
NEW REFINEMENTS AND REVERSES OF
HERMITE-HADAMARD INEQUALITY AND APPLICATIONS TO

YOUNG�S OPERATOR INEQUALITY

S. S. DRAGOMIR1;2

Abstract. In this paper we obtain some new re�nements and reverses of
Hermite-Hadamard inequality and provide some examples for basic convex/concave
functions of interest such as the norm, the exponential and the logarithm. Ap-
plications to Young�s operator inequality are given as well.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) f

�
a+ b

2

�
<

1

b� a

Z b

a

f(x)dx <
f(a) + f(b)

2
; a; b 2 R:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [35]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [2]. In
1974, D. S. Mitrinovíc found Hermite�s note in Mathesis [35]. Since (1.1) was
known as Hadamard�s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.
Let X be a vector space over the real or complex number �eld K and x; y 2

X; x 6= y. De�ne the segment

[x; y] := f(1� t)x+ ty; t 2 [0; 1]g:

We consider the function f : [x; y]! R and the associated function

g(x; y) : [0; 1]! R; g(x; y)(t) := f [(1� t)x+ ty]; t 2 [0; 1]:

Note that f is convex on [x; y] if and only if g(x; y) is convex on [0; 1].
For any convex function de�ned on a segment [x; y] � X, we have the Hermite-

Hadamard integral inequality (see [10, p. 2], [11, p. 2])

(1.2) f

�
x+ y

2

�
�
Z 1

0

f [(1� t)x+ ty]dt � f(x) + f(y)

2
;

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(x; y) : [0; 1]! R.
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Since f(x) = kxkp (x 2 X and 1 � p <1) is a convex function, then for any x;
y 2 X we have the following norm inequality from (1.2)

(1.3)

x+ y2
p � Z 1

0

k(1� t)x+ tykpdt � kxkp + kykp
2

:

In this paper we obtain some new re�nements and reverses of Hermite-Hadamard
inequality and provide some examples for basic convex/concave functions of interest
such as the norm, the exponential and the logarithm. Applications to Young�s
operator inequality are given as well.
We need some preliminary results as follows.

2. Some Preliminary Facts

Jensen�s inequality for convex function is one of the most known and extensively
used inequality in various �led of Modern Mathematics. It is a source of many
classical inequalities including the generalized triangle inequality, the arithmetic
mean-geometric mean-harmonic mean inequality, the positivity of relative entropy
in Information Theory, Schannon�s inequality, Ky Fan�s inequality, Levinson�s in-
equality and other results. For classical and contemporary developments related to
the Jensen inequality, see [3], [36], [41] and [6] where further references are provided.
To be more speci�c, we recall that, if X is a linear space and C � X a convex

subset in X, then for any convex function f : C ! R and any zi 2 C; ri � 0

for i 2 f1; :::; kg ; k � 2 with
Pk

i=1 ri = Rk > 0 one has the weighted Jensen�s
inequality:

(J)
1

Rk

kX
i=1

rif (zi) � f
 
1

Rk

kX
i=1

rizi

!
:

If f : C ! R is strictly convex and ri > 0 for i 2 f1; :::; kg then the equality case
hods in (J) if and only if z1 = ::: = zn:
By Pn we denote the set of all nonnegative n-tuples (p1; :::; pn) with the property

that
Pn

i=1 pi = 1: Consider the normalised Jensen functional

Jn (f;x;p) =
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
� 0;

where f : C ! R be a convex function on the convex set C and x = (x1; :::; xn) 2 Cn
and p 2Pn:
The following result holds [5]:

Lemma 1. If p; q 2Pn, qi > 0 for each i 2 f1; :::; ng then

(2.1) (0 �) min
1�i�n

�
pi
qi

�
Jn (f;x;q) � Jn (f;x;p) � max

1�i�n

�
pi
qi

�
Jn (f;x;q) :

In the case n = 2; if we put p1 = 1 � p; p2 = p; q1 = 1 � q and q2 = q with
p 2 [0; 1] and q 2 (0; 1) then by (2.1) we get

min

�
p

q
;
1� p
1� q

�
[(1� q) f (x) + qf (y)� f ((1� q)x+ qy)](2.2)

� [(1� p) f (x) + pf (y)� f ((1� p)x+ py)]

� max
�
p

q
;
1� p
1� q

�
[(1� q) f (x) + qf (y)� f ((1� q)x+ qy)]
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for any x; y 2 C:
If we take q = 1

2 in (2.2), then we get

2min ft; 1� tg
�
f (x) + f (y)

2
� f

�
x+ y

2

��
(2.3)

� [(1� t) f (x) + tf (y)� f ((1� t)x+ ty)]

� 2max ft; 1� tg
�
f (x) + f (y)

2
� f

�
x+ y

2

��
for any x; y 2 C and t 2 [0; 1] :
We consider the weighted Arithmetic, Geometric and Harmonic means de�ned

by

A� (a; b) := (1� �) a+ �b; G� (a; b) := a1��b� and H� (a; b) = A�1�
�
a�1; b�1

�
where a; b > 0 and � 2 [0; 1] :
If we take the convex function f : R! (0;1), f (x) = exp (�x) ; with � 6= 0;

then we have from (2.2) that

min

�
p

q
;
1� p
1� q

�
[Aq (exp (�x) ; exp (�y))� exp (�Aq (a; b))](2.4)

� Ap (exp (�x) ; exp (�y))� exp (�Ap (a; b))

� max
�
p

q
;
1� p
1� q

�
[Aq (exp (�x) ; exp (�y))� exp (�Aq (a; b))]

for any p 2 [0; 1] and q 2 (0; 1) and any x; y 2 R.
For q = 1

2 we have by (2.4) that

2min fp; 1� pg [A (exp (�x) ; exp (�y))� exp (�A (a; b))](2.5)

� Ap (exp (�x) ; exp (�y))� exp (�Ap (a; b))
� 2max fp; 1� pg [A (exp (�x) ; exp (�y))� exp (�A (a; b))]

for any p 2 [0; 1] and any x; y 2 R.
If we take x = ln a and y = ln b in (2.4), then we get

min

�
p

q
;
1� p
1� q

��
Aq (a

�; b�)�G�q (a; b)
�

(2.6)

� Ap (a�; b�)�G�p (a; b)

� max
�
p

q
;
1� p
1� q

��
Aq (a

�; b�)�G�q (a; b)
�

for any a; b > 0; for any p 2 [0; 1], q 2 (0; 1) and � 6= 0:
For q = 1

2 we have by (2.6) that

min fp; 1� pg
�
b
�
2 � a�2

�2 � Ap (a�; b�)�G�p (a; b)(2.7)

� max fp; 1� pg
�
b
�
2 � a�2

�2
for any a; b > 0; for any p 2 [0; 1] and � 6= 0:
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For � = 1 we get from (2.7) that

min fp; 1� pg
�p
b�

p
a
�2
� Ap (a; b)�Gp (a; b)(2.8)

� max fp; 1� pg
�p
b�

p
a
�2

for any a; b > 0 and for any p 2 [0; 1] ; which are the inequalities obtained by
Kittaneh and Manasrah in [29] and [30].
For � = 1 in (2.6) we obtain

min

�
p

q
;
1� p
1� q

�
[Aq (a; b)�Gq (a; b)](2.9)

� Ap (a; b)�Gp (a; b)

� max
�
p

q
;
1� p
1� q

�
[Aq (a; b)�Gq (a; b)] ;

for any a; b > 0; for any p 2 [0; 1] ; which is the inequality (2.1) from [1] in the
particular case � = 1 in a slightly more general form for the weights p; q:
If we take in (2.2) f (x) = � lnx; then we get

(2.10)
�
Aq (x; y)

Gq (x; y)

�minf pq ; 1�p1�qg
� Ap (x; y)

Gp (x; y)
�
�
Aq (x; y)

Gq (x; y)

�maxf pq ; 1�p1�qg

for any x; y > 0 and for any p 2 [0; 1], q 2 (0; 1) :
This inequality is a particular case for n = 2 of the inequality (4.2) from [5].
For q = 1

2 we have by (2.10) (for x = a; y = b) that

(2.11)
�
A (a; b)

G (a; b)

�2minfp;1�pg
� Ap (a; b)

Gp (a; b)
�
�
A (a; b)

G (a; b)

�2maxfp;1�pg
for any a; b > 0 and for any p 2 [0; 1].
The �rst inequality in (2.11) was obtained in an equivalent form in terms of

Kantorovich constant by Zou et al. in [44] while the second by Liao et al. [31].
If we take in (2.2) f (x) = � lnx and x = exp a; y = exp b; with a; b 2 R, then

we get

min

�
p

q
;
1� p
1� q

�
[ln (Aq (exp a; exp b))�Aq (a; b)](2.12)

� ln (Ap (exp a; exp b))�Ap (a; b)

� max
�
p

q
;
1� p
1� q

�
[ln (Aq (exp a; exp b))�Aq (a; b)]

for any p 2 [0; 1], q 2 (0; 1) :
This inequality can be written in an equivalent form as�

Aq (exp a; exp b)

expAq (a; b)

�minf pq ; 1�p1�qg
� Ap (exp a; exp b)

expAp (a; b)
(2.13)

�
�
Aq (exp a; exp b)

expAq (a; b)

�maxf pq ; 1�p1�qg

for any a; b 2 R and p 2 [0; 1], q 2 (0; 1) :
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3. Trapezoidal Type Integral Inequalities

We have:

Theorem 1. Let X be a linear space and C � X a convex subset in X, then for
any convex function f : C ! R and x; y 2 C we have

1

2
[(1� q) f (x) + qf (y)� f ((1� q)x+ qy)](3.1)

� f (x) + f (y)

2
�
Z 1

0

f ((1� t)x+ ty) dt

� 1

2

q2 � q + 1
q (1� q) [(1� q) f (x) + qf (y)� f ((1� q)x+ qy)] ;

or, equivalently

2
q (1� q)
q2 � q + 1

�
f (x) + f (y)

2
�
Z 1

0

f ((1� t)x+ ty) dt
�

(3.2)

� (1� q) f (x) + qf (y)� f ((1� q)x+ qy)

� 2
�
f (x) + f (y)

2
�
Z 1

0

f ((1� t)x+ ty) dt
�
;

for any q 2 (0; 1) :

Proof. If we integrate over p 2 [0; 1] the inequality (2.2), then we get

[(1� q) f (x) + qf (y)� f ((1� q)x+ qy)]
Z 1

0

min

�
p

q
;
1� p
1� q

�
dp(3.3)

� f (x) + f (y)

2
�
Z 1

0

f ((1� p)x+ py) dp

� [(1� q) f (x) + qf (y)� f ((1� q)x+ qy)]
Z 1

0

max

�
p

q
;
1� p
1� q

�
dp

for any x; y 2 C and q 2 (0; 1) :
Observe that

p

q
� 1� p
1� q =

p� q
q (1� q)

showing that

min

�
p

q
;
1� p
1� q

�
=

8<:
p
q if 0 � p � q � 1

1�p
1�q if 0 � q � p � 1

and

max

�
p

q
;
1� p
1� q

�
=

8<:
1�p
1�q if 0 � p � q � 1

p
q if 0 � q � p � 1:

Then Z 1

0

min

�
p

q
;
1� p
1� q

�
dp =

Z q

0

p

q
dp+

Z 1

q

1� p
1� q dp

=
q2

2q
+

1

1� q

�
1� q �

�
1� q2
2

��
=
1

2
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and Z 1

0

max

�
p

q
;
1� p
1� q

�
dp =

Z q

0

1� p
1� q dp+

Z 1

q

p

q
dp

=
1

1� q

�
q � q

2

2

�
+
1� q2
2q

=
q2 � q + 1
2q (1� q)

and by (3.3) we obtain the desired result (3.1). �

Remark 1. If we take q = 1
2 in (3.1), then we get

1

2

�
f (x) + f (y)

2
� f

�
x+ y

2

��
(3.4)

� f (x) + f (y)

2
�
Z 1

0

f ((1� t)x+ ty) dt

� 3

2

�
f (x) + f (y)

2
� f

�
x+ y

2

��
;

for any x; y 2 C:

Remark 2. If the function f is de�ned on the real interval I and a; b 2 I; with
a 6= b; then by (3.1) and (3.2) we have

1

2
[(1� q) f (a) + qf (b)� f ((1� q) a+ qb)](3.5)

� f (a) + f (b)

2
� 1

b� a

Z b

a

f (s) ds

� 1

2

q2 � q + 1
q (1� q) [(1� q) f (a) + qf (b)� f ((1� q) a+ qb)] ;

or, equivalently

2
q (1� q)
q2 � q + 1

"
f (a) + f (b)

2
� 1

b� a

Z b

a

f (s) ds

#
(3.6)

� (1� q) f (a) + qf (b)� f ((1� q) a+ qb)

� 2
"
f (a) + f (b)

2
� 1

b� a

Z b

a

f (s) ds

#
;

for any q 2 (0; 1) :

Let (X; k�k) be a real or complex normed linear space. The function f : X !
[0;1), f (x) = kxkr with r � 1 is a convex function on X: Then by (2.2) and (3.1)
we have the norm inequalities

min

�
p

q
;
1� p
1� q

�
[(1� q) kxkr + q kykr � k(1� q)x+ qykr](3.7)

� (1� p) kxkr + p kykr � k(1� p)x+ pykr

� max
�
p

q
;
1� p
1� q

�
[(1� q) kxkr + q kykr � k(1� q)x+ qykr]
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and
1

2
[(1� q) kxkr + q kykr � k(1� q)x+ qykr](3.8)

� kxkr + kykr

2
�
Z 1

0

k(1� t)x+ tykr dt

� 1

2

q2 � q + 1
q (1� q) [(1� q) kxk

r
+ q kykr � k(1� q)x+ qykr] ;

for any x; y 2 X; p 2 [0; 1] and q 2 (0; 1) :
For positive x 6= y and p 2 R n f�1; 0g, we de�ne the p-logarithmic mean (gen-

eralized logarithmic mean) Lp(x; y) by

Lp(x; y) :=

�
yp+1 � xp+1
(p+ 1)(y � x)

�1=p
:

In fact the singularities at p = �1; 0 are removable and Lp can be de�ned for
p = �1; 0 so as to make Lp(x; y) a continuous function of p. In the limit as p! 0
we obtain the identric mean I(x; y), given by

(3.9) I(x; y) :=
1

e

�
yy

xx

�1=(y�x)
;

and in the case p! �1 the logarithmic mean L(x; y), given by

L(x; y) :=
y � x

ln y � lnx:

In each case we de�ne the mean as x when y = x, which occurs as the limiting
value of Lp(x; y) for y ! x.
We de�ne the arithmetic mean as A (x; y) := x+y

2 , the geometric mean as
G (x; y) :=

p
xy and the harmonic mean as H (x; y) = A�1

�
x�1; y�1

�
:

If we take the convex function f : R! (0;1), f (x) = exp (�x) ; with � 6= 0;
then we have from (3.6) that

2
q (1� q)
q2 � q + 1 [A (exp (�x) ; exp (�y))� E� (x; y)](3.10)

� Aq (exp (�x) ; exp (�y))� exp (Aq (x; y))
� 2 [A (exp (�x) ; exp (�y))� E� (x; y)] ;

for any x; y 2 R; x 6= y and q 2 [0; 1] where the exponential integral mean E� (x; y)
is de�ned by

(3.11) E� (x; y) :=
1

y � x

Z y

x

exp (�s) ds =
exp (�y)� exp (�x)

� (y � x) :

Now, if we take in (3.10) x = ln a and y = ln b for a; b > 0; then we get (for q = p)
that

2
p (1� p)
p2 � p+ 1 [A (a

�; b�)� L (a�; b�)] � Ap (a�; b�)�G�p (a; b)(3.12)

� 2 [A (a�; b�)� L (a�; b�)] ;

for any � 2 R with � 6= 0 and p 2 [0; 1] :
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For � = 1 we have

2
p (1� p)
p2 � p+ 1 [A (a; b)� L (a; b)] � Ap (a; b)�Gp (a; b)(3.13)

� 2 [A (a; b)� L (a; b)] ;

for any a; b > 0 and p 2 [0; 1] :
If we take � = �1 in (3.12), then we get

2
p (1� p)
p2 � p+ 1

G2 (a; b)�H (a; b)L (a; b)
H (a; b)G2 (a; b)

� Gp (a; b)�Hp (a; b)
Gp (a; b)Hp (a; b)

(3.14)

� 2G
2 (a; b)�H (a; b)L (a; b)
H (a; b)G2 (a; b)

;

for any a; b > 0 and p 2 [0; 1] :
If we take in (3.12) � = 2; then we get

2
p (1� p)
p2 � p+ 1

�
A
�
a2; b2

�
�A (a; b)L (a; b)

�
(3.15)

� Ap
�
a2; b2

�
�G2p (a; b)

� 2
�
A
�
a2; b2

�
�A (a; b)L (a; b)

�
;

for any a; b > 0 and p 2 [0; 1] :
If we take in (3.6) f (x) = � lnx; then we get

2
p (1� p)
p2 � p+ 1

"
1

b� a

Z b

a

ln sds� ln (G (a; b))
#

(3.16)

� lnAp (a; b)� ln (Gp (a; b))

� 2
"

1

b� a

Z b

a

ln sds� ln (G (a; b))
#
;

and since
1

b� a

Z b

a

ln sds = ln I (a; b) ;

then by (3.16) we get

(3.17)
�
I (a; b)

G (a; b)

�2 p(1�p)
p2�p+1

� Ap (a; b)

Gp (a; b)
�
�
I (a; b)

G (a; b)

�2
;

for any a; b > 0 and p 2 [0; 1] :
We observe that the inequality (2.8) provides the following upper bound

max fp; 1� pg
�p
b�

p
a
�2

for the quantity

Ap (a; b)�Gp (a; b)
while the inequality (3.13) provides the upper bound

2 [A (a; b)� L (a; b)]
where a; b > 0 and p 2 [0; 1] :
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Let a = 1; b = x > 0 and y = p 2 [0; 1] in the above and consider the di¤erence
function

D1 (x; y) := max fy; 1� yg
�p
x� 1

�2 � 2�x+ 1
2

� x� 1
lnx

�
:

The plot of the function D1 (x; y) in the box [0; 2]� [0; 1] ; see Figure 1 below, shows
that it takes both positive and negative values meaning that neither of the upper
bounds is always best.

Figure 1. Plot of D1 (x; y) in the box [0; 2]� [0; 1]

We also observe that the inequality (2.11) provides the following upper bound�
A (a; b)

G (a; b)

�2maxfp;1�pg
for the quantity

Ap (a; b)

Gp (a; b)

while the inequality (3.17) provides the upper bound�
I (a; b)

G (a; b)

�2
where a; b > 0 and p 2 [0; 1] :
Let a = 1; b = x > 0 and y = p 2 [0; 1] in the above and consider the di¤erence

function

D2 (x; y) :=

�
x+ 1

2
p
x

�2maxfy;1�yg
�
 
x

x
x�1

e
p
x

!2
The plot of the function D1 (x; y) in the box [0; 2]� [0; 1] ; see Figure 2 below, shows
that it takes both positive and negative values meaning that neither of the upper
bounds is always best.
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Plot of D2 (x; y) in the box [0; 2]� [0; 1]

4. Midpoint Type Integral Inequalities

We have:

Theorem 2. Let X be a linear space and C � X a convex subset in X, then for
any convex function f : C ! R and x; y 2 C we have

1

2q (1� q) min f1� q; qg(4.1)

�
�Z 1

0

f ((1� t)x+ ty) dt� 1

1� 2q

Z 1�q

q

f ((1� s)x+ sy) ds
�

�
Z 1

0

f ((1� t)x+ ty) dt� f
�
x+ y

2

�
� 1

2q (1� q) max f1� q; qg

�
�Z 1

0

f ((1� t)x+ ty) dt� 1

1� 2q

Z 1�q

q

f ((1� s)x+ sy) ds
�

or, equivalently

2q (1� q)
max f1� q; qg

�Z 1

0

f ((1� t)x+ ty) dt� f
�
x+ y

2

��
(4.2)

�
Z 1

0

f ((1� t)x+ ty) dt� 1

1� 2q

Z 1�q

q

f ((1� s)x+ sy) ds

� 2q (1� q)
min f1� q; qg

�Z 1

0

f ((1� t)x+ ty) dt� f
�
x+ y

2

��
for any q 2 (0; 1) ; q 6= 1

2 :
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Proof. If we take in (2.2) p = 1
2 ; then we have

1

2q (1� q) min f1� q; qg [(1� q) f (x) + qf (y)� f ((1� q)x+ qy)](4.3)

� f (x) + f (y)

2
� f

�
x+ y

2

�
� 1

2q (1� q) max f1� q; qg [(1� q) f (x) + qf (y)� f ((1� q)x+ qy)]

for any x; y 2 C and q 2 (0; 1) :
If we replace x by (1� t)x+ ty and y by tx+ (1� t) y in (4.3), then we get

1

2q (1� q) min f1� q; qg(4.4)

� [(1� q) f ((1� t)x+ ty) + qf (tx+ (1� t) y)
�f ((1� q) [(1� t)x+ yt] + q [tx+ (1� t) y])]

�
�
f ((1� t)x+ ty) + f (tx+ (1� t) y)

2
� f

�
x+ y

2

��
� 1

2q (1� q) max f1� q; qg

� [(1� q) f ((1� t)x+ ty) + qf (tx+ (1� t) y)
�f ((1� q) [(1� t)x+ yt] + q [tx+ (1� t) y])]

for any x; y 2 C, t 2 [0; 1] and q 2 (0; 1) :
If we take the integral over t 2 [0; 1] in (4.4) and take into account thatZ 1

0

f ((1� t)x+ ty) dt =
Z 1

0

f (tx+ (1� t) y) dt

we get

1

2q (1� q) min f1� q; qg
�Z 1

0

f ((1� t)x+ ty) dt(4.5)

�
Z 1

0

f ((1� q) [(1� t)x+ ty] + q [tx+ (1� t) y]) dt
�

�
Z 1

0

f ((1� t)x+ ty) dt� f
�
x+ y

2

�
� 1

2q (1� q) max f1� q; qg
�Z 1

0

f ((1� t)x+ ty) dt

�
Z 1

0

f ((1� q) [(1� t)x+ ty] + q [tx+ (1� t) y]) dt
�

or any x; y 2 C and q 2 (0; 1) :
Observe that for any x; y 2 C; t 2 [0; 1] and q 2 (0; 1) we have

(1� q) [(1� t)x+ ty] + q [tx+ (1� t) y]
= [(1� q) (1� t) + qt]x+ [(1� q) t+ (1� t) q] y

and by putting s := (1� q) t+ (1� t) q; for q 6= 1
2 we have

[(1� q) (1� t) + qt]x+ [(1� q) t+ (1� t) q] y = (1� s)x+ sy:
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If q 6= 1
2 ; then s is a change of variable, ds = (1� 2q) dt and we have for any x;

y 2 C that Z 1

0

f ((1� q) [(1� t)x+ ty] + q [tx+ (1� t) y]) dt

=
1

1� 2q

Z 1�q

q

f ((1� s)x+ sy) ds:

On making use of (4.5) we get the desired result (4.1). �

Remark 3. If we take q = 1
4 in (4.2), then we get

1

2

�Z 1

0

f ((1� t)x+ ty) dt� f
�
x+ y

2

��
(4.6)

�
Z 1

0

f ((1� t)x+ ty) dt� 2
Z 3=4

1=4

f ((1� s)x+ sy) ds

� 3

2

�Z 1

0

f ((1� t)x+ ty) dt� f
�
x+ y

2

��
for any x; y 2 C:

Let (X; k�k) be a real or complex normed linear space and r � 1: Then by (4.2)
we have the inequalities

2q (1� q)
max f1� q; qg

�Z 1

0

k(1� t)x+ tykr dt�
x+ y2

r�(4.7)

�
Z 1

0

k(1� t)x+ tykr dt� 1

1� 2q

Z 1�q

q

k(1� s)x+ sykr ds

� 2q (1� q)
min f1� q; qg

�Z 1

0

k(1� t)x+ tykr dt�
x+ y2

r�
for any x; y 2 X:

Remark 4. If the function f is de�ned on the real interval I and a; b 2 I; a 6= b
then by (4.2) and (3.2) we have

2q (1� q)
max f1� q; qg

"
1

b� a

Z b

a

f (u) du� f
�
a+ b

2

�#
(4.8)

� 1

b� a

Z b

a

f (u) du� 1

(1� 2q) (b� a)

Z qa+(1�q)b

(1�q)a+qb
f (v) dv

� 2q (1� q)
min f1� q; qg

"
1

b� a

Z b

a

f (u) du� f
�
a+ b

2

�#

for any q 2 (0; 1) ; q 6= 1
2 :
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If we take the convex function f : R! (0;1), f (x) = exp (�x) ; with � 6= 0; in
(4.8) then we have from (4.8) (for a = x; b = y) that

2q (1� q)
max f1� q; qg [E� (x; y)� exp (�A (x; y))](4.9)

� E� (x; y)� E� (A1�q (x; y) ; Aq (x; y))

� 2q (1� q)
min f1� q; qg [E� (x; y)� exp (�A (x; y))]

for any x; y 2 R, � 6= 0 and q 2 (0; 1) :
Now, if we take in (4.9) x = ln a and y = ln b for a; b > 0; then we get

2q (1� q)
max f1� q; qg [L (a

�; b�)�G� (a; b)](4.10)

� L (a�; b�)� L
�
G�1�q (a; b) ; G

�
q (a; b)

�
� 2q (1� q)
min f1� q; qg [L (a

�; b�)�G� (a; b)] :

for any � 6= 0 and q 2 (0; 1) :
If we take � = 1 in (4.10), then we get

2q (1� q)
max f1� q; qg [L (a; b)�G (a; b)](4.11)

� L (a; b)� L (G1�q (a; b) ; Gq (a; b))

� 2q (1� q)
min f1� q; qg [L (a; b)�G (a; b)] ;

for any for a; b > 0 and q 2 (0; 1) :
If we take in (4.8) f (x) = � lnx; then we obtain

(4.12)
�
A (a; b)

I (a; b)

� 2q(1�q)
maxf1�q;qg

� I (Aq (a; b) ; A1�q (a; b))

I (a; b)
�
�
A (a; b)

I (a; b)

� 2q(1�q)
minf1�q;qg

for any for a; b > 0 and q 2 (0; 1) :

5. Applications for Young�s Operator Inequalities

Throughout this section A; B are positive invertible operators on a complex
Hilbert space (H; h�; �i) : We use the following notations for operators

Ar�B := (1� �)A+ �B;
the weighted operator arithmetic mean and

A]�B := A
1=2
�
A�1=2BA�1=2

��
A1=2;

the weighted operator geometric mean. When � = 1
2 we write ArB and A]B for

brevity, respectively.
The famous Young inequality for scalars says that if a; b > 0 and � 2 [0; 1]; then

(5.1) a1��b� � (1� �) a+ �b
with equality if and only if a = b. The inequality (5.1) is also called �-weighted
arithmetic-geometric mean inequality.
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We recall that Specht�s ratio is de�ned by [42]

(5.2) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
The following inequality provides a re�nement and a multiplicative reverse for

Young�s inequality

(5.3) S
��a
b

�r�
a1��b� � (1� �) a+ �b � S

�a
b

�
a1��b� ;

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g.
The second inequality in (5.3) is due to Tominaga [43] while the �rst one is due

to Furuichi [21].
We consider the Kantorovich�s constant de�ned by

(5.4) K (h) :=
(h+ 1)

2

4h
; h > 0:

The function K is decreasing on (0; 1) and increasing on [1;1) ; K (h) � 1 for any
h > 0 and K (h) = K

�
1
h

�
for any h > 0:

The following multiplicative re�nement and reverse of Young inequality in terms
of Kantorovich�s constant holds

(5.5) Kr
�a
b

�
a1��b� � (1� �) a+ �b � KR

�a
b

�
a1��b�

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
The �rst inequality in (5.5) was obtained by Zou et al. in [44] while the second

by Liao et al. [31].
In [12] we proved the following reverses of Young�s inequality

(5.6) 0 � (1� �) a+ �b� a1��b� � � (1� �) (a� b) (ln a� ln b)

and

(5.7) 1 � (1� �) a+ �b
a1��b�

� exp
h
4� (1� �)

�
K
�a
b

�
� 1
�i
;

for any a; b > 0 and � 2 [0; 1] ; where K is Kantorovich�s constant de�ned by (5.4).
From (3.13) we have the additive inequality

2
� (1� �)
�2 � � + 1 [A (a; b)� L (a; b)] � A� (a; b)�G� (a; b)(5.8)

� 2 [A (a; b)� L (a; b)] ;

for any a; b > 0 and � 2 [0; 1] and from (3.17) we have the multiplicative inequalities

(5.9)
�
I (a; b)

G (a; b)

�2 �(1��)
�2��+1

� A� (a; b)

G� (a; b)
�
�
I (a; b)

G (a; b)

�2
;

for any a; b > 0 and � 2 [0; 1] :
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We consider the functions L : (0;1)! (0;1) de�ned by

L (x) :=

8<: L (x; 1) if x 6= 1

1 if x 6= 1
=

8<:
x�1
ln x if x 6= 1

1 if x 6= 1
and I : (0;1)! (0;1) de�ned by

I (x) :=

8<: I (x; 1) if x 6= 1

1 if x 6= 1
=

8<:
x

x
x�1

e if x 6= 1

1 if x 6= 1:
These functions are continuous on (0;1) :
If A; B are positive invertible operators on a complex Hilbert space (H; h�; �i) ;

then by making use of continuous functional calculus, we can consider the operators

A[LB := A
1=2L

�
A�1=2BA�1=2

�
A1=2

and
A[IB := A

1=2I
�
A�1=2BA�1=2

�
A1=2:

Since, by the well known inequalities for means we have

G (x; 1) � L (x; 1) � I (x; 1) � A (x; 1)
for any x > 0; we conclude that the following operator inequalities also hold

(5.10) A]B � A[LB � A[IB � ArB
for any A; B positive invertible operators.

Proposition 1. For for any A; B positive invertible operators we have

(5.11) 2
� (1� �)
�2 � � + 1 [ArB �A[LB] � Ar�B �A]�B � 2 [ArB �A[LB]

for any � 2 [0; 1] :
Proof. From the inequality (5.8) we have for any x > 0 that

(5.12) 2
� (1� �)
�2 � � + 1

�
x+ 1

2
� L (x)

�
� 1� � + �x� x� � 2

�
x+ 1

2
� L (x)

�
or any � 2 [0; 1] :
Using the functional calculus for the positive operator X we have

2
� (1� �)
�2 � � + 1

�
X + 1H
2

� L (X)
�
� (1� �) 1H + �X �X�(5.13)

� 2
�
X + 1H
2

� L (X)
�
;

for any � 2 [0; 1] :
Now, if we take X = A�1=2BA�1=2 in (5.13), then we get

2
� (1� �)
�2 � � + 1

�
A�1=2BA�1=2 + 1H

2
� L

�
A�1=2BA�1=2

��
(5.14)

� (1� �) 1H + �A�1=2BA�1=2 �
�
A�1=2BA�1=2

��
� 2

�
A�1=2BA�1=2 + 1H

2
� L

�
A�1=2BA�1=2

��
;
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for any � 2 [0; 1] :
By multiplying both sides of (5.14) with A1=2 we deduce the desired result (5.11).

�
We consider the functions �; z : (0;1)! (0;1) by

(5.15) �(t) :=
t+ 1

2
� L (t) =

8<:
t+1
2 � t�1

ln t if t 6= 1

0 if t = 1

and

(5.16) z (t) :=
�
I (t)p
t

�2
=

8>><>>:
�
t

t
t�1

e
p
t

�2
if t 6= 1

1 if t = 1:

After conducting some numerical experiments, we can consider the following
conjecture for which we do not have yet an analytic proof:

Conjecture 1. The functions � and z are strictly decreasing on (0; 1) ; strictly
increasing on (1;1) and strictly convex on (0;1) : The global minimum for � is 0
reached for t = 1 and the global minimum of z is 1 reached for t = 1:

Finally, we have the following result.

Proposition 2. Let A; B positive invertible operators such that

(5.17) mA � B �MA
for some constants m; M with M > m > 0: Then we have

(5.18) 2
� (1� �)
�2 � � + 1 inf

t2[m;M ]
�(t)A � Ar�B �A]�B � 2 sup

t2[m;M ]

�(t)A

and

(5.19)
�

inf
t2[m;M ]

z (t)
� �(1��)

�2��+1
A]�B � Ar�B � sup

t2[m;M ]

z (t)A]�B:

Proof. From the inequality on (5.12) we have

2
� (1� �)
�2 � � + 1 inf

t2[m;M ]

�
x+ 1

2
� L (x)

�
� 1� � + �x� x�(5.20)

� 2 sup
t2[m;M ]

�
x+ 1

2
� L (x)

�
for any x 2 [m;M ] :
If the condition (5.17) holds, then by multiplying both sides with A�1=2 we get

m1H � A�1=2BA�1=2 � 1HM: Then by (5.20) we have

2
� (1� �)
�2 � � + 1 inf

t2[m;M ]
�(t)(5.21)

� (1� �) 1H + �A�1=2BA�1=2 �
�
A�1=2BA�1=2

��
� 2 sup

t2[m;M ]

�(t)

for any � 2 [0; 1] :
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By multiplying both sides of this inequality with A1=2 we deduce the desired
result (5.18).
From the inequality (5.9) we have

(z (x))
�(1��)
�2��+1 � A� (x; 1)

G� (x; 1)
� z (x) ;

for any x > 0 and for any � 2 [0; 1] :
This implies that�

inf
t2[m;M ]

z (t)
� �(1��)

�2��+1
G� (x; 1) � A� (x; 1) � sup

t2[m;M ]

z (t)G� (x; 1) ;

for any x 2 [m;M ] and for any � 2 [0; 1] :
Now, on making use of a similar argument as above, we get the desired result

(5.19). �

Remark 5. If the above conjecture is true, then the bounds in Proposition 2 have
a simpler form by taking into account that

inf
t2[m;M ]

�(t) =

8<: �(M) if M < 1
0 if m � 1 �M
�(m) if 1 < m;

sup
t2[m;M ]

�(t) =

8<: �(m) if M < 1
max f�(m) ;�(M)g if m � 1 �M
�(M) if 1 < m;

inf
t2[m;M ]

z (t) =

8<: z (M) if M < 1
1 if m � 1 �M
z (m) if 1 < m;

and

sup
t2[m;M ]

z (t) =

8<: z (m) if M < 1
max fz (m) ;z (M)g if m � 1 �M
z (M) if 1 < m:
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