23/02/16

A COMPANION OF OSTROWSKI TYPE INEQUALITIES FOR
MAPPINGS OF BOUNDED VARIATION AND SOME
APPLICATIONS

HUSEYIN BUDAK AND MEHMET ZEKI SARIKAYA

ABSTRACT. In this paper, we establish a companion of Ostrowski type in-
equalities for mappings of bounded variation and the quadrature formula is
also provided.

1. INTRODUCTION

Let f : [a,b] — R be a differentiable mapping on (a,b) whose derivative f’ :
(a,b) — R is bounded on (a,b), ie. ||f'||,, := sup |f'(t)] < co. Then, we have

te(a,b)
the inequality
1 1 (o o)’
(1.1) f(x)_b_a/f(t)dt < 4+(b—(j)2] b—a)[lf'll

for all z € [a,b][20]. The constant I is the best possible. This inequality is well
known in the literature as the Ostrowski inequality.

Definition 1. Let P:a =129 < z1 < ... < &, = b be any partition of [a,b] and let
Af(z;) = f(xir1) — f(z;). Then f(x) is said to be of bounded variation if the sum

m

> Af@)

is bounded for all such partitions. Let f be of bounded variation on [a,b], and Y (P)
n

denotes the sum > |Af(x;)| corresponding to the partition P of [a,b]. The number
i=1

b
\V () =sup {3 (P): P e Pab])},

is called the total variation of f on [a,b]. Here P([a,b]) denotes the family of par-
titions of [a,b].

In [13], Dragomir proved the following Ostrowski type inequalities for functions
of bounded variation:
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Theorem 1. Let f : [a,b] — R be a mapping of bounded variation on [a,b]. Then

(12) / P06 -a) ) < [30- 0+ o - 1] \:/(f)

2

holds for all @ € [a,b]. The constant % is the best possible.
Dragomir gave the following trapezoid inequality in [10]:

Theorem 2. Let f : [a,b] — R be a mapping of bounded variation on [a,b]. Then
we have the inequality

b

b
-0~ [ st < 50—\,

a

L3 S0 +10)

The constant % 1s the best possible.
We introduce the notation I,, : a = 29 < 1 < ... < x,, = b for a division of the
interval [a,b] with h; := x;41 — 2; and v(h) = max{h; : i =0,1,...,n — 1}. Then

we have

b

(1.4) / ()t = Ap(f, 1) + Re(f. 1)

a

where

n

(1.5 Ar(f.1,) =y T,
i=0
and the remainder term satisfies
1 b
(1.6) [Re(f, 1) < 5o\ ()-

In [14], Dragomir proved the following companion Ostrowski type inequalities
related functions of bounded variation:
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Theorem 3. Assume that the function f : [a,b] — R is of bounded variation on
[a,b]. Then we have the inequalities:

(1.7)

}\Z/m,

IN

T a+b—x

= max{\z/u),ﬁ\h/_x(f), v (f)}

d
Jor any x € [a, “;b] where \/(f) denotes the total variation of f on [c,d]. The

constant i is the best possible in the first branch of second inequality in (1.7).

For recent results concerning the above Ostrowski’s inequality and other related
results see [1]-[26].

In this work, we obtain a new companion of Ostrowski type integral inequalities
for functions of bounded variation. Then we give some applications for our results.
2. MAIN RESULTS

Now, we give a new companion of Ostrowski type integral inequalities for func-
tions of bounded variation:

Theorem 4. Let f : [a,b] — R be a mapping of bounded variation on [a,b]. Then,
we have the inequality

(2.1)

b
b—a

Sl s@ro-o e (G0) 4 (U] - [row

< max{ ,<a;bz>,xza}\b/(f)

d
where x € [a, “$2] and \/(f) denotes the total variation of f on [c,d].

73a+b
4

T




4 HUSEYIN BUDAK AND MEHMET ZEKI SARIKAYA

Proof. Consider the kernel P(z,t) defined by Qayyum et al. in [21]

t—a, te[m,%]
o Ry
Plz,t) =4 t— kb, t€ (v,a+b— ]

t— azfib’ te (a—l—b—x, a+22bfz]

+2b—
t—b, te [e2=x p].
Integrating by parts, we get

b

(2.2) / Pz, )df (1)

_ b;a{f(x)+f(a+b—x)+f<a—;x>+f<a+2b )} /f

It is well known that if g, f : [a,0] = R are such that ¢ is continuous on [a, b] and

f is of bounded variation on [a,b], then f g(t)df (t) exists and

b b

2.3 d su .
(2.3) / (0410 < s 901 V/)

On the other hand, by using (2.3), we get

b
/ P, t)df (t)

IN
=
[
S
~—
&
~—
N
+
/N
~
\
w
IS
=1+
S
N———
&
~—
=
/N
~+
[
IS
+
S
N——
&
—
N
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2 3a+b|\"
< swp ft—al\/(N+ sw ft-=—=]\/()
te[a,%] a E[%,w} %
at2b—x
a+b| N a+3b| \°
+ sup - — V )+ sup t=—3 Voo
tez,a+b—x] z te[atb—z,at2=2] at+b—z
b
+ sup t=b \/ (f)
te[%,b] a,+22b—.7:
% xT
r—a 3a+b| 1 /a+b
= \/(f)+maX{x— 1 72( 5 —$>}\/(f)
+b a+2b—=a
a+b N 3a+0b| 1 (a+b
+< 5 a:) \V (f)+maX{9: 1 ',2< 5 m)} Vo)
x a+b—x
z—a \
+—— V 0
at2b—z
2
b
3a+b a+b z—a
< - —
< max{:c 1 ,( 5 $>, 9 }Y(f)
This completes the proof. O

Remark 1. If we choose x = a in Theorem 4, the inequality (2.1) reduces the
inequality (1.3).

Corollary 1. Under the assumption of Theorem 4 with © = “;b, then we have the

following inequality
(2.4)

o (129 (52) o (=2)] - rou] < oo

The constant i 18 the best possible.

Proof. For proof of the sharpness of the constant, assume that (2.4) holds with a
constant A > 0, that is,
(2.5)

b— {Qf (a+b>+f<3a+b)+f(a+43b>] _/bf(t)dt gA(b—a)\:/(f)

If we choose f : [a,b] — R with

17 ifxe {(1J2rl77 da4+b a+3b

fx) =

0, ifzé€la,b]/ {"TH’, 3“:”’,—“231’
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then f is of bounded variation on [a, b], and

b b
(252) o (522) 01 (552) <o oo, Yoo

giving in (2.5), 1 <4A, thus A >

L 0

Corollary 2. Under the assumption of Theorem 4 with x = 3“T+b, then we get the
inequality

(2.6) ‘b4a[f(3a;rb>+f<az3b>
+f(7a8+b)+f<a+87bﬂ —/bf(t)dt

1 b
A

The constant % is the best possible.

Proof. For proof of the sharpness of the constant, assume that (3.4) holds with a
constant B > 0, that is,

(2.7) ’b;a[f<3a2—b>+f<a—z3b>
+f(7a;—b)+f<a—;7bﬂ _/bf(t)dt

b
< Bb-a)\/(f)

If we choose f : [a,b] — R with

: 3a4+b a+3b Tatb a+tT7b
{1’ 1f33€{&4 T T 1S }

fz) =

07 ifre [a7 b] / { S(L:-b’ a-i;l3b’ 7a8+b’ a-g?b}

then f is of bounded variation on [a, b], and
3a+b a+3b Ta+b a+7b
=4
1) e () o (557) oo (557 -

b b
/f(t)dt: 0, and \/(f) =8,

giving in (2.7), 1 < 8B, thus B > %. O
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Corollary 3. Let f is defined as in Theorem /4, and, additionally, if f(x) =
fla+b—2x), then we have

(2.8)
a [Qf( )_i_f(a—l—m)_i_f(a—l—%—mﬂ /f

< max{ ,(a;b—m>,$;a}\b/(f)-

a
Corollary 4. If we choose x = a in Corollary 3, then we have the inequality

b
M(bfa)f/f(t)dt % b—a) \/

a

3a+b
4

T —

The constant % 18 the best possible.

The sharpness of the constant can be proved similarly Corollary 1 and Corollary
2, it is omitted.

Corollary 5. Under the assumption of Theorem 4. Suppose that f € C*la,b],
then we have

b;a [f(x)+f(a+b—x)+f<a—;x> +f<a+2b_x)] /f

b b -
< max{‘x?)aJr ,<a; I>,$2a}||f,”1

4
for all x € [a, “L] . Here as subsequently ||.|, is the L1—norm

2
b
= / £t

Corollary 6. Under the assumption of Theorem 4. Let f : [a,b] — R be a Lip-
schitzian with the constant L > 0. Then

b;a [f(z)+f(a+bx)+f<a;$> +f<a+2bm)] /f

< Inax{ ,(“;b—x>,"”§“}(b—a)L

for all x € [a, ‘IT'H’] .

3a+b
4

€T —

3. APPLICATION TO QUADRATURE FORMULA

We now introduce the intermediate points &; € [z, zi41] (1 =0,1,...,n—1) in
the division I, : a = xg < 1 < ... < &, = b. Let h; := z;y1 — x; and v(h) =
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max {h; :4=0,1,....,n — 1} and define the sum
(B.DA(f, 10, €)

=g FE)+ S b - )+ £ (T 4y (B

Then the following Theorem holds:
Theorem 5. Let f be as Theorem 4. Then

b
(3.2) / F()dt = A(f. Lo, €) + R(f I, €)

where A(f,I,,&) is defined as above and the remainder term R(f,I,,£) satisfies
(3.3) |R(f. In, )]

3T; + Tit1

Z; + Tit1 fl — Xy b
= ie{oA,IlI,l?),(n—l} {max{ ’ ( 9 B 61) 72H \a/(f)

Proof. Application of Theorem 4 to the interval [z;, z;41] (i =0,1,...,n — 1) gives

(3.4)
h;

2

|:f(§i) Ff(@itmi —&)+f (W)

Ti+1

+f (x’ 2T _gi)] - / Ft)dt

2
< max{

for all i € {0,1,...,n — 1} . Summing the inequality (3.4) over ¢ from 0 ton — 1
and using the generalized triangle inequality, we have

ZTq

fEi"’-Ti-&-l fi—{Ei N
(e ea) S5 Vo

Zq

3x; + wiy1

|R(f, In;€)]
" 3z; +x T+ & —x o
i T Tiv1 i+ Ti1 ; — Ti
< iz_;max{gi_ 4 7( 2 _61)512}}/(]0)
3x; + i1 i + Tita & — i =N
< R —£. 2t T
< omex [max{ g - it ( . 51) SV
b
B 3T +®ip1| [T+ Tiva § — T
= e [maX{ & 1 ; ( 5 &) T \a/(f)
which completes the proof. ([

Remark 2. If we choose &, = x; in Theorem 5, we get (1.4) with (1.5) and (1.6).
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Corollary 7. If we choose &; = “F5 L in Theorem 5, then we have
b
[ e = 4.1 + R5, 1)
where
1 = ‘ Ti + Tip1 3T; + Tiy1 T+ 3Ti41
B L e R e

=0

and the remainder term R(f,I,) satisfies

b
R L] < o) V().

Corollary 8. If we choose &; = M% in Theorem &, then we have
b
[ e = (.1 + R5. 1)
a
where
A(f, In)

'_1 n‘ 3x; + Tit1 i + 3Tt
() e ()

Lf <7l’i +8’£i+1> ny <x1 +;$i+1>}

and the remainder term R(f,I,) satisfies
1 b
R(f.I)| < go() \/()-
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