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Abstract. This paper dedicated to study quadratic maps. We present some new operator

equalities and inequalities by using quadratic map in the framework of B (H ); the C∗-algebra

of all bounded linear operator acting on a Hilbert space H . Applications for particular case of

interest are also provided.

1. Introduction and preliminaries

As customary, we reserve α for scalars and other capital letters denote general elements of

the C∗-algebra B (H ) of all bounded linear operator acting on Hilbert space (H , 〈·, ·〉). The

absolute value of operator A is denoted by |A| = (A∗A)
1
2 , where A∗ stands for the adjoint

of A. An operator A is called positive (in symbol: A ≥ 0) if 〈Ax, x〉 ≥ 0. A linear map

φ : B (H )→ B (H ) is positive if φ (A) ≥ 0 whenever A ≥ 0. More information on such maps

can be found in [10, p. 18]. The study of linear maps on an algebra of bounded linear operators

on a Hilbert space has been developed by many authors (see for instance [3, 5, 7, 13, 14]). Also,

for a host of positive linear map inequalities, and for diverse applications of these inequalities,

we refer to [8, 11, 15], and references therein. As is known to all, the linear property plays an

important role to obtain this inequalities.

The motivation of this paper is to present some results concerning equalities and inequalities

for maps without linear property on complex Hilbert spaces. In order to prove our main

results, we need the following essential definitions. A map ϕ : B (H ) × B (H ) → B (H ) is a

sesquilinear, if satisfying the following conditions:

(a) ϕ (αA1 + βA2, B) = αϕ (A1, B) + βϕ (A2, B) ;

(b) ϕ (A,αB1 + βB2) = αϕ (A,B1) + βϕ (A,B2) ;

for all α, β ∈ C and A1, A2, B1, B2 ∈ B (H ). A sesquilinear form ϕ is called positive if

ϕ (A,A) ≥ 0, for each A ∈ B (H ). The sesquilinear form ϕ is said to be symmetric if

ϕ (A,B) = ϕ (B,A) for all A,B ∈ B (H ). The map Φ : B (H ) → B (H ) defined by

Φ (A) = ϕ (A,A), is called the quadratic associated with ϕ. It can be easily verified that the

2010 Mathematics Subject Classification. 47A63, 46L05.

Key words and phrases. Quadratic map, operator inequalities, absolute value.

1

e5011831
Typewritten Text

e5011831
Typewritten Text
Received 

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text

e5011831
Typewritten Text
15/3/16 Revised 1/12/19

e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 19 (2016), Art. 41. 

e5011831
Typewritten Text



2 Some Results Related to Quadratic Maps

definition of quadratic map is different from positive linear map. In fact, by using a sesquilinear

map we create a quadratic map, that is not necessarily linear and positive.

The paper is organized in the following way: After this Introduction, in Section 2 we deduce

some equalities. The parallelogram law is recovered (see Theorem 2.1 and 2.2) and some other

interesting operator equalities are established. Afterward, in Section 3, we get an extension

of some well known inequalities such as, triangle (Theorem 3.1) inequality. Especially, Bohr’s

inequality is generalized to the context of quadratic map (see Theorem 3.3). Some results

concerning this inequality are surveyed (see Corollary 3.2 and 3.3). In Section 4 before closing

the paper, we give an application of our results in the previous sections. We show that our

results are a generalization of some well known works due to Fujii [9] and Hirzallah [12].

2. Some equalities for quadratic maps

Here and throughout, Φ stands for the quadratic map. Our first main result in this section

reads as follows.

Theorem 2.1. Let A,B ∈ B (H ), then

(2.1) Φ (A+B) + Φ (A−B) = 2 (Φ (A) + Φ (B)) .

Proof. We observe that

(2.2) ϕ (A+B,A+B) = ϕ (A,A) + ϕ (A,B) + ϕ (B,A) + ϕ (B,B) .

Replace B by −B in the above equality, we deduce

(2.3) ϕ (A−B,A−B) = ϕ (A,A)− ϕ (A,B)− ϕ (B,A) + ϕ (B,B) .

By adding (2.2) and (2.3), we obtain desired result (2.1). �

The following generalization of the parallelogram law holds.

Theorem 2.2. Let A,B ∈ B (H ) and 0 6= t ∈ R, then

(2.4) Φ (A+B) +
1

t
Φ (tA−B) = (1 + t) Φ (A) +

(
1 +

1

t

)
Φ (B) .

Proof. We observe that

Φ (A+B) +
1

t
Φ (tA−B)

= Φ (A) + Φ (B) + ϕ (A,B) + ϕ (B,A)

+ tΦ (A) +
1

t
Φ (B)− ϕ (A,B)− ϕ (B,A)

= (1 + t) Φ (A) +

(
1 +

1

t

)
Φ (B) .
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Which proves the theorem. �

Corollary 2.1. Assume that ϕ is positive sesquilinear form. If 0 < t ≤ 1, then 1
t
≥ 1, so that

the second term 1
t
Φ (tA−B) of the left side of the equality (2.4) is greater that Φ (tA−B).

Hence we have

Φ (A∓B) + Φ (tA±B) ≤ (1 + t) Φ (A) +

(
1 +

1

t

)
Φ (B) .

Similarly, if either t ≥ 1 or t < 0 then

Φ (A∓B) + Φ (tA±B) ≥ (1 + t) Φ (A) +

(
1 +

1

t

)
Φ (B) .

The following result can be regarded as an extension of the well-known Apollonius’s identity

(see, e.g., [2, Lemma 2.12]).

Theorem 2.3. Let A,B,C ∈ B (H ), then

(2.5) Φ (A−B) = 2Φ (C − A) + 2Φ (C −B)− 4Φ

(
C − A+B

2

)
.

Proof. By Theorem 2.1, we have

Φ

(
C − A+B

2

)
= Φ

(
C

2
− A

2
+
C

2
− B

2

)
= 2

[
Φ

(
C

2
− A

2

)
+ Φ

(
C

2
− B

2

)]
− Φ

(
B

2
− A

2

)
=

1

2
[Φ (C − A) + Φ (C −B)]− 1

4
Φ (B − A) .

Which is clearly equivalent to (2.5). �

The following result concerning the quadratic maps may be stated.

Theorem 2.4. Let A,B ∈ B (H ). Let ϕ be symmetric sesquilinear form and Φ (A) = Φ (B).

Then for each ±1, 0 6= α ∈ R we have

(2.6) Φ (A+ αB) = Φ (B + αA) .

Proof. One can easily see that

Φ (A+ αB) = Φ (A) + 2αϕ (A,B) + α2Φ (B)

= Φ (B) + 2αϕ (B,A) + α2Φ (A)

= Φ (B + αA) .

Therefore we obtain the desired equality (2.6). �
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Theorem 2.5. Let A,B,C ∈ B (H ) such that A + B + C = 0, and let ϕ be symmetric

sesquilinear form and Φ (A) = Φ (B), then

Φ (A− C) = Φ (B − C) .

Proof. By easy computation we have

Φ (A− C) + Φ (A−B)

= 2Φ (A) + Φ (C) + Φ (B)− 2ϕ (A,B + C)

= 4Φ (A) + Φ (C) + Φ (B) .

Also

Φ (B − C) + Φ (A−B) = 4Φ (B) + Φ (C) + Φ (A) .

Hence

Φ (A− C) = Φ (B − C) .

�

The results in the following proposition is derived from the Theorem 2.5.

Proposition 2.1. Let A,B,C,D ∈ B (H ) such that A+B+C+D = 0, and let ϕ be symmetric

sesquilinear form and Φ (A) = Φ (B), Φ (C) = Φ (D). Then

Φ (A− C) = Φ (B −D) ,

and

Φ (B − C) = Φ (A−D) .

Proof. It is easy to obtain that

Φ (A− C) + Φ (A−B) = 2Φ (A) + Φ (C) + Φ (B)− 2ϕ (A,C +B) ,

Φ (B −D) + Φ (A−B) = 2Φ (B) + Φ (C) + Φ (A)− 2ϕ (B,A+D) .

Subtracting and using the hypothesis, this gives

Φ (A− C)− Φ (B −D) = 2ϕ (B,A+D)− 2ϕ (A,C +B)

= 2ϕ (B,A+D) + 2ϕ (A,A+D)

= 2ϕ (A+B,A+D) .

Now

ϕ (A+B,A) = Φ (A) + ϕ (B,A) = Φ (B) + ϕ (A,B) = ϕ (A+B,B) ,

and

ϕ (A+B,D) = −ϕ (C +D,D) = −ϕ (C +D,C) = ϕ (A+B,C) .
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Therefore

ϕ (A+B,A+D) = ϕ (A+B,B + C) = −ϕ (A+B,A+D) = 0.

Which implies that

Φ (A− C) = Φ (B −D) .

We can easily also check that

Φ (B − C) = Φ (A−D) .

�

3. Some inequalities for quadratic maps

The following simple result is of interest in itself as well:

Theorem 3.1. Let A,B ∈ B (H ) and Φ be a positive quadratic map, then

(3.1) 4 Reϕ (A,B) ≤ Φ (A+B) ≤ 2 (Φ (A) + Φ (B)) .

Proof. Since Φ (A−B) ≥ 0, then

Φ (A) + 2 Reϕ (A,B) + Φ (B) ≥ 4 Reϕ (A,B) ,

therefore

(3.2) Φ (A+B) ≥ 4 Reϕ (A,B) .

On the other hand

Φ (A) + Φ (B) ≥ 2 Reϕ (A,B) ,

then

2 (Φ (A) + Φ (B)) ≥ Φ (A) + Φ (B) + 2 Reϕ (A,B) ,

so

(3.3) 2 (Φ (A) + Φ (B)) ≥ Φ (A+B) .

By (3.2) and (3.3) we deduce the desired result (3.1). �

It is worth to mention that the right side of inequality (3.1) is an extension of the triangle

inequality.

Corollary 3.1. Let A,B,C ∈ B (H ) and Φ be a positive quadratic map, then

(3.4) Φ (A− C) ≤ 2 (Φ (A−B) + Φ (B − C)) .

The forthcoming theorem gives an upper bound for Φ (A+B).



6 Some Results Related to Quadratic Maps

Theorem 3.2. Let A,B ∈ B (H ) and Φ (A) = Φ (B) then for each 0 6= α ∈ R,

Φ (A+B) ≤ Φ
(
αA+ α−1B

)
.

Proof. We know that for any real numbers α 6= 0, (α− α−1)
2 ≥ 0 so α2 + α−2 ≥ 2. Using the

fact that Φ (A) = Φ (B), one has

Φ
(
αA+ α−1B

)
= α2Φ (A) + 2ϕ (A,B) + α−2Φ (B)

=
(
α2 + α−2

)(Φ (A) + Φ (B)

2

)
+ 2ϕ (A,B)

≥ Φ (A) + Φ (B) + 2ϕ (A,B)

= Φ (A+B) .

This completes the proof of Theorem 3.2. �

Several authors discussed operator version of Bohr inequality (see for instance [4]). In the

following, we give a unified version of Bohr inequality.

Theorem 3.3. Let A,B ∈ B (H ) and p, q > 1 with 1
p

+ 1
q

= 1, p ≤ q, and let Φ be a positive

quadratic map, then

Φ (A−B) + Φ ((1− p)A−B) ≤ pΦ (A) + qΦ (B) .

Proof. By easy computation observe that

pΦ (A) + qΦ (B)− Φ (A−B)− Φ ((1− p)A−B)

= (2− p) (p− 1) Φ (A) + (q − 2) Φ (B)− (p− 2) (ϕ (A,B) + ϕ (B,A))

= (2− p) (p− 1) Φ (A) +

(
2− p
p− 1

)
Φ (B) + (2− p) (ϕ (A,B) + ϕ (B,A))

= (2− p) Φ

(√
p− 1A+

1√
p− 1

B

)
≥ 0

where the last inequality follows from the fact that p ≤ q and so the proof is complete. �

The following corollary is a natural consequence of the above result.

Corollary 3.2. Let A,B ∈ B (H ) and p, q > 1, 1
p

+ 1
q

= 1, and let Φ be a positive quadratic

map, then

Φ (A−B) ≤ pΦ (A) + qΦ (B) .
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Proof. If p ≤ q, then the results follows from Theorem 3.3. On the other hand, if q ≤ p, then

again by Theorem 3.3 we have

Φ (A−B) + Φ ((1− q)B − A) ≤ pΦ (A) + qΦ (B) .

and so Φ (A−B) ≤ pΦ (A) + qΦ (B) with equality if and only if A = (1− q)B. It follows that

(1− p)A = B, since (1− p) = 1
(1−q)

. The proof is complete. �

The next results follows by applying Corollary 3.2, first to the operators A,B and second to

the operators A,−B.

Corollary 3.3. Let A,B ∈ B (H ) and Φ be a positive quadratic map. Then for any p > 1,

± (ϕ (A,B) + ϕ (B,A)) ≤ (p− 1) Φ (A) +
1

p− 1
Φ (B) .

4. Special case

For two bounded linear operators A,B ∈ B (H ), we define the map ϕ : B (H )× B (H )→
B (H ), with ϕ (A,B) = B∗A. This leads to ϕ (A,A) = |A|2. It is obvious that ϕ (A,B), is

symmetric and linear in the first variable and conjugate-linear in the second. For this we first

observe from (2.1) the classic parallelogram law for operators.

|A+B|2 + |A−B|2 = 2
(
|A|2 + |B|2

)
.

We have from (2.5), the following well known equality

|A−B|2 = 2|C − A|2 + 2|C −B|2 − 4

∣∣∣∣C − A+B

2

∣∣∣∣2.
The following generalization of parallelogram law is derived from inequality (2.4), which is

obtained in [9, Theorem 4.1].

|A+B|2 +
1

t
|tA−B|2 = (1− t) |A|2 +

(
1 +

1

t

)
|B|2.

We also remark that, Corollary 2.1 is equivalent to [9, Theorem 3.1] by interchanging ϕ (A,B) =

B∗A.

Also, Theorem 3.3 becomes

|A−B|2 + |(1− p)A−B|2 ≤ p|A|2 + q|B|2.

This result was obtained in [12, Theorem 1].
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