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ABSTRACT. In this paper, we give some reverses of the Cauchy-Schwarz inequality
and triangle inequality in 2-inner product spaces and also, by using the main
results, applications for determinantal integral inequalities.

1. Introduction

The Cauchy-Schwarz inequality plays an important role in the theory of inner
product spaces (see, for instance, [20, 21]), which is one of the classical inequalities.
It is well known that, in a semi-inner product space (27, (-, -)), the Cauchy-Schwarz
inequality has the form

[z, y)* < (2,2) (y,y)

forall x,y € 2. Inrecent years, many authors have studied some related topics such
as the reverse of the Cauchy-Schwarz inequality, the triangle and Bessel inequality as
well as Griiss inequality (see [7, 10, 11, 16]). The probably first reverse of the Cauchy-
Schwarz inequality for positive real numbers was obtained by Poélya and Szegd in
1925 (see [18, p. 57 and 213-214] and [19, p. 71-72 and 253-255]). Since then, there
exist a lot of generalizations of the reverse of the Cauchy-Schwarz inequality. For
example, in 2007, Dragomir [6, Chapter 2| contributed much to the reverses of the
Cauchy-Schwarz inequality and also similar results for integrals, isotonic functionals
as well as generalizations in the setting of inner product spaces are well-studied and
understood (see the book [5]). Some other interesting inequalities for the reverse of
the Cauchy-Schwarz inequality can be found in [8, 9, 12].

In this paper, we continue and complement this research by proving some new
reverses of the Cauchy-Schwarz inequality in framework of 2-inner product spaces.
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Furthermore, as applications, some reverse results for the generalized triangle in-
equality, i.e., upper bounds for the quantity

n n
(0D Nl zll = || Y vz
=1 i=1

under various assumptions for the vectors z,x; € X, i € {1,--- ,n}, are established
and, also, some applications for the generalized triangle inequality are also given.

2. Preliminaries

The concept of 2-normed spaces was introduced by Géahler [14] in 1963. After
that, in 1973 and 1977, Diminnie, Gahler and White introduced the concept of
2-inner product spaces ([3, 4]). For more details on 2-inner product spaces, see
[2, 13, 15, 17]. A systematic presentation of the recent results related to the theory
of 2-inner product spaces as well as an extensive list of the related references can
be found in the book [1]. Here we give the basic definitions and the elementary
properties of 2-inner product spaces.

Let 2 be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (-, |-) is a K-valued
function defined on 2" x 2" x Z  satisfying the following conditions:

(2I-1) (x,z|z) > 0 and (x,z|z) = 0, if and only if x and z are linearly dependent;

(21-2) (z,2]2) = (2, 2|z);

(21-3) (y,zlz) = (x,yl2);

(2I-4) (ax,y|z) = a(x,y|z), for any a € K;
(2-5) (z + 2" ylz) = (z,yl2) + (2, yl2).

(+,+|-) is called a 2-inner product on 2" and (2, (-, -|-)) is called a 2-inner product
space (or 2-pre-Hilbert space). Some basic properties of 2-inner products (-, -|-) can
be immediately obtained as follows:

(1) If K = R, then (2I-3) reduces to (y,z|z) = (x,y|z);

(2) (0,y]2) = (2,0]2) = (z,9|0) = 0;

(3) (x,ylaz) = o (x,y|2), for all ,y,2 € 2 and a € K.

Using the above properties, we can prove the Cauchy-Schwarz inequality

(@, yl2)]” < (,2]2) (y,9l2)

In any given 2-inner product space (27, (-, -|-)), we can define a function |-, || on

2 x Z by
[z, 2| = v/ {z, z[2) (2.1)

forall z, 2 € 2. It is easy to see that this function satisfies the following conditions:

(2N-1) ||z, z|| > 0 and ||z, z|| = 0 if and only if 2 and z are linearly dependent;

(2N-2) |z, 2] = |z, ]}

(2N-3) ||az, z|| = |af ||z, z|| for any scalar a € K;

(2N-4) [l + o', 2] < |, 2] + [|2, 2]].

Any function |-, -|| defined on 2" x 2 and satisfying the above conditions is
called a 2-norm on 2" and (2, ||-,-||) is called a linear 2-normed space. Whenever
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a 2-inner product space (2, (-,|-)) is given, we consider it as a linear 2-norm space

(2, |-, -||) with the 2-norm defined by (2.1).

Let (4, (-,|-)) be a 2-inner product space over the real or complex number field
K. Then there exists (e;),;<, in a 2-inner product space X such that (e;), ., are
linearly dependent vectors and, for any z € 2,

(€1, €5]2) = 0y
for all 4,5 € {1,---,n}, where d;; is the Kronecker delta (we say that the family

(€i)1<i<y 18 2-orthonormal).

3. Some reverses of the Cauchy-Schwarz inequality

First, we have the following:

Theorem 3.1. Let (27, (-,+|")) be a 2-inner product space over the real or complex
number field K. If, for all x,y,z € X and ry,r9 > 0,

r < ‘HI,ZH - ||y7Z||| < H‘T - y7Z|| < T2, (31)
then
[, 2| |y, 2| = [{z, y[2)| < |z, 2| ly, 2[] — [Re (z, y|2)]
1
< 3 (r§ - 7‘%) :

Proof. Taking the square in the second inequality in (3.1), we have
lz, 2|* — 2Re (z,y, 2) + lly, 2[|* < 73,

which is equivalent to

2(|lz, 2l lly, 2l = Re(z,yl2)) (|l = lyl) < r3- (3.3)

Using the first inequality in (3.1), we have
rt < (a2l = lly, 21)*. (3.4)
Therefore, from (3.3) and (3.4), we have (3.2). This completes the proof. O

Corollary 3.2. With all the assumptions of Theorem 3.1, the following holds:

lz, 2l + 1y, 2l = [z + . 2] < /75 —ri. (3:5)

Proof. 1t follows from (3.2) that

< 7’% — 7’%
gives
(. 2l + [y, 21D* < [l + g, 2|* + 75 =i, (3.6)

Taking the square root in (3.6) and taking into account that

Va+pg<va+/B
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for all a, 8 > 0, we have the desired inequality (3.5). This completes the proof. [

Theorem 3.3. Let (27, (-,-|")) be a 2-inner product space over the real or complex
number field K. For any x,y,z € Z°,

‘ ‘ i ng (3.7)

[z, 2]y, 2]
1 2
lz, 2I[ [y, [l = Re (@, yl2) < or i, 2 |1y, 2| (3.8)

and

are equivalent

Proof. 1t is obvious by taking the square in (3.8) and performing the required cal-
culations. ]

Remark 3.4. Since
Iy, 2l e = [z, 2l y, 2l| = [y, 2l (z = ») + (ly, 2l] = ||z, z]) y, 2|
<y zllllz = . 2ll + [y, 2l = ll=, 2[[]| [ly, =]
<2y, 2|l lz =y, 2,

the sufficient condition for (3.7) to hold is
”
e~z < L a2l

Theorem 3.5. Let (2, (-,+|-)) be a 2-inner product space over the real or complex
number field K. Then, for any x,y,z € Z andp > 1,

0 <[z, 2| ly, 2|l = [{z, y|2)]

1 (3.9)
<1 (N 2l + 1y, 2% = Nl + y, 21177,
-2 2 2\ =
(Hx_yv’ZH P — |H.T,ZH - Hyazm P)p.
Proof. Firstly, observe that
2 2
2 (HQ?,ZH Hy72|| — Re <.’L’,y’2>) = (HZE,ZH + Hy72”> - HLC + yqu :
Denoting
D := ||$,Z|| ||y,Z|| — Re <£C,y|2> )
we have
2 2
2D + [lz +y, 2" = ([, 2| + [y, 2[))". (3.10)

Taking in (3.10) the power p > 1 and using the elementary inequality
(a+b)’ >a? + 1, a,b >0,
we have
(. 2l + Nl 2)* = (2D + |z + y, 2[*)" > 2°DP + |l + y, 2|
This implies that

1
D" < o (s 2l + lly, 2N =z +y, 21*) (3.11)
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which is clearly equivalent to the first branch of the third inequality in (3.9).
With the above notation, we also have

2 2
2D + (llz, 2|l = lly, 2I1)” = |z — v, 2[I". (3.12)
Taking the power p > 1 in (3.12) and using the inequality (3.11), we have
lz =y, 2| > 2°DP + |||z, 2| — |ly, 2|

and so we have the last part of (3.9). This completes the proof. O

We stated the following result that provides an invariant property for the constant
in the Cauchy-Schwarz inequality:

Theorem 3.6. Let (2, (-,+|-)) be a 2-inner product space over the real or complex
number field K. For any x,y,z € & and \ € C,

2 2 2 2 2 2
2Py, 21" = [z, y[2) " = [l = A 2y, 27 = Kz = Ay, yl2) 7.

Proof. By properties of 2-inner product, it follows that, for any z,y,z € 2 and
A eC,

lz = A 21y, 2)1* = [(z = Ay, yl2)[*
= (I, 21 = 2Re (X (z,y2)) + IAPlly, [1%) lly, =l
— (. yl=) = My, =P
= |1z, 2l1*ly, =II* = 2lly, 2" Re (X 2, y12)) + [A*[ly, 2]|*
= [y z|2)* + 2lly, 2| Re (A (2, yl2)) — [A[ly, ="
= Iy, 2l [l 2|* = [y, z]2)].
This completes the proof. O

Corollary 3.7. Let (Z7,(-,-|-)) be a 2-inner product space over the real or complex
number field K. For any x,y,z € Z and )\ € C,

2 2 2 2 2
[z, 20y, 217 = [{z, y[2) " < [l = A, 27y, (™ (3.13)

The equalities holds in (3.13) if and only if (x,y|z) = ||y, z||*.

For two parameters, we can get the following:

Theorem 3.8. Let (2, (-,-|-)) be a 2-inner product space over the real or complex
number field K. For any x,y,z € Z and \,u € C,

(e, 2l lly, 21" = 1€z, y12)°) 1 = AP

(3.14)
= ||z = Ay, 2|*l|lw — py, 2|)* = [{z — Ay, @ — pyl2)|

2
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Proof. Denote w := x — A\y. Using some properties of a 2-inner product, we have
(@ = Ay, @ = pyl2) | = [(w, @ — py|2)[*
= [{w,x = Ay + (A = ) y|2)[*
= [{w,w+ (A = p) yl2)[*

2
"=

- 2
= Hwazl‘Q + ()‘ - :u) <w>y‘z>

= flw, 2| * + 2w, 2[* Re (A = o) (w, o12)
A= i w, gl P

— Jlw, 2II* + 2l 2| Re (A = ) {w, y[2} )
I3 = Pl 2y, 2

— A= ul? (Iw, 2"y, 2l* = [(w,y|2)]) - (3.15)
Observe also that

o, 201+ 2ljw, 21 Re (3 = ) Tw, 9121 + [A = sl 211y, =1
— w21 (llw, 21> + 2Re (A = o) @, yl2)) + [A = Py, 2]
= Jfw, 21 (Il + O = )y, 1)

= ||z = Ay[l*[lz — pyl”. (3.16)
Therefore, from (3.15) and (3.16), we have the desired result (3.14). This completes
the proof. O

Corollary 3.9. Let (27, (-,+|")) be a 2-inner product space over the real or complex
number field K. For any x,y,z € Z and \,u € C,

e, 21y, 21" = {2, yl2)]” < lz = Ay, 2lPlle — py. 2]

= A
As an application of Theorem 3.8, we have the following:

Proposition 3.10. Let (2, (-,-|-)) be a 2-inner product space over the real or com-
plex number field K. Then, for all x,y,z,e € X with |le,z|| =1 and \, pu,v,n € C

with A # p and v # n,
|<l’,y|Z> - <l’7€|2> <6,y|2>|

1
S -
A= pl ]y =l
—[(z — Ae,x — pel2)| [{y — ve,y — nel2)|)
< L |z —

A =plly =1l

Iz = e, 2| [l — e, 2 ly = ve, 2] [ly — ne, 2|

re, 2| Nl = pe, 2|l [lz = e, 2|l | = ne, =] (3.17)

Proof. Applying the Cauchy-Schwarz inequality for the vectors x — (x,e|z) e and
y — (y,e|z) e and taking into account that

(x = (2, elz) e,y =y, e]2) elz) = (z,y]2) = (2, ¢[2) (e, y]2),
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o — (z,elz) e, 2))* = |l 2||° = [{z, e|2)|”
and

2 2 2
||y - <ya 6|Z> 6,2’” = ||ya ZH - |<ya 6|Z>| )
we have

{2, yl2) (x,e|z) (e, yl2)]
< (Il 211" = 1z, el2) ) * (ly, 21° = Ky, el )

for any z,y, z,e € Z with |le, z|| = 1. From (3.14), it follows that

NG

(ll, 211* = (. el2) %)
1
g (e = de 2l — pe 21 = [ = Xe. o — pel2) )

NI

and

1

2 2\ 5

(. 2I1° = Ky el2)[7)®
1 , ; 2
v — 1] (||y—ve,z” ly —ne, z||” — [{y — ve,y — ne|z)| )

N|—=

(3.18)

(3.19)

(3.20)

for any x,y,z,e € & with |le, z|| = 1 and A\, u,y,n € C with X\ # p and v # 7.

Now, if we multiply (3.19) with (3.20), then we have

(1, 2117 = (. el2)?) 2 (s 21 = [(ws el2)]?)
1

S—
[ — Al ]y — |

NI

X (”ZE - )‘67 ZHQH‘T - /LG,Z||2|<ZE - )\6,1’ - :U“€|Z>|2)

NG

x (lly = ve, 2l lly = ne, 2% {y = ve,y = nel2)[*)
Further, if we use the elementary inequality
(a2 — b2)%(02 — dQ)% < as—bd
foralla > b >0 and ¢ > d > 0, then we also have
(Il = de, 2l la — pie, 2Pl = Ae,w — el )

1
x (lly — ve, 2|I°lly — ne, 2|* |y — ve, y — nelz)|?)
< |lz = Xe, z|| ||z — pe, z|| [ly — ve, z|| [ly — ne, ||
— (= Xe,z — pel2)| |[(y — ve,y —nel2)]|.

(3.21)

(3.22)

Finally, using (3.18), (3.21) and (3.22), we have the desired inequality (3.17). This

completes the proof.

O
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4. Some reverses of the triangle inequality

In this section, we give some reverses of the triangle inequality.

Theorem 4.1. Let (27, (-,-|")) be a 2-inner product space over the real or complex
number field K. Let z,x;,€ &, i € {1,--- ,n}, and r;; >0 for each 1 <i<j<n
be such that

0 < @i, 2| |z, 2[| — Re (xi, z5]2) < rij. (4.1)

Then the following quadratic reverse of the triangle inequality holds:

n 2 n
(Z H,’L‘“Z”) S ZI’i,Z
i=1 i=1

The case of the equality holds in (4.2) if and only if it holds in (4.1) for each i,j
with 1 <1< 7 <n.

+2 )y (4.2)

1<i<j<n

Proof. Observe that

2

n 2 n
(m,zu) s
=1 =1
n n n
S o 2l — <zxi,zxj|z>
i=1 j=1

ij=1
n n
=Yl 2l Ml 2l = ) Re{as, 2512)
ij=1 ij=1
n
= > (i 2l ), 2]l — Re (@i, ;]2))
ij=1
= > (i 2ll g, 21l — Re (i, 5]2))
1<i<y<n
+ > (i 2l |2, 2l = Re (@i, 2512))
1<j<i<n
=2 Y (s, 2|l 2y, 2] — Re (wi, z512)). (4.3)
1<i<j<n

Using the condition (4.1), we have

S (leazllley. 2l - Redan oyl < 3 ny

1<i<j<n 1<i<j<n

and, by (4.3), we have the desired inequality (4.2). The case of the equality is
obvious by the identity (4.3) and we omit the details. This completes the proof. [
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Remark 4.2. From (4.2), one may deduce the coarser inequality that might be useful
in some applications:

1
OSZH%,ZH S\/§< Z Tij) -
i=1

1<i<j<n

n
E T, 2
i=1

Theorem 4.3. Let (27, (-,+|")) be a 2-inner product space over the real or complex
number field K. Let z,x;,€ 27, i € {1,--- ,n}, and r > 0 be such that

e —zj, 2| <7r (4.4)
foreach 1 <i<j<n. Then
(Z H:ci,zu) <[Sowe]| + e (45)
i=1 i=1

The case of the equality holds in (4.5) if and only if
1
i, 2|l 2l = Re (i, 2512) = 57 (4.6)

foreach1 <i<j<n.

Proof. The inequality (4.4) is obviously equivalent to
i, 2lI* + |z, 2|* < 2Re (wi, ;] 2) + 1
for each 1 <7 < j < n. Since
2 |l 2l |5, 2l < Ny 2l + [y, 2]
for each 1 <7 < j < n, we have

T2

DN | —

lzi, || |5, 2]| — Re (zi, 25|2) <

for each 1 <i < j < n. Applying Theorem 4.1 for r;; := r? and taking into account

2
that
_n(n—-1),
Z 7/.’L‘] - 4 r )
1<i<j<n
we deduce the desired inequality (4.5). The case of the equality is also obvious by
the Theorem 4.1 and we omit the details. This completes the proof. l

5. Applications for determinantal integral inequalities

Let (€2, %, 1) be a measure space consisting of a set 2, a o-algebra X of subsets of
2 and a countably additive and positive measure p on ¥ with values in R U {oo}.
Denote by L2 (€2) the Hilbert space of all real-valued functions f defined on € that
are 2-p-integrable on €, i.e.,

/Q p () £ (3)2dpa (s) < oo,



10 H.R. MORADI, M.E. OMIDVAR, S.S. DRAGOMIR & Y.J. CHO

where p :  — [0, 00) is a measurable function on €. We can introduce the following
2-inner product on L2 (€2) by the formula

(f,9lh),,

1 f(s) f(t s t
5//p<s>p<t>\h§5§ Lol e ano,
where, by
f(s) f()
h(s) h(t)|’
we denote the determinant of the matrix
g(s) g(t)
h(s) h(t)|’
generating the 2-norm on L?) (Q) expressed by
ial,i= (5 [ [roo0 [0 {Qlwan). 6

A simple calculation with integrals reveals that

Sj; pfadu g{ pfhdp
Q Q

and ;
f pf2dp f pfhdp|?

Hf h“ fpfhdﬂ fph2du )

where, for simplicity, instead of [p(s) f(s)g ( )dp (s), we have written [ pfgdpu.
0 Q

(5.3)

Using the representations (5.2), (5.3) and the Theorem 4.1, one may state interesting
determinantal integral inequality, as follows:

Proposition 5.1. Let fi, -, fn,9,h € Li (Q), where p: Q — [0,00) is a measur-
able function on 2 and r;; > 0 such that

fpfz fi)Pdp fp — f;) hdy|*
f p (fi — f3) hdp g{ ph*dp

for each 1 <i<j<n. Then

fpfgdu fpf hap|?
f pfihdp f ph*dp

> [ofidu Y [ pfihdp
S ZEIQ Z:'n,lQ + 2 Z TZJ
21 [ pfihdu 21 [ ph?dp 1<i<j<n
Q 1=1Q

1=

Proof. The proof follows by Theorem 4.1, applied for the 2-inner product (-,-|-) )
and we omit the details. 0
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Similar determinantal integral inequalities may be stated if one uses the other
results for 2-inner products obtained above, but we do not present them here.

Acknowledgement

Yeol Je Cho was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT
and future Planning (2014R1A2A2A01002100).

REFERENCES

[1] Y.J. Cho, C.S. Lin, S.S. Kim and A. Misiak, Theory of 2-inner product spaces, Nova Science
Publishers, Inc. New York, 2001.

[2] Y.J. Cho, M. Mati¢ and J.E. Pecari¢, On Gram’s determinant in 2-inner product spaces, J.
Korean Math. Soc. 38 (2001), 1125-1156.

[3] C.R. Diminnie, S. Géhler and A. White, A: 2-inner product spaces, Demonst. Math. 6 (1973),
525-536.

[4] ——, 2-inner product spaces II, Demonst. Math. 10 (1977), 169-188.

[5] S.S. Dragomir, Advances in Inequalities of the Schwarz, Griiss, and Bessel Type in Inner Prod-
uct Spaces, Nova Science Publishers, Inc. New York, 2005.

6] , Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product
Spaces, Nova Science Publishers, Inc. New York, 2007.

(7 — , A note on Bessel’s inequality, Austral. Math. Soc. Gaz. 28 (2001), 246-248.

8] , A potpourri of Schwarz related inequalities in inner product spaces (1), J. Ineq. Pure &
Appl. Math. 6 (2005).

[9] , Further reverses of the Schwarz inequality in inner product spaces, East Asian Math.
J. 22, (2006), 1-15.

[10] , On Bessel and Griss inequalities for orthonormal families in inner product spaces,
Bull. Austral. Math. Soc. 69 (2004), 327-340.

[11] , Reverses of Schwarz inequality in inner product spaces with applications, Math. Nachr.
288 (2015), 730-742.

[12] , Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, J. In-

equal. Pure & Appl. Math. 5 (2004), 1-10.

[13] R.W. Freese, S.S. Dragomir, Y.J. Cho and S.S. Kim, Some componions of Griuss inequality
in 2-inner product space and applications for determinantal integral inequalities, Commum.
Korean Math. Soc. 20(2005), 487-503.

[14] S. Géahler, Lineare 2-normierte Rdume, Math. Nachr. 28 (1965), 1-43.

[15] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Gals. Mat. 39(59) (2004),
303-314.

[16] H.R. Moradi, M.E. Omidvar and S.S. Dragomir, Some inequalities for absolute value in Hilbert
C*-modules, RGMIA Research Report Collection 18 (2015), Article 132.

[17] A.Najati, M.M. Saem and J.H. Bae, Generalized Dunkl- Williams inequality in 2-inner product
spaces, J. Inequal. Appl. 1 (2013), 1-8.

[18] G. Pdlya and G. Szegd, Aufgaben und Lehrsize aus der Analysis. Band 1: Reihen, Integralrech-
nung, Funktionentheorie (in German), 4th Ed., Springer-Verlag, Berlin, 1970 (original version:
Julius Springer Berlin, 1925).

, Problems and theorems in analysis, Vol. I: Series, integral calculus, theory of func-
tions, Translated from the German by D. Aeppli Die Grundlehren der mathematischen Wis-
senschaften, Band 193. Springer-Verlag, New York-Berlin, 1972.

[20] Th.M. Rassias, Survey on Classical Inequalities, Kluwer Academic Publishers, Dordrecht,
Boston, London, 2000.

, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers,

Dordrecht, Boston, London, 2003.

[19]

[21]



