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Abstract. In this paper, we give some reverses of the Cauchy-Schwarz inequality
and triangle inequality in 2-inner product spaces and also, by using the main
results, applications for determinantal integral inequalities.

1. Introduction

The Cauchy-Schwarz inequality plays an important role in the theory of inner
product spaces (see, for instance, [20, 21]), which is one of the classical inequalities.
It is well known that, in a semi-inner product space (X , ⟨·, ·⟩), the Cauchy-Schwarz
inequality has the form

|⟨x, y⟩|2 ≤ ⟨x, x⟩ ⟨y, y⟩

for all x, y ∈ X . In recent years, many authors have studied some related topics such
as the reverse of the Cauchy-Schwarz inequality, the triangle and Bessel inequality as
well as Grüss inequality (see [7, 10, 11, 16]). The probably first reverse of the Cauchy-
Schwarz inequality for positive real numbers was obtained by Pólya and Szegö in
1925 (see [18, p. 57 and 213–214] and [19, p. 71–72 and 253–255]). Since then, there
exist a lot of generalizations of the reverse of the Cauchy-Schwarz inequality. For
example, in 2007, Dragomir [6, Chapter 2] contributed much to the reverses of the
Cauchy-Schwarz inequality and also similar results for integrals, isotonic functionals
as well as generalizations in the setting of inner product spaces are well-studied and
understood (see the book [5]). Some other interesting inequalities for the reverse of
the Cauchy-Schwarz inequality can be found in [8, 9, 12].

In this paper, we continue and complement this research by proving some new
reverses of the Cauchy-Schwarz inequality in framework of 2-inner product spaces.
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Furthermore, as applications, some reverse results for the generalized triangle in-
equality, i.e., upper bounds for the quantity

(0 ≤)
n∑

i=1

∥xi, z∥ −

∥∥∥∥∥
n∑

i=1

xi, z

∥∥∥∥∥
under various assumptions for the vectors z, xi ∈ X, i ∈ {1, · · · , n}, are established
and, also, some applications for the generalized triangle inequality are also given.

2. Preliminaries

The concept of 2-normed spaces was introduced by Gähler [14] in 1963. After
that, in 1973 and 1977, Diminnie, Gähler and White introduced the concept of
2-inner product spaces ([3, 4]). For more details on 2-inner product spaces, see
[2, 13, 15, 17]. A systematic presentation of the recent results related to the theory
of 2-inner product spaces as well as an extensive list of the related references can
be found in the book [1]. Here we give the basic definitions and the elementary
properties of 2-inner product spaces.

Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that ⟨·, ·|·⟩ is a K-valued
function defined on X × X × X satisfying the following conditions:

(2I-1) ⟨x, x|z⟩ ≥ 0 and ⟨x, x|z⟩ = 0, if and only if x and z are linearly dependent;
(2I-2) ⟨x, x|z⟩ = ⟨z, z|x⟩;
(2I-3) ⟨y, x|z⟩ = ⟨x, y|z⟩;
(2I-4) ⟨αx, y|z⟩ = α ⟨x, y|z⟩, for any α ∈ K;
(2I-5) ⟨x+ x′, y|z⟩ = ⟨x, y|z⟩+ ⟨x′, y|z⟩.
⟨·, ·|·⟩ is called a 2-inner product on X and (X , ⟨·, ·|·⟩) is called a 2-inner product

space (or 2-pre-Hilbert space). Some basic properties of 2-inner products ⟨·, ·|·⟩ can
be immediately obtained as follows:

(1) If K = R, then (2I-3) reduces to ⟨y, x|z⟩ = ⟨x, y|z⟩;
(2) ⟨0, y|z⟩ = ⟨x, 0|z⟩ = ⟨x, y|0⟩ = 0;
(3) ⟨x, y|αz⟩ = |α|2 ⟨x, y|z⟩, for all x, y, z ∈ X and α ∈ K.

Using the above properties, we can prove the Cauchy-Schwarz inequality

|⟨x, y|z⟩|2 ≤ ⟨x, x|z⟩ ⟨y, y|z⟩ .
In any given 2-inner product space (X , ⟨·, ·|·⟩), we can define a function ∥·, ·∥ on

X × X by

∥x, z∥ =
√
⟨x, x|z⟩ (2.1)

for all x, z ∈ X . It is easy to see that this function satisfies the following conditions:

(2N-1) ∥x, z∥ ≥ 0 and ∥x, z∥ = 0 if and only if x and z are linearly dependent;
(2N-2) ∥x, z∥ = ∥z, x∥;
(2N-3) ∥αx, z∥ = |α| ∥x, z∥ for any scalar α ∈ K;
(2N-4) ∥x+ x′, z∥ ≤ ∥x, z∥+ ∥x′, z∥.
Any function ∥·, ·∥ defined on X × X and satisfying the above conditions is

called a 2-norm on X and (X , ∥·, ·∥) is called a linear 2-normed space. Whenever
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a 2-inner product space (X , ⟨·, ·|·⟩) is given, we consider it as a linear 2-norm space
(X , ∥·, ·∥) with the 2-norm defined by (2.1).

Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex number field
K. Then there exists (ei)1≤i≤n in a 2-inner product space X such that (ei)1≤i≤n are
linearly dependent vectors and, for any z ∈ X ,

⟨ei, ej|z⟩ = δij

for all i, j ∈ {1, · · · , n}, where δij is the Kronecker delta (we say that the family
(ei)1≤i≤n is z-orthonormal).

3. Some reverses of the Cauchy-Schwarz inequality

First, we have the following:

Theorem 3.1. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. If, for all x, y, z ∈ X and r1, r2 > 0,

r1 ≤ |∥x, z∥ − ∥y, z∥| ≤ ∥x− y, z∥ ≤ r2, (3.1)

then

∥x, z∥ ∥y, z∥ − |⟨x, y|z⟩| ≤ ∥x, z∥ ∥y, z∥ − |Re ⟨x, y|z⟩|
≤ ∥x, z∥ ∥y, z∥ − Re ⟨x, y|z⟩ (3.2)

≤ 1

2

(
r22 − r21

)
.

Proof. Taking the square in the second inequality in (3.1), we have

∥x, z∥2 − 2Re ⟨x, y, z⟩+ ∥y, z∥2 ≤ r22,

which is equivalent to

2 (∥x, z∥ ∥y, z∥ − Re ⟨x, y|z⟩) (∥x∥ − ∥y∥) ≤ r22. (3.3)

Using the first inequality in (3.1), we have

r21 ≤ (∥x, z∥ − ∥y, z∥)2. (3.4)

Therefore, from (3.3) and (3.4), we have (3.2). This completes the proof. �

Corollary 3.2. With all the assumptions of Theorem 3.1, the following holds:

∥x, z∥+ ∥y, z∥ − ∥x+ y, z∥ ≤
√
r22 − r21. (3.5)

Proof. It follows from (3.2) that

(∥x, z∥+ ∥y, z∥)2 − ∥x+ y, z∥2 = 2 (∥x, z∥ ∥y, z∥ − Re ⟨x, y|z⟩)
≤ r22 − r21

gives
(∥x, z∥+ ∥y, z∥)2 ≤ ∥x+ y, z∥2 + r22 − r21. (3.6)

Taking the square root in (3.6) and taking into account that√
α + β ≤

√
α +

√
β
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for all α, β ≥ 0, we have the desired inequality (3.5). This completes the proof. �

Theorem 3.3. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈ X ,∥∥∥∥ x

∥x, z∥
− y

∥y, z∥
, z

∥∥∥∥ ≤ r (3.7)

and

∥x, z∥ ∥y, z∥ − Re ⟨x, y|z⟩ ≤ 1

2
r2 ∥x, z∥ ∥y, z∥ (3.8)

are equivalent

Proof. It is obvious by taking the square in (3.8) and performing the required cal-
culations. �

Remark 3.4. Since
∥∥y, z∥x− ∥x, z∥ y, z∥ = ∥∥y, z∥ (x− y) + (∥y, z∥ − ∥x, z∥) y, z∥

≤ ∥y, z∥ ∥x− y, z∥+ ∥∥y, z∥ − ∥x, z∥∥ ∥y, z∥
≤ 2 ∥y, z∥ ∥x− y, z∥ ,

the sufficient condition for (3.7) to hold is

∥x− y, z∥ ≤ r

2
∥x, z∥ .

Theorem 3.5. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. Then, for any x, y, z ∈ X and p ≥ 1,

0 ≤ ∥x, z∥ ∥y, z∥ − |⟨x, y|z⟩|
≤ ∥x, z∥ ∥y, z∥ − |⟨x, y|z⟩|

≤ 1

2


(
(∥x, z∥+ ∥y, z∥)2p − ∥x+ y, z∥2p

) 1
p ,(

∥x− y, z∥2p − |∥x, z∥ − ∥y, z∥|2p
) 1

p .

(3.9)

Proof. Firstly, observe that

2 (∥x, z∥ ∥y, z∥ − Re ⟨x, y|z⟩) = (∥x, z∥+ ∥y, z∥)2 − ∥x+ y, z∥2.
Denoting

D := ∥x, z∥ ∥y, z∥ − Re ⟨x, y|z⟩ ,
we have

2D + ∥x+ y, z∥2 = (∥x, z∥+ ∥y, z∥)2. (3.10)

Taking in (3.10) the power p ≥ 1 and using the elementary inequality

(a+ b)p ≥ ap + bp, a, b ≥ 0,

we have

(∥x, z∥+ ∥y, z∥)2p =
(
2D + ∥x+ y, z∥2

)p ≥ 2pDp + ∥x+ y, z∥2p.
This implies that

Dp ≤ 1

2p
(
(∥x, z∥+ ∥y, z∥)2p − ∥x+ y, z∥2p

)
, (3.11)
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which is clearly equivalent to the first branch of the third inequality in (3.9).
With the above notation, we also have

2D + (∥x, z∥ − ∥y, z∥)2 = ∥x− y, z∥2. (3.12)

Taking the power p ≥ 1 in (3.12) and using the inequality (3.11), we have

∥x− y, z∥2p ≥ 2pDp + |∥x, z∥ − ∥y, z∥|2p

and so we have the last part of (3.9). This completes the proof. �

We stated the following result that provides an invariant property for the constant
in the Cauchy-Schwarz inequality:

Theorem 3.6. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈ X and λ ∈ C,

∥x, z∥2∥y, z∥2 − |⟨x, y|z⟩|2 = ∥x− λ, z∥2∥y, z∥2 − |⟨x− λy, y|z⟩|2.

Proof. By properties of 2-inner product, it follows that, for any x, y, z ∈ X and
λ ∈ C,

∥x− λ, z∥2∥y, z∥2 − |⟨x− λy, y|z⟩|2

=
(
∥x, z∥2 − 2Re

(
λ ⟨x, y|z⟩

)
+ |λ|2∥y, z∥2

)
∥y, z∥2

−
∣∣⟨x, y|z⟩ − λ∥y, z∥2

∣∣2
= ∥x, z∥2∥y, z∥2 − 2∥y, z∥2 Re

(
λ ⟨x, y|z⟩

)
+ |λ|2∥y, z∥4

− |⟨y, x|z⟩|2 + 2∥y, z∥2Re
(
λ ⟨x, y|z⟩

)
− |λ|2∥y, z∥4

= ∥y, z∥2∥x, z∥2 − |⟨y, x|z⟩|2.

This completes the proof. �

Corollary 3.7. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈ X and λ ∈ C,

∥x, z∥2∥y, z∥2 − |⟨x, y|z⟩|2 ≤ ∥x− λ, z∥2∥y, z∥2. (3.13)

The equalities holds in (3.13) if and only if ⟨x, y|z⟩ = λ∥y, z∥2.

For two parameters, we can get the following:

Theorem 3.8. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈ X and λ, µ ∈ C,(

∥x, z∥2∥y, z∥2 − |⟨x, y|z⟩|2
)
|µ− λ|2

= ∥x− λy, z∥2∥x− µy, z∥2 − |⟨x− λy, x− µy|z⟩|2.
(3.14)
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Proof. Denote w := x− λy. Using some properties of a 2-inner product, we have

|⟨x− λy, x− µy|z⟩|2 = |⟨w, x− µy|z⟩|2

= |⟨w, x− λy + (λ− µ) y|z⟩|2

= |⟨w,w + (λ− µ) y|z⟩|2

=
∣∣∣∥w, z∥2 + (λ− µ) ⟨w, y|z⟩

∣∣∣2
= ∥w, z∥4 + 2∥w, z∥2Re (λ− µ) ⟨w, y|z⟩
+ |λ− µ|2|⟨w, y|z⟩|2

= ∥w, z∥4 + 2∥w, z∥2Re
(
(λ− µ) ⟨w, y|z⟩

)
+ |λ− µ|2∥w, z∥2∥y, z∥2

− |λ− µ|2
(
∥w, z∥2∥y, z∥2 − |⟨w, y|z⟩|2

)
. (3.15)

Observe also that

∥w, z∥4 + 2∥w, z∥2 Re
(
(λ− µ) ⟨w, y|z⟩

)
+ |λ− µ|2∥w, z∥2∥y, z∥2

= ∥w, z∥2
(
∥w, z∥2 + 2Re

(
(λ− µ) ⟨w, y|z⟩

)
+ |λ− µ|2∥y, z∥2

)
= ∥w, z∥2

(
∥w + (λ− µ) y, z∥2

)
= ∥x− λy∥2∥x− µy∥2. (3.16)

Therefore, from (3.15) and (3.16), we have the desired result (3.14). This completes
the proof. �

Corollary 3.9. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. For any x, y, z ∈ X and λ, µ ∈ C,

∥x, z∥2∥y, z∥2 − |⟨x, y|z⟩|2 ≤ 1

|µ− λ|2
∥x− λy, z∥2∥x− µy, z∥2.

As an application of Theorem 3.8, we have the following:

Proposition 3.10. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or com-
plex number field K. Then, for all x, y, z, e ∈ X with ∥e, z∥ = 1 and λ, µ, γ, η ∈ C
with λ ̸= µ and γ ̸= η,

|⟨x, y|z⟩ − ⟨x, e|z⟩ ⟨e, y|z⟩|

≤ 1

|λ− µ| |γ − η|
(∥x− λe, z∥ ∥x− µe, z∥ ∥y − γe, z∥ ∥y − ηe, z∥

− |⟨x− λe, x− µe|z⟩| |⟨y − γe, y − ηe|z⟩|)

≤ 1

|λ− µ| |γ − η|
∥x− λe, z∥ ∥x− µe, z∥ ∥x− γe, z∥ ∥x− ηe, z∥ . (3.17)

Proof. Applying the Cauchy-Schwarz inequality for the vectors x − ⟨x, e|z⟩ e and
y − ⟨y, e|z⟩ e and taking into account that

⟨x− ⟨x, e|z⟩ e, y − ⟨y, e|z⟩ e|z⟩ = ⟨x, y|z⟩ − ⟨x, e|z⟩ ⟨e, y|z⟩ ,
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∥x− ⟨x, e|z⟩ e, z∥2 = ∥x, z∥2 − |⟨x, e|z⟩|2

and

∥y − ⟨y, e|z⟩ e, z∥2 = ∥y, z∥2 − |⟨y, e|z⟩|2,

we have

|⟨x, y|z⟩ ⟨x, e|z⟩ ⟨e, y|z⟩|

≤
(
∥x, z∥2 − |⟨x, e|z⟩|2

) 1
2
(
∥y, z∥2 − |⟨y, e|z⟩|2

) 1
2

(3.18)

for any x, y, z, e ∈ X with ∥e, z∥ = 1. From (3.14), it follows that(
∥x, z∥2 − |⟨x, e|z⟩|2

) 1
2

=
1

|µ− λ|
(
∥x− λe, z∥2∥x− µe, z∥2 − |⟨x− λe, x− µe|z⟩|2

) 1
2

(3.19)

and (
∥y, z∥2 − |⟨y, e|z⟩|2

) 1
2

=
1

|γ − η|
(
∥y − γe, z∥2∥y − ηe, z∥2 − |⟨y − γe, y − ηe|z⟩|2

) 1
2

(3.20)

for any x, y, z, e ∈ X with ∥e, z∥ = 1 and λ, µ, γ, η ∈ C with λ ̸= µ and γ ̸= η.
Now, if we multiply (3.19) with (3.20), then we have(

∥x, z∥2 − |⟨x, e|z⟩|2
) 1

2
(
∥y, z∥2 − |⟨y, e|z⟩|2

) 1
2

≤ 1

|µ− λ| |γ − η|

×
(
∥x− λe, z∥2∥x− µe, z∥2|⟨x− λe, x− µe|z⟩|2

) 1
2

×
(
∥y − γe, z∥2∥y − ηe, z∥2|⟨y − γe, y − ηe|z⟩|2

) 1
2 .

(3.21)

Further, if we use the elementary inequality(
a2 − b2

) 1
2
(
c2 − d2

) 1
2 ≤ as− bd

for all a ≥ b ≥ 0 and c ≥ d ≥ 0, then we also have(
∥x− λe, z∥2∥x− µe, z∥2|⟨x− λe, x− µe|z⟩|2

) 1
2

×
(
∥y − γe, z∥2∥y − ηe, z∥2|⟨y − γe, y − ηe|z⟩|2

) 1
2

≤ ∥x− λe, z∥ ∥x− µe, z∥ ∥y − γe, z∥ ∥y − ηe, z∥
− |⟨x− λe, x− µe|z⟩| |⟨y − γe, y − ηe|z⟩| .

(3.22)

Finally, using (3.18), (3.21) and (3.22), we have the desired inequality (3.17). This
completes the proof. �
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4. Some reverses of the triangle inequality

In this section, we give some reverses of the triangle inequality.

Theorem 4.1. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. Let z, xi,∈ X , i ∈ {1, · · · , n}, and rij > 0 for each 1 ≤ i ≤ j ≤ n
be such that

0 ≤ ∥xi, z∥ ∥xj, z∥ − Re ⟨xi, xj|z⟩ ≤ rij. (4.1)

Then the following quadratic reverse of the triangle inequality holds:(
n∑

i=1

∥xi, z∥

)2

≤

∥∥∥∥∥
n∑

i=1

xi, z

∥∥∥∥∥
2

+ 2
∑

1≤i≤j≤n

rij. (4.2)

The case of the equality holds in (4.2) if and only if it holds in (4.1) for each i, j
with 1 ≤ i ≤ j ≤ n.

Proof. Observe that(
n∑

i=1

∥xi, z∥

)2

−

∥∥∥∥∥
n∑

i=1

xi, z

∥∥∥∥∥
2

=
n∑

i,j=1

∥xi, z∥ ∥xj, z∥ −

⟨
n∑

i=1

xi,

n∑
j=1

xj|z

⟩

=
n∑

i,j=1

∥xi, z∥ ∥xj, z∥ −
n∑

i,j=1

Re ⟨xi, xj|z⟩

=
n∑

i,j=1

(∥xi, z∥ ∥xj, z∥ − Re ⟨xi, xj|z⟩)

=
∑

1≤i≤j≤n

(∥xi, z∥ ∥xj, z∥ − Re ⟨xi, xj|z⟩)

+
∑

1≤j≤i≤n

(∥xi, z∥ ∥xj, z∥ − Re ⟨xi, xj|z⟩)

= 2
∑

1≤i≤j≤n

(∥xi, z∥ ∥xj, z∥ − Re ⟨xi, xj|z⟩). (4.3)

Using the condition (4.1), we have∑
1≤i≤j≤n

(∥xi, z∥ ∥xj, z∥ − Re ⟨xi, xj|z⟩) ≤
∑

1≤i≤j≤n

rij

and, by (4.3), we have the desired inequality (4.2). The case of the equality is
obvious by the identity (4.3) and we omit the details. This completes the proof. �
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Remark 4.2. From (4.2), one may deduce the coarser inequality that might be useful
in some applications:

0 ≤
n∑

i=1

∥xi, z∥

∥∥∥∥∥
n∑

i=1

xi, z

∥∥∥∥∥ ≤
√
2

( ∑
1≤i≤j≤n

rij

) 1
2

.

Theorem 4.3. Let (X , ⟨·, ·|·⟩) be a 2-inner product space over the real or complex
number field K. Let z, xi,∈ X , i ∈ {1, · · · , n}, and r > 0 be such that

∥xi − xj, z∥ ≤ r (4.4)

for each 1 ≤ i ≤ j ≤ n. Then(
n∑

i=1

∥xi, z∥

)2

≤

∥∥∥∥∥
n∑

i=1

xi, z

∥∥∥∥∥
2

+
n (n− 1)

2
r2. (4.5)

The case of the equality holds in (4.5) if and only if

∥xi, z∥ ∥xj, z∥ − Re ⟨xi, xj|z⟩ =
1

2
r2 (4.6)

for each 1 ≤ i ≤ j ≤ n.

Proof. The inequality (4.4) is obviously equivalent to

∥xi, z∥2 + ∥xj, z∥2 ≤ 2Re ⟨xi, xj|z⟩+ r2

for each 1 ≤ i ≤ j ≤ n. Since

2 ∥xi, z∥ ∥xj, z∥ ≤ ∥xi, z∥2 + ∥xj, z∥2

for each 1 ≤ i ≤ j ≤ n, we have

∥xi, z∥ ∥xj, z∥ − Re ⟨xi, xj|z⟩ ≤
1

2
r2

for each 1 ≤ i ≤ j ≤ n. Applying Theorem 4.1 for rij :=
1
2
r2 and taking into account

that ∑
1≤i≤j≤n

rij =
n (n− 1)

4
r2,

we deduce the desired inequality (4.5). The case of the equality is also obvious by
the Theorem 4.1 and we omit the details. This completes the proof. �

5. Applications for determinantal integral inequalities

Let (Ω,Σ, µ) be a measure space consisting of a set Ω, a σ-algebra Σ of subsets of
Ω and a countably additive and positive measure µ on Σ with values in R ∪ {∞}.
Denote by L2

ρ (Ω) the Hilbert space of all real-valued functions f defined on Ω that
are 2-ρ-integrable on Ω, i.e.,∫

Ω

ρ (s) |f (s)|2dµ (s) < ∞,
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where ρ : Ω → [0,∞) is a measurable function on Ω. We can introduce the following
2-inner product on L2

ρ (Ω) by the formula

⟨f, g|h⟩ρ

:=
1

2

∫
Ω

∫
Ω

ρ (s) ρ (t)

∣∣∣∣f (s) f (t)
h (s) h (t)

∣∣∣∣ ∣∣∣∣g (s) g (t)
h (s) h (t)

∣∣∣∣dµ (s) dµ (t) ,

where, by ∣∣∣∣f (s) f (t)
h (s) h (t)

∣∣∣∣ ,
we denote the determinant of the matrix∣∣∣∣g (s) g (t)

h (s) h (t)

∣∣∣∣ ,
generating the 2-norm on L2

ρ (Ω) expressed by

∥f, h∥ρ :=
(1
2

∫
Ω

∫
Ω

ρ (s) ρ (t)

∣∣∣∣f (s) f (t)
h (s) h (t)

∣∣∣∣dµ (s) dµ (t)
) 1

2

. (5.1)

A simple calculation with integrals reveals that

⟨f, g|h⟩ρ =

∣∣∣∣∣∣
∫
Ω

ρfgdµ
∫
Ω

ρfhdµ∫
Ω

ρghdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣ (5.2)

and

∥f, h∥ρ =

∣∣∣∣∣∣
∫
Ω

ρf 2dµ
∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
1
2

, (5.3)

where, for simplicity, instead of
∫
Ω

ρ (s) f (s) g (s) dµ (s), we have written
∫
Ω

ρfgdµ.

Using the representations (5.2), (5.3) and the Theorem 4.1, one may state interesting
determinantal integral inequality, as follows:

Proposition 5.1. Let f1, · · · , fn, g, h ∈ L2
ρ (Ω), where ρ : Ω → [0,∞) is a measur-

able function on Ω and rij > 0 such that∣∣∣∣∣∣
∫
Ω

ρ(fi − fj)
2dµ

∫
Ω

ρ (fi − fj)hdµ∫
Ω

ρ (fi − fj)hdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
1
2

≤ r

for each 1 ≤ i ≤ j ≤ n. Then n∑
i=1

∣∣∣∣∣∣
∫
Ω

ρfi
2dµ

∫
Ω

ρfihdµ∫
Ω

ρfihdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
1
2


2

≤

∣∣∣∣∣∣∣∣
n∑

i=1

∫
Ω

ρfi
2dµ

n∑
i=1

∫
Ω

ρfihdµ

n∑
i=1

∫
Ω

ρfihdµ
n∑

i=1

∫
Ω

ρh2dµ

∣∣∣∣∣∣∣∣+ 2
∑

1≤i≤j≤n

rij.

Proof. The proof follows by Theorem 4.1, applied for the 2-inner product ⟨·, ·|·⟩ρ
and we omit the details. �



SOME REVERSES OF THE CAUCHY-SCHWARZ INEQUALITY 11

Similar determinantal integral inequalities may be stated if one uses the other
results for 2-inner products obtained above, but we do not present them here.
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