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Abstract. In this paper, we establish a companion of Ostrowski type in-
equalities for mappings of bounded variation and the quadrature formula is
also provided.

1. Introduction

Let f : [a; b] ! R be a di¤erentiable mapping on (a; b) whose derivative f 0 :
(a; b) ! R is bounded on (a; b) ; i.e. kf 0k1 := sup

t2(a;b)
jf 0(t)j < 1: Then, we have

the inequality

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt

������ �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0k1 ;

for all x 2 [a; b][20]. The constant 1
4 is the best possible. This inequality is well

known in the literature as the Ostrowski inequality.

De�nition 1. Let P : a = x0 < x1 < ::: < xn = b be any partition of [a; b] and let
�f(xi) = f(xi+1)� f(xi): Then f(x) is said to be of bounded variation if the sum

mX
i=1

j�f(xi)j

is bounded for all such partitions. Let f be of bounded variation on [a; b], and
P
(P )

denotes the sum
nP
i=1

j�f(xi)j corresponding to the partition P of [a; b]. The number

b_
a

(f) := sup
nX

(P ) : P 2 P([a; b])
o
;

is called the total variation of f on [a; b] : Here P([a; b]) denotes the family of par-
titions of [a; b] :

In [13], Dragomir proved the following Ostrowski type inequalities for functions
of bounded variation:
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Theorem 1. Let f : [a; b]! R be a mapping of bounded variation on [a; b] : Then

(1.2)

������
bZ
a

f(t)dt� (b� a) f(x)

������ �
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f)

holds for all x 2 [a; b] : The constant 12 is the best possible.

Dragomir gave the following trapezoid inequality in [10]:

Theorem 2. Let f : [a; b]! R be a mapping of bounded variation on [a; b] : Then
we have the inequality

(1.3)

������f(a) + f(b)2
(b� a)�

bZ
a

f(t)dt

������ � 1

2
(b� a)

b_
a

(f):

The constant 12 is the best possible.

We introduce the notation In : a = x0 < x1 < ::: < xn = b for a division of the
interval [a; b] with hi := xi+1 � xi and v(h) = max fhi : i = 0; 1; :::; n� 1g. Then
we have

(1.4)

bZ
a

f(t)dt = AT (f; In) +RT (f; In)

where

(1.5) AT (f; In) :=
nX
i=0

f(xi) + f(xi+1)

2
hi

and the remainder term satis�es

(1.6) jRT (f; In)j �
1

2
v(h)

b_
a

(f):

In [14], Dragomir proved the following companion Ostrowski type inequalities
related functions of bounded variation:
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Theorem 3. Assume that the function f : [a; b] ! R is of bounded variation on
[a; b]. Then we have the inequalities:

(1.7)������12 [f(x) + f(a+ b� x)]� 1

b� a

bZ
a

f(t)dt

������
� 1

b� a

"
(x� a)

x_
a

(f) +

�
a+ b

2
� x

� a+b�x_
x

(f) + (x� a)
b_

a+b�x
(f)

#

�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

h
1
4 +

���x� 3a+b
4

b�a

���i bW
a
(f);�

2
�
x�a
b�a

��
+
� a+b

2 �x
b�a

��� 1
�

�

24� xW
a
(f)

��
+

�
a+b�xW
x
(f)

��
+

"
bW

a+b�x
(f)

#�35 1
�

; if � > 1; 1
� +

1
� = 1;

h
x�a+ b�a

2

b�a

i
max

(
xW
a
(f);

a+b�xW
x
(f);

bW
a+b�x

(f)

)

for any x 2
�
a; a+b2

�
where

dW
c
(f) denotes the total variation of f on [c; d]. The

constant 14 is the best possible in the �rst branch of second inequality in (1.7).

For recent results concerning the above Ostrowski�s inequality and other related
results see [1]-[26].
In this work, we obtain a new companion of Ostrowski type integral inequalities

for functions of bounded variation. Then we give some applications for our results.

2. Main Results

Now, we give a new companion of Ostrowski type integral inequalities for func-
tions of bounded variation:

Theorem 4. Let f : [a; b]! R be a mapping of bounded variation on [a; b] : Then,
we have the inequality

(2.1) ������b� a4
�
f (x) + f (a+ b� x) + f

�
a+ x

2

�
+ f

�
a+ 2b� x

2

��
�

bZ
a

f(t)dt

������
� max

�����x� 3a+ b4

���� ;�a+ b2 � x
�
;
x� a
2

� b_
a

(f)

where x 2
�
a; a+b2

�
and

dW
c
(f) denotes the total variation of f on [c; d] :
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Proof. Consider the kernel P (x; t) de�ned by Qayyum et al. in [21]

P (x; t) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

t� a; t 2
�
x; a+x2

�
t� 3a+b

4 ; t 2
�
a+x
2 ; x

�
t� a+b

2 ; t 2 (x; a+ b� x]

t� a+3b
4 ; t 2

�
a+ b� x; a+2b�x2

�
t� b; t 2

�
a+2b�x

2 ; b
�
:

Integrating by parts, we get

bZ
a

P (x; t)df(t)(2.2)

=
b� a
4

�
f (x) + f (a+ b� x) + f

�
a+ x

2

�
+ f

�
a+ 2b� x

2

��
�

bZ
a

f(t)dt:

It is well known that if g; f : [a; b] ! R are such that g is continuous on [a; b] and

f is of bounded variation on [a; b] ; then
bR
a

g(t)df(t) exists and

(2.3)

������
bZ
a

g(t)df(t)

������ � sup
t2[a;b]

jg(t)j
b_
a

(f):

On the other hand, by using (2.3), we get

������
bZ
a

P (x; t)df(t)

������
�

�������
a+x
2Z
a

(t� a) df(t)

�������+
�������

xZ
a+x
2

�
t� 3a+ b

4

�
df(t)

�������+
������
a+b�xZ
x

�
t� a+ b

2

�
df(t)

������
+

�������
a+b�x

2Z
a+b�x

�
t� a+ 3b

4

�
df(t)

�������+
�������

bZ
a+b�x

2

(t� b) df(t)

�������



A COMPANION OF OSTROWSKI TYPE INEQUALITIES 5

� sup
t2[a; a+x2 ]

jt� aj
a+x
2_
a

(f) + sup
t2[ a+x2 ;x]

����t� 3a+ b4

���� x_
a+x
2

(f)

+ sup
t2[x;a+b�x]

����t� a+ b2
���� a+b�x_

x

(f) + sup
t2[a+b�x; a+2b�x2 ]

����t� a+ 3b4

����
a+2b�x

2_
a+b�x

(f)

+ sup
t2[ a+2b�x2 ;b]

jt� bj
b_

a+2b�x
2

(f)

=
x� a
2

a+x
2_
a

(f) + max

�����x� 3a+ b4

���� ; 12
�
a+ b

2
� x

�� x_
a+x
2

(f)

+

�
a+ b

2
� x

� a+b�x_
x

(f) + max

�����x� 3a+ b4

���� ; 12
�
a+ b

2
� x

�� a+2b�x
2_

a+b�x
(f)

+
x� a
2

b_
a+2b�x

2

(f)

� max

�����x� 3a+ b4

���� ;�a+ b2 � x
�
;
x� a
2

� b_
a

(f):

This completes the proof. �

Remark 1. If we choose x = a in Theorem 4, the inequality (2.1) reduces the
inequality (1.3).

Corollary 1. Under the assumption of Theorem 4 with x = a+b
2 , then we have the

following inequality
(2.4)������b� a4

�
2f

�
a+ b

2

�
+ f

�
3a+ b

4

�
+ f

�
a+ 3b

4

��
�

bZ
a

f(t)dt

������ � 1

4
(b� a)

b_
a

(f):

The constant 14 is the best possible.

Proof. For proof of the sharpness of the constant, assume that (2.4) holds with a
constant A > 0; that is,
(2.5)������b� a4

�
2f

�
a+ b

2

�
+ f

�
3a+ b

4

�
+ f

�
a+ 3b

4

��
�

bZ
a

f(t)dt

������ � A(b� a)
b_
a

(f):

If we choose f : [a; b]! R with

f(x) =

8<: 1; if x 2
�
a+b
2 ;

3a+b
4 ; a+3b4

	
0; if x 2 [a; b] =

�
a+b
2 ;

3a+b
4 ; a+3b4
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then f is of bounded variation on [a; b], and

2f

�
a+ b

2

�
+ f

�
3a+ b

4

�
+ f

�
a+ 3b

4

�
= 4;

bZ
a

f(t)dt = 0; and
b_
a

(f) = 4;

giving in (2.5), 1 � 4A; thus A � 1
4 : �

Corollary 2. Under the assumption of Theorem 4 with x = 3a+b
4 , then we get the

inequality ����b� a4
�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

�
(2.6)

+f

�
7a+ b

8

�
+ f

�
a+ 7b

8

��
�

bZ
a

f(t)dt

������
� 1

8
(b� a)

b_
a

(f)

The constant 18 is the best possible.

Proof. For proof of the sharpness of the constant, assume that (3.4) holds with a
constant B > 0; that is,����b� a4

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

�
(2.7)

+f

�
7a+ b

8

�
+ f

�
a+ 7b

8

��
�

bZ
a

f(t)dt

������
� B(b� a)

b_
a

(f):

If we choose f : [a; b]! R with

f(x) =

8<: 1; if x 2
�
3a+b
4 ; a+3b4 ; 7a+b8 ; a+7b8

	
0; if x 2 [a; b] =

�
3a+b
4 ; a+3b4 ; 7a+b8 ; a+7b8

	
then f is of bounded variation on [a; b], and

f

�
3a+ b

4

�
+ f

�
a+ 3b

4

�
+ f

�
7a+ b

8

�
+ f

�
a+ 7b

8

�
= 4;

bZ
a

f(t)dt = 0; and
b_
a

(f) = 8;

giving in (2.7), 1 � 8B; thus B � 1
8 : �
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Corollary 3. Let f is de�ned as in Theorem 4, and, additionally, if f(x) =
f (a+ b� x) , then we have

(2.8) ������b� a4
�
2f (x) + f

�
a+ x

2

�
+ f

�
a+ 2b� x

2

��
�

bZ
a

f(t)dt

������
� max

�����x� 3a+ b4

���� ;�a+ b2 � x
�
;
x� a
2

� b_
a

(f):

Corollary 4. If we choose x = a in Corollary 3, then we have the inequality������3f(a) + f(b)4
(b� a)�

bZ
a

f(t)dt

������ � 1

2
(b� a)

b_
a

(f):

The constant 12 is the best possible.

The sharpness of the constant can be proved similarly Corollary 1 and Corollary
2, it is omitted.

Corollary 5. Under the assumption of Theorem 4. Suppose that f 2 C1 [a; b] ;
then we have������b� a4

�
f (x) + f (a+ b� x) + f

�
a+ x

2

�
+ f

�
a+ 2b� x

2

��
�

bZ
a

f(t)dt

������
� max

�����x� 3a+ b4

���� ;�a+ b2 � x
�
;
x� a
2

�
kf 0k1

for all x 2
�
a; a+b2

�
: Here as subsequently k:k1 is the L1�norm

kf 0k1 :=
bZ
a

f 0(t)dt:

Corollary 6. Under the assumption of Theorem 4. Let f : [a; b] ! R be a Lip-
schitzian with the constant L > 0: Then������b� a4

�
f (x) + f (a+ b� x) + f

�
a+ x

2

�
+ f

�
a+ 2b� x

2

��
�

bZ
a

f(t)dt

������
� max

�����x� 3a+ b4

���� ;�a+ b2 � x
�
;
x� a
2

�
(b� a)L

for all x 2
�
a; a+b2

�
:

3. Application to Quadrature Formula

We now introduce the intermediate points �i 2 [xi; xi+1] (i = 0; 1; :::; n� 1) in
the division In : a = x0 < x1 < ::: < xn = b. Let hi := xi+1 � xi and v(h) =
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max fhi : i = 0; 1; :::; n� 1g and de�ne the sum

A(f; In; �)(3.1)

: =
1

4

nX
i=0

hi

�
f(�i) + f (xi + xi+1 � �i) + f

�
xi + �i
2

�
+ f

�
xi + 2xi+1 � �i

2

��
:

Then the following Theorem holds:

Theorem 5. Let f be as Theorem 4. Then

(3.2)

bZ
a

f(t)dt = A(f; In; �) +R(f; In; �)

where A(f; In; �) is de�ned as above and the remainder term R(f; In; �) satis�es

jR(f; In; �)j(3.3)

� max
i2f0;1;:::;n�1g

�
max

������i � 3xi + xi+14

���� ;�xi + xi+12
� �i

�
;
�i � xi
2

�� b_
a

(f):

Proof. Application of Theorem 4 to the interval [xi; xi+1] (i = 0; 1; :::; n� 1) gives

(3.4) ����hi4
�
f(�i) + f (xi + xi+1 � �i) + f

�
xi + �i
2

�

+f

�
xi + 2xi+1 � �i

2

��
�

xi+1Z
xi

f(t)dt

������
� max

������i � 3xi + xi+14

���� ;�xi + xi+12
� �i

�
;
�i � xi
2

� xi+1_
xi

(f)

for all i 2 f0; 1; :::; n� 1g : Summing the inequality (3.4) over i from 0 to n � 1
and using the generalized triangle inequality, we have

jR(f; In; �)j

�
nX
i=0

max

������i � 3xi + xi+14

���� ;�xi + xi+12
� �i

�
;
�i � xi
2

� xi+1_
xi

(f)

� max
i2f0;1;:::;n�1g

�
max

������i � 3xi + xi+14

���� ;�xi + xi+12
� �i

�
;
�i � xi
2

�� nX
i=0

xi+1_
xi

(f)

= max
i2f0;1;:::;n�1g

�
max

������i � 3xi + xi+14

���� ;�xi + xi+12
� �i

�
;
�i � xi
2

�� b_
a

(f)

which completes the proof. �

Remark 2. If we choose �i = xi in Theorem 5, we get (1.4) with (1.5) and (1.6).
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Corollary 7. If we choose �i =
xi+xi+1

2 in Theorem 5, then we have

bZ
a

f(t)dt = A(f; In) +R(f; In)

where

A(f; In) :=
1

4

nX
i=0

hi

�
2f

�
xi + xi+1

2

�
+ f

�
3xi + xi+1

2

�
+ f

�
xi + 3xi+1

2

��
and the remainder term R(f; In) satis�es

jR(f; In)j �
1

4
v(h)

b_
a

(f):

Corollary 8. If we choose �i =
3xi+xi+1

2 in Theorem 5, then we have

bZ
a

f(t)dt = A(f; In) +R(f; In)

where

A(f; In)

: =
1

4

nX
i=0

hi

�
f

�
3xi + xi+1

2

�
+ f

�
xi + 3xi+1

2

�

+f

�
7xi + xi+1

8

�
+ f

�
xi + 7xi+1

8

��
and the remainder term R(f; In) satis�es

jR(f; In)j �
1

8
v(h)

b_
a

(f):
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