
NEW REFINEMENTS AND APPLICATIONS OF OSTROWSKI

TYPE INEQUALITIES FOR MAPPINGS WHOSE nth

DERIVATIVES ARE OF BOUNDED VARIATION

1H. BUDAK, 1M. Z. SARIKAYA, AND 2A. QAYYUM

Abstract. The main aim of this paper is to establish some Ostrowski type in-

tegral inequalities using a newly developed special type of kernel for mappings
whose nth derivatives are of bounded variation. We deduce some previous re-

sults as a special case. Some new efficient quadrature rules are also introduced.

1. Introduction

In 1938, Ostrowski [18] established a following useful inequality:

Theorem 1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose deriva-
tive f ′ : (a, b)→ R is bounded on (a, b) , i.e. ‖f ′‖∞ := sup

t∈(a,b)
|f ′(t)| <∞. Then, we

have the inequality

(1.1)

∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)

2

]
(b− a) ‖f ′‖∞ ,

for all x ∈ [a, b].

The constant 1
4 is the best possible.

Ostrowski inequality has potential applications in Mathematical Sciences. In
the past, many authors have worked on Ostrowski type inequalities for function
of bounded variation, see for example ([1]-[14], [16]). Moreover, Dragomir proved
some Ostrowski type inequalities for functions whose nth derivatives are of bounded
variation in [15].

The following definitions will be frequently used to prove our results.

Definition 1. Let P : a = x0 < x1 < ... < xn = b be any partition of [a, b] and let
∆f(xi) = f(xi+1)− f(xi), then f is said to be of bounded variation if the sum

m∑
i=1

|∆f(xi)|

is bounded for all such partitions.
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Definition 2. Let f be of bounded variation on [a, b], and
∑

∆f (P ) denotes the

sum
n∑

i=1

|∆f(xi)| corresponding to the partition P of [a, b]. The number

b∨
a

(f) := sup
{∑

∆f (P ) : P ∈ P([a, b])
}
,

is called the total variation of f on [a, b] . Here P([a, b]) denotes the family of par-
titions of [a, b] .

In [12], Dragomir proved the following Ostrowski type inequalities related func-
tions of bounded variation:

Theorem 2. Let f : [a, b]→ R be a mapping of bounded variation on [a, b] . Then

(1.2)

∣∣∣∣∣∣
b∫

a

f(t)dt− (b− a) f(x)

∣∣∣∣∣∣ ≤
[

1

2
(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣] b∨
a

(f)

holds for all x ∈ [a, b] . The constant 1
2 is the best possible.

In [8], authors gave the following Ostrowski type inequality:

Theorem 3. Let f : [a, b]→ R be such that f ′ is a continuous function of bounded
variation on [a, b] . Then we have the inequality∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2
[f(x) + f(a + b− x)]

+
1

2

(
x− 3a + b

4

)
[f ′(x)− f ′(a + b− x)]

∣∣∣∣
≤ 1

16

[
5 (x− a)

2 − 2 (x− a) (b− x) + (b− x)
2

b− a
+ 4

∣∣∣∣x− 3a + b

4

∣∣∣∣
]

b∨
a

(f ′)

for any x ∈
[
a, a+b

2

]
.

In [5], Budak and Sarikaya obtained following Ostrowski type inequality in
weighted form for the mappings whose first derivatives are of bounded variation:

Theorem 4. Let w : [a, b]→ R be nonnegative and continous and let f : [a, b]→ R
be differentiable mapping on [a, b] . If f ′ is of bounded variation on [a, b] , then we
have the weighted inequality∣∣∣∣∣∣

 b∫
a

(u− x)w(u)du

 f ′(x) +

 b∫
a

w(u)du

 f(x)−
b∫

a

w(t)f(t)dt

∣∣∣∣∣∣
≤

 x∫
a

(u− x)w(u)du

 x∨
a

(f ′) +

 b∫
x

(u− x)w(u)du

 b∨
x

(f ′)

for any x ∈ [a, b] .

Recently, Qayyum et. al [19]-[20], proved some Ostrowski inequality using mul-
tiple step kernel. In this paper, we obtain some Ostrowski type integral inequalities
for functions whose nth derivatives are of bounded variation. The results presented
here would provide extensions of those given in [9]- [10] and [12].
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2. Refinements of Ostrowski type integral inequalities

Before we start our main results, we state and prove following lemmas:

Lemma 1. Let f : [a, b]→ R be such that f (n) is a continuous function of bounded
variation on [a, b] , then the following identity holds

b∫
a

P 1
n(x, t)df (n)(t)(2.1)

= (−1)
n

n∑
k=0

1

(k + 1)!

[
(−1)

k
(x− a)

k+1
+ (b− x)

k+1
]
f (k)(x)

+ (−1)
n+1

b∫
a

f(t)dt.

where

P 1
n(x, t) =


(t−a)n+1

(n+1)! , a ≤ t ≤ x

(t−b)n+1

(n+1)! , x < t ≤ b

for all x ∈ [a, b] .

Proof. The proof of (2.1) is established using mathematical induction.
Take n = 1,

b∫
a

P 1
1 (x, t)df ′(t)

=
1

2

 x∫
a

(t− a)2df ′(t) +

b∫
x

(t− b)2df ′(t)


= −(b− a)f(x)− (b− a)

(
x− a + b

2

)
+

b∫
a

f(t)dt.

The identity (2.1) is provided for n = 1.
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Assume that (2.1) is true for n. We will show that (2.1) is true for n + 1.

b∫
a

P 1
n+1(x, t)df (n+1)(t)

=
1

(n + 2)!

 x∫
a

(t− a)n+2df (n+1)(t) +

b∫
x

(t− b)n+2df (n+1)(t)


=

1

(n + 1)!

[
(x− a)n+2 − (x− b)n+2

]
f (n+1)(x)

− 1

(n + 2)!

 x∫
a

(t− a)n+1df (n)(t) +

b∫
x

(t− b)n+1df (n)(t)


=

(−1)n+1

(n + 2)!

[
(−1)n+1(x− a)n+2 + (b− x)n+2

]
f (n+1)(x)

− (−1)
n

n∑
k=0

1

(k + 1)!

[
(−1)

k
(x− a)

k+1
+ (b− x)

k+1
]
f (k)(x)− (−1)

n+1

b∫
a

f(t)dt

= (−1)
n+1

n∑
k=0

1

(k + 1)!

[
(−1)

k
(x− a)

k+1
+ (b− x)

k+1
]
f (k)(x) + (−1)

n+2

b∫
a

f(t)dt.

This completes the proof. �

Lemma 2. Let f : [a, b]→ R be such that f (n) is a continuous function of bounded
variation on [a, b] , then the following identity holds

b∫
a

P 2
n(x, t)df (n)(t)(2.2)

=

n∑
k=0

(−1)
n+k

(k + 1)!

[
1

2k+1

{
(x− a)

k+1 −
(
x− a + b

2

)k+1
}
f (k)

(
a + x

2

)

+

{(
x− 3a + b

4

)k+1

−
(
x− a + b

2

)k+1
}
f (k) (x)

+ (−1)
k+1

{(
x− a + b

2

)k+1

−
(
x− 3a + b

4

)k+1
}
f (k) (a + b− x)

+

(
−1

2

)k+1
{(

x− a + b

2

)k+1

− (x− a)
k+1

}
f (k)

(
a + 2b− x

2

)]

+ (−1)
n+1

b∫
a

f(t)dt,
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where the mapping P 2
n(x, t) is defined by

P 2
n(x, t) =



1
(n+1)! (t− a)

n+1
, t ∈

(
a, a+x

2

]
1

(n+1)!

(
t− 3a+b

4

)n+1
, t ∈

(
a+x
2 , x

]
1

(n+1)!

(
t− a+b

2

)n+1
, t ∈ (x, a + b− x]

1
(n+1)!

(
t− a+3b

4

)n+1
, t ∈

(
a + b− x, a+2b−x

2

]
1

(n+1)! (t− b)
n+1

, t ∈
(
a+2b−x

2 , b
]

for all x ∈
[
a, a+b

2

]
.

Proof. We prove the Lemma using mathematical induction. Take n = 1,

b∫
a

P 2
1 (x, t)df ′(t)

=

b∫
a

f(t)dt− b− a

4

[
f (x) + f (a + b− x) + f

(
a + x

2

)
+ f

(
a + 2b− x

2

)

+

(
x− 5a + 3b

8

)
{f ′ (a + b− x)− f ′ (x)}

+
1

2

(
x− 3a + b

4

){
f ′
(
a + 2b− x

2

)
− f ′

(
a + x

2

)}]
.

The identity (2.2) is provided for n = 1.
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Assume that (2.1) is true for n. We will show that (2.1) is true for n + 1.

b∫
a

P 2
n(x, t)df (n)(t)

=
(−1)2n+2

(k + 1)!

[
1

2n+2

{
(x− a)

n+2 −
(
x− a + b

2

)n+2
}
f (n+1)

(
a + x

2

)

+

{(
x− 3a + b

4

)n+2

−
(
x− a + b

2

)n+2
}
f (n+1) (x)

+ (−1)
n+2

{(
x− a + b

2

)n+2

−
(
x− 3a + b

4

)n+2
}
f (n+1) (a + b− x)

+

(
−1

2

)n+2
{(

x− a + b

2

)n+2

− (x− a)
n+2

}
f (n+1)

(
a + 2b− x

2

)]

−
n∑

k=0

(−1)
n+k

(k + 1)!

[
1

2k+1

{
(x− a)

k+1 −
(
x− a + b

2

)k+1
}
f (k)

(
a + x

2

)

+

{(
x− 3a + b

4

)k+1

−
(
x− a + b

2

)k+1
}
f (k) (x)

+ (−1)
k+1

{(
x− a + b

2

)k+1

−
(
x− 3a + b

4

)k+1
}
f (k) (a + b− x)

+

(
−1

2

)k+1
{(

x− a + b

2

)k+1

− (x− a)
k+1

}
f (k)

(
a + 2b− x

2

)]

− (−1)
n+1

b∫
a

f(t)dt

=

n+1∑
k=0

(−1)
n+k+1

(k + 1)!

[
1

2k+1

{
(x− a)

k+1 −
(
x− a + b

2

)k+1
}
f (k)

(
a + x

2

)

+

{(
x− 3a + b

4

)k+1

−
(
x− a + b

2

)k+1
}
f (k) (x)

+ (−1)
k+1

{(
x− a + b

2

)k+1

−
(
x− 3a + b

4

)k+1
}
f (k) (a + b− x)

+

(
−1

2

)k+1
{(

x− a + b

2

)k+1

− (x− a)
k+1

}
f (k)

(
a + 2b− x

2

)]

+ (−1)
n+2

b∫
a

f(t)dt.

This completes the proof. �

Now using above identities, we state and prove the following theorems.
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Theorem 5. Let f : [a, b] → R be such that f (n) is a continuous function of
bounded variation on [a, b] . Then, for all x ∈ [a, b] , we have the inequality∣∣∣∣∣∣(−1)

n
n∑

k=0

1

(k + 1)!

[
(−1)

k
(x− a)

k+1
+ (b− x)

k+1
]
f (k)(x) + (−1)

n+1

b∫
a

f(t)dt

∣∣∣∣∣∣(2.3)

≤ 1

(n + 1)!
max

{
(x− a)

n+1
, (b− x)

n+1
} b∨

a

(f (n)).

where
b∨
a

(f (n)) denotes the total variation of f (n) on [a, b] .

Proof. It is well known that if g, f : [a, b] → R are such that g is continuous on

[a, b] and f is of bounded variation on [a, b] , then
b∫
a

g(t)df(t) exists and

(2.4)

∣∣∣∣∣∣
b∫

a

g(t)df(t)

∣∣∣∣∣∣ ≤ sup
t∈[a,b]

|g(t)|
b∨
a

(f).

In Lemma 1, by using (2.4), we get∣∣∣∣∣∣
b∫

a

P 1
n(x, t)df (n)(t)

∣∣∣∣∣∣
≤ 1

(n + 1)!

∣∣∣∣∣∣
x∫

a

(t− a)
n+1

df (n)(t)

∣∣∣∣∣∣+

∣∣∣∣∣∣
b∫

x

(t− b)
n+1

df (n)(t)

∣∣∣∣∣∣


≤ 1

(n + 1)!

[
sup

t∈[a,x]
|t− a|n+1

x∨
a

(f (n)) + sup
t∈[a,b]

|t− b|n+1
b∨
x

(f (n))

]

=
1

(n + 1)!

[
(x− a)

n+1
x∨
a

(f (n)) + (b− x)
n+1

b∨
x

(f (n))

]

≤ 1

(n + 1)!
max

{
(x− a)

n+1
, (b− x)

n+1
} b∨

a

(f (n)).

This completes the proof. �

Remark 1. If we choose n = 0 in Theorem 5, the inequality (2.3) reduces the
inequality (1.2).

Corollary 1. Under assumption of Theorem 5 with n = 1, we obtain the inequality:∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− f(x)−
(
a + b

2
− x

)
f ′(x)

∣∣∣∣∣∣(2.5)

≤ 1

4

[
1

(b− a)

[
1

2
(b− a)

2
+ 2

(
x− a + b

2

)2
]

+

∣∣∣∣x− a + b

2

∣∣∣∣
]

b∨
a

(f ′).
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Remark 2. If we choose x = a+b
2 in (2.5), then we have the inequality∣∣∣∣∣∣f

(
a + b

2

)
− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ b− a

8

b∨
a

(f ′),

which was given by Liu in [17].

Theorem 6. Let f : [a, b] → R be such that f (n) is a continuous function of
bounded variation on [a, b] , then the following identity holds∣∣∣∣∣

n∑
k=0

(−1)
n+k

(k + 1)!

[
1

2k+1

{
(x− a)

k+1 −
(
x− a + b

2

)k+1
}
f (k)

(
a + x

2

)

+

{(
x− 3a + b

4

)k+1

−
(
x− a + b

2

)k+1
}
f (k) (x)

+ (−1)
k+1

{(
x− a + b

2

)k+1

−
(
x− 3a + b

4

)k+1
}
f (k) (a + b− x)

+

(
−1

2

)k+1
{(

x− a + b

2

)k+1

− (x− a)
k+1

}
f (k)

(
a + 2b− x

2

)]

+ (−1)
n+1

b∫
a

f(t)dt

∣∣∣∣∣∣
≤ 1

(n + 1)!
max

{∣∣∣∣x− 3a + b

4

∣∣∣∣n+1

,

(
a + b

2
− x

)n+1

,
(x− a)

n+1

2n+1

}
b∨
a

(
f (n)

)
for all x ∈

[
a, a+b

2

]
Proof. In Lemma 2, by using (2.4), we get∣∣∣∣∣∣

b∫
a

P 2
n(x, t)df (n)(t)

∣∣∣∣∣∣
≤ 1

(n + 1)!


∣∣∣∣∣∣∣

a+x
2∫

a

(t− a)
n+1

df (n)(t)

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
x∫

a+x
2

(
t− 3a + b

4

)n+1

df (n)(t)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
a+b−x∫
x

(
t− a + b

2

)n+1

df (n)(t)

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
a+2b−x

2∫
a+b−x

(
t− a + 3b

4

)n+1

df (n)(t)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
b∫

a+2b−x
2

(t− b)
n+1

df (n)(t)

∣∣∣∣∣∣∣

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≤ 1

(n + 1)!

 sup
t∈[a, a+x

2 ]
|t− a|n+1

a+x
2∨
a

(f (n)) + sup
t∈[ a+x

2 ,x]

∣∣∣∣t− 3a + b

4

∣∣∣∣n+1 x∨
a+x
2

(f (n))

+ sup
t∈[x,a+b−x]

∣∣∣∣t− a + b

2

∣∣∣∣n+1 a+b−x∨
x

(f (n)) + sup
t∈[a+b−x, a+2b−x

2 ]

∣∣∣∣t− a + 3b

4

∣∣∣∣n+1
a+2b−x

2∨
a+b−x

(f (n))

+ sup
t∈[ a+2b−x

2 ,b]
|t− b|n+1

b∨
a+2b−x

2

(f (n))


=

1

(n + 1)!

 (x− a)
n+1

2n+1

a+x
2∨
a

(f (n)) + max

{∣∣∣∣x− 3a + b

4

∣∣∣∣n+1

,
1

2n+1

(
a + b

2
− x

)n+1
}

x∨
a+x
2

(f (n))

+

(
a + b

2
− x

)n+1 a+b−x∨
x

(f (n)) + max

{∣∣∣∣x− 3a + b

4

∣∣∣∣n+1

,
1

2n+1

(
a + b

2
− x

)n+1
} a+2b−x

2∨
a+b−x

(f (n))

+
(x− a)

n+1

2n+1

b∨
a+2b−x

2

(f (n))


≤ 1

(n + 1)!
max

{∣∣∣∣x− 3a + b

4

∣∣∣∣n+1

,

(
a + b

2
− x

)n+1

,
(x− a)

n+1

2n+1

}
b∨
a

(
f (n)

)
.

This completes the proof. �

Remark 3. If we choose n = 0 in Theorem 6, we get the result proved by Budak
and Sarikaya in [9].

Remark 4. If we choose n = 1 in Theorem 6, we get the result proved by Budak
et al. in [10].

3. Derivation of Numerical Quadrature Rules

We propose some new quadrature rules involving nth-derivatives of the function
f . In fact, the following new quadrature rules can be obtained while investigating
error bounds using theorem 6.

Qn,1 (f) :=

b∫
a

f(t)dt

≈
n∑

k=0

1

(k + 1)!

(b− a)
k+1

2k+1

[
f (k) (a) + (−1)

k
f (k) (b)

]
,
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Qn,2 (f) :=

b∫
a

f(t)dt

=

n∑
k=0

(−1)
k

(k + 1)!


(

1 + (−1)
k
)

4k+12k+1
(b− a)

k+1

{
f (k)

(
7a + b

8

)
+ f (k)

(
a + 7b

8

)}

+
1

4k+1
(b− a)

k+1

{
(−1)

k
f (k)

(
3a + b

4

)
+ f (k)

(
a + 3b

4

)}]
,

Qn,3 (f) :=

b∫
a

f(t)dt

=

n∑
k=0

(−1)
k

(k + 1)!

[{
f (k)

(
3a + b

4

)
+
(

1 + (−1)
k
)
f (k)

(
a + b

2

)
+ (−1)

k
f (k)

(
a + 3b

4

)}
× 1

4k+1
(b− a)

k+1

]
Performance of the efficient quadrature rules

Sr. No. Method n : Qn,1 (f) n : Qn,2 (f) n : Qn,3 (f) Exact Value

1.
1∫
0

f1(x)dx 2: 2.83333 2: 2.83333 2: 2.83333 2.83333

Error: 0 0 0

2.
1∫
0

f2(x)dx 6: 0.301168 4: 0.301169 4: 0.301168 0.301169

Error: 5.5921×10−7 7.20674×10−7 1.07696×10−6

3.
1∫
0

f3(x)dx 6: 0.909332 4: 0.909329 4: 0.909333 0.909331

Error: 1.22345×10−6 1.66306×10−6 2.48778×10−6

4.
1∫
0

f4(x)dx 4: 0.793022 3: 0.793023 4: 0.793031 0.793031

Error: 8.63182×10−6 8.08331×10−6 1.03192×10−7

5.
1∫
0

f5(x)dx 10: 1.46266 6: 1.46265 6: 1.46265 1.46265

Error: 5.8789×10−6 1.54452×10−6 2.29707×10−6

6.
1∫
0

f6(x)dx 10: 1.31384 6: 1.31383 6: 1.31383 1.31383

Error 7.37624×10−6 3.15394×10−7 1.47843×10−7

7.
1∫
0

f7(x)dx 5:1.34147 4: 1.34147 4: 1.34147 1.34147

Error: 2.46065×10−6 1.26192×10−7 1.88891×10−7

8.
1∫
0

f8(x)dx 8: 0.62977 4: 0.629773 4: 0.629762 0.629769

Error: 1.18074×10−6 4.86274×10−6 6.3567×10−6

Table: 1
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f1(x) = x2 + x + 2, f2(x) = x sinx,(3.1)

f3(x) = ex sinx , f4(x) = x2 + sinx,

f5(x) = ex
2

, f6(x) = ex cos (ex − 2x) ,

f7(x) = x + cosx, f8(x) = log
(
x2 + 2

)
sin
[
log
(
x2 + 2

)]
.

We conclude that all three quadrature rules show exact value of the integral of f1
for n = 2. For any polynomial of degree k, n = k + 1 will give exact value of the
integral f1. Acceptable error estimates can be obtained for smaller values of n to
save computational time.

In general Qn,2 (f) gave better results as compared to other two quadrature rules
for much smaller values of n. Therefore we can conclude that overall Qn,2 (f) is
computationally more efficient both in terms of error approximation, simplicity,
and time. As a rough estimate we integrated log

(
x2 + 2

)
sin
[
log
(
x2 + 2

)]
using

the built in algorithms of Mathematica 8.0 which took 26.30 seconds to give its
approximate answer. To obtain similar approximation for the integral of f8, Qn,2 (f)
took less than a second.

Based on this analysis, we can conjecture that Qn,2 (f) is the most efficient
quadrature rule. It should be noted that if desired the value of n can be adjusted
to improve the error bounds or decrease computational time.
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