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NEW REFINEMENTS AND REVERSES OF
HERMITE-HADAMARD INEQUALITY AND APPLICATIONS TO
YOUNG’S OPERATOR INEQUALITY

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain some new refinements and reverses of
Hermite-Hadamard inequality and provide some examples for basic convex/concave
functions of interest such as the norm, the exponential and the logarithm. Ap-
plications to Young’s operator inequality are given as well.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

(1.1) f(a+b) —/f );rf()7 a,beR.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [35]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [2]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [35]. Since (1.1) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.

Let X be a vector space over the real or complex number field K and z, y €
X, z # y. Define the segment

[z,y] :={(1 = t)z +ty, t [0, 1]}.

We consider the function f : [z,y] — R and the associated function

9(z,y) : [0,1] = R, g(z,y)(t) :== fI(1 =)z +ty], t € [0,1].

Note that f is convex on [z,y] if and only if g(z,y) is convex on [0, 1].
For any convex function defined on a segment [z,y] C X, we have the Hermite-
Hadamard integral inequality (see [10, p. 2], [11, p. 2])

(1.2) f(f”y) /f 1—t)x+ty]dt<w,

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(z,y) : [0,1] — R.
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Since f(z) = [|z||” (z € X and 1 < p < o0) is a convex function, then for any z,
y € X we have the following norm inequality from (1.2)

/ 10— 00 + eyl < 17 817
2

In this paper we obtain some new refinements and reverses of Hermite-Hadamard
inequality and provide some examples for basic convex/concave functions of interest
such as the norm, the exponential and the logarithm. Applications to Young’s
operator inequality are given as well.

We need some preliminary results as follows.

x-i—y

(1.3)

2. SOME PRELIMINARY FACTS

Jensen’s inequality for convex function is one of the most known and extensively
used inequality in various filed of Modern Mathematics. It is a source of many
classical inequalities including the generalized triangle inequality, the arithmetic
mean-geometric mean-harmonic mean inequality, the positivity of relative entropy
in Information Theory, Schannon’s inequality, Ky Fan’s inequality, Levinson’s in-
equality and other results. For classical and contemporary developments related to
the Jensen inequality, see [3], [36], [41] and [6] where further references are provided.

To be more specific, we recall that, if X is a linear space and C' C X a convex
subset in X, then for any convex function f : C — R and any 2; € C,r; > 0
for i € {1,...,k},k > 2 with Ele r; = R > 0 one has the weighted Jensen’s
inequality:

1 o 1 o
(J) E;TJ (z:) > f <Rk ;h%) ~

If f:C — R is strictly convex and r; > 0 for ¢ € {1,...,k} then the equality case
hods in (J) if and only if 2 = ... = z,.

By P,, we denote the set of all nonnegative n-tuples (p1, ..., p,) with the property
that Y., p; = 1. Consider the normalised Jensen functional

f?X p sz 1’1 (szxz> > 0

where f : C — R be a convex functlon on the convex set C' and x = (21, ...,z,) € C™
and p €P,.
The following result holds [5]:

Lemma 1. Ifp, q €P,, ¢; > 0 for each i € {1,...,n} then
: pi
(21)  (0<) min { ” } I (£, %,) < Ju (£, %,p) < max {q} I (f:%,4q).

In the case n = 2, if we put p;y =1 —p, po = p, g1 =1 — q and g2 = ¢ with
p € [0,1] and ¢ € (0,1) then by (2.1) we get

22w {21200 £ @) +af 0) - S0 - ot a)

<[(L—=p) f(x)+pf(y) — f((1—p)z+py)]

<max {2122 0= 0) 1 @) 40 ) £ (- Do+ )
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for any z, y € C.
If we take ¢ = 1 in (2.2), then we get

(2.3) 2min {t,1 — t} {f(x);rf( y) iy <z+y)}
S[A=t)f (@) +tf(y) - fF (A -t)z+ty)]

(1) [f(z);rf( )_f<a:+y>}

for any z, y € C and ¢t € [0,1].
We consider the weighted Arithmetic, Geometric and Harmonic means defined
by

A, (a,b) == (1 —v)a+vb, G,(a,b):=a'""b and H, (a,b) = A" (a7',b7")

where a, b > 0 and v € [0,1].
If we take the convex function f : R — (0,00), f(2) = exp (az), with a # 0,
then we have from (2.2) that

e min {2 1L, (e an) e (o) - ex (o (0.0)

< Ay (exp (aw) ,exp (ay)) — exp (a4, (a, b))

< max {p 1 : q} [Ag (exp (ax) , exp (ay)) — exp (a A, (a,D))]

for any p € [0,1] and g € (0,1) and any z, y € R.
For ¢ = § we have by (2.4) that

(2.5) 2min {p, 1 — p} [A (exp (aw) ,exp (ay)) — exp (aA (a,b))]
< A, (exp (az) ,exp (ay)) — exp (@4, (a,b))
< 2max {p,1 — p}[A (exp (azx),exp (ay)) — exp (aA (a,b))]

for any p € [0,1] and any =z, y € R.
If we take x = Ina and y = Inb in (2.4), then we get

(2.6) mln{ } a®,b%) — G (a,b)]
< A, (a®,b*) — G (a,b)

P

< max{ } (a®,b%) — G2 (a,b)]

for any a, b > 0, for any p € [0,1], ¢ € (0,1) and « # 0.
For ¢ = 1 we have by (2.6) that

(2.7) min {p,1 — p} (b2 — %) < A, (a%,0%) — G} (a,b)
< max{p,1— }(b%— %)2

for any a, b > 0, for any p € [0,1] and a # 0.
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For @ = 1 we get from (2.7) that
(2.8) min {p,1 — p} (\/5 - \/&)2 < A, (a,b) — G, (a,b)
< max {p,1 - p} (\/5— \/6)2

for any a, b > 0 and for any p € [0,1], which are the inequalities obtained by
Kittaneh and Manasrah in [29] and [30].
For aw =1 in (2.6) we obtain

(2.9) min {Z 1_2} (4, (a,b) — Gy (a,b)

< Ay (a,b) = Gp(a,b)
pl—p
< max{q,lq} [4, (a,b) — Gy (a,b)],

for any a, b > 0, for any p € [0, 1], which is the inequality (2.1) from [1] in the
particular case A = 1 in a slightly more general form for the weights p, ¢.
If we take in (2.2) f(x) = —Inx, then we get

(Geg)™ ™ s (G ™

for any z, y > 0 and for any p € [0,1], ¢ € (0,1).
This inequality is a particular case for n = 2 of the inequality (4.2) from [5].
For ¢ = 1 we have by (2.10) (for z = a, y = b) that

A (a7 b) 2min{p,1—p} - Ap (a7 b) _ A (a/7 b) 2max{p,1—p}
G (a,b) ~ Gp(a,b) ~ \G(a,b)

for any a, b > 0 and for any p € [0,1].

The first inequality in (2.11) was obtained in an equivalent form in terms of
Kantorovich constant by Zou et al. in [44] while the second by Liao et al. [31].

If we take in (2.2) f(z) = —Inz and © = expa, y = expb, with a,b € R, then
we get

(2.10)

(2.11)

(2.12) min {Z, 1—p} [In (A4, (expa,expb)) — A, (a,b)]

for any p € [0,1], g € (0,1).
This inequality can be written in an equivalent form as

A, (expa,expb) min{ 15 } A, (expa,expb)
(2.13) £q (XD G, XD D) < Zp XD, O D)
exp A, (a,b) exp A4, (a,b)
< A, (expa,expb) max{ .35}
- exp A, (a,b)

for any a, b€ R and p € [0,1], ¢ € (0,1).
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3. TRAPEZOIDAL TYPE INTEGRAL INEQUALITIES

We have:

Theorem 1. Let X be a linear space and C C X a conver subset in X, then for
any convex function f: C — R and z, y € C we have

31 S0 f@+af )~ F( -+ ay)
< 7“35);“” 7/0 F1—t)z+ty)dt
<310 @) +af @) - F (-0 + ).
or, equivalently
(1—q)f()+qf ((1—q)x+qy)
SZ[f / F( 33+ty)dt]

for any q € (0,1).
Proof. If we integrate over p € [0,1] the inequality (2.2), then we get

B3 (-0l @+af - f(-gera) [ mm{p H’}dp

1—gq
Sf(x);f(y)—/o f((1—=p)a+py)dp

1 p—
s[(1—q>f<x>+qf<y>—f((l—q>m+qy>1/0 max{p ”}dp

qg 1l-—g
for any x, y € C and g € (0,1).
Observe that

showing that

i)
min *,i =
4 4 Lif0<q<p<1
and .
=P <p<g<
{p l—p} 1_qlf()_p_q_l
max *,T
q Pif0<g<p<l1
Then
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and

1 1
1— 91—
/max{p,p}dp: Jdp—k/ de
0 qg l—gq q 4

o 1—¢q

1 2 1—¢?
1—gq 2 2q

P —q+1

2O
and by (3.3) we obtain the desired result (3.1).

Remark 1. If we take g = % in (3.1), then we get
-, (L0210 (1)
1
<W—/O PO =0+ ty) dt

S2[f(3«")42rf(y) _f<x—2ky)]

for any x, y € C.

Remark 2. If the function f is defined on the real interval I and a,b € I, with
a # b, then by (3.1) and (3.2) we have

(3.5)

[(1—q) f(a)+aqf (b) = f((1—q)a+qb)]

fla+fe) 1 [
5 —b_a/af(s)ds

1¢° —q+1
5@[(1—q)f(a)+qf(b)7f((17q)a+qb)]’

DN | —

IA

IN

or, equivalently

— a b
36) 2;(1%@1 I >—2Ff<b>_b1a/a f(s)dS]

<(I—q)f(a)+qf(b)—f((1-q)a+qd)
b
SQ[f(a);f(b)_bia/a 7 (s)ds

for any q € (0,1).

)

Let (X, ||-||) be a real or complex normed linear space. The function f : X —

[0,00), f(x) = ||z||" with 7 > 1 is a convex function on X. Then by (2.2) and (3.1)
we have the norm inequalities

a0 win{Z 322 -0 el vl - 10 - 9o+l

<@ =p)llzll" +plyl" =11 = p)z + pyll"

b 1_p T T T
<max {2322 - ) el + all” = 10 - )+ anl
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(A=) Izl + g llyll” = 11 = @)z + qul]

N | =

T T 1
SnwATM|i/|miﬂx+wWﬁ
0

2
cla—gtl
2 q(1—-q)
for any z, y € X, p € [0,1] and ¢ € (0,1).
For positive  # y and p € R\ {—1,0}, we define the p-logarithmic mean (gen-
eralized logarithmic mean) Ly(z,y) by

(A=) =" +qllyl” = (1 = @) = + qyl'],

g+l gptl ]1/17
)

Lyfon) = |

p+1y—=
In fact the singularities at p = —1, 0 are removable and L, can be defined for
p = —1, 0 so as to make L,(x,y) a continuous function of p. In the limit as p — 0

we obtain the identric mean I(x,y), given by

(3.9) I@ww—l(w)my@,

e \z%

and in the case p — —1 the logarithmic mean L(x,y), given by
y—x
L =
(z,9) Iny —Inz
In each case we define the mean as z when y = z, which occurs as the limiting
value of L,(z,y) for y — .
We define the arithmetic mean as A (z,y) := , the geometric mean as
G (z,y) := /7y and the harmonic mean as H (z,y) = A~ (z 71, y71).
If we take the convex function f : R — (0,00), f(z) = exp (ax), with « # 0,
then we have from (3.6) that

5 4(1—4)

?—q+1
< A, (exp (ax) exp (ay)) — exp (4q (z,Y))
< 2[A(exp (ax),exp (ay)) — Eq (z,9)],

for any z, y € R, z # y and ¢ € [0, 1] where the exponential integral mean E,, (z,y)
is defined by

(3.11) Ey (z,y) := . i - /y exp (as)ds = exp (O;y()y__e;{? (ozx).

Now, if we take in (3.10) £ =Ina and y = Inbd for a, b > 0, then we get (for ¢ = p)
that

Tty
2

(3.10) [A (exp (ax) ,exp (ay)) — Eq (z,y)]

p(1—p)

3.12 2——

[A(a®,0%) — L (a,b%)] < A, (a®,0%) — G} (a,b)
< 2[A(a”,0%) = L (a,0%)],

for any o € R with a # 0 and p € [0, 1].
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For o« = 1 we have
p(l-—p
(3.13) 2292(_]3_’_)1 [A(a,b) — L(a,b)] < A, (a,b) — G, (a,b)

for any a, b > 0 and p € [0,1].
If we take o = —1 in (3.12), then we get

p(l _p) G? (a, b) - H(a, b)L(avb) Gp (CL?b) — Hy (aa b)
B T H@n@ @b = Gy(ab) H,(ab)
G? (a,b) — H (a,b) L (a,b)
S 2 H (@ 5) G2 (a,b)
for any a, b > 0 and p € [0,1].
If we take in (3.12) @ = 2, then we get
(3.15) 2 PP 14 (42, 8) — A(ab) L (a,b)]

p?—p+1
< A4, (a®b?) — Gi (a,b)
<2[A(a®b%) — A(a,b) L (a,b)],

for any a, b > 0 and p € [0,1].
If we take in (3.6) f(x) = —Inx, then we get

p(l—p) [ 1 [
(3.16) pEp— b—a/ 1nsds—ln(G(a,b))]
<In4, ( b) —In (Gy, (a, b))
/ In sds — In (G (a, b))] ,
and since

b
b—a/a Insds =1InI (a,b),
then by (3.16) we get
p(1—p) 2
I (a7 b) 2p27p+1 AI) (av b) I (a’v b)
1 < <
(17 (i) = . ’

for any a, b > 0 and p € [0,1].
We observe that the inequality (2.8) provides the following upper bound

max {p, 1 — p} (\/5* \/5>2

for the quantity

Ap (a,b) — Gy (a,b)
while the inequality (3.13) provides the upper bound

2[A (a,b) — L(a,b)]
where a, b > 0 and p € [0,1].
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Let a=1,b=2z >0 and y = p € [0,1] in the above and consider the difference
function

2 z+1 x-1
D1 () = max {y, 1 — y} (V& — 1) —2( t ) |
The plot of the function D; (z,y) in the box [0, 2] x [0, 1], see Figure 1 below, shows
that it takes both positive and negative values meaning that neither of the upper
bounds is always best.

Inx

F1GURE 1. Plot of Dy (z,y) in the box [0,2] x [0,1]

We also observe that the inequality (2.11) provides the following upper bound

A ((L, b) 2max{p,1—p}
G (a,b)

for the quantity
A, (a,b)
Gy (a,b)
while the inequality (3.17) provides the upper bound

I(a,b)\’
G (a,b)
where a,b > 0 and p € [0, 1].

Let a=1,b=2>0and y =p € [0,1] in the above and consider the difference

function
z+1 2max{y,1—y} .'Eﬁ 2
Dy (z,y) = | 5—7= -
2z e\T

The plot of the function Dy (z,y) in the box [0, 2] x [0, 1], see Figure 2 below, shows
that it takes both positive and negative values meaning that neither of the upper
bounds is always best.
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Plot of D5 (z,y) in the box [0,2] x [0,1]

4. MIiDPOINT TYPE INTEGRAL INEQUALITIES
‘We have:

Theorem 2. Let X be a linear space and C C X a convex subset in X, then for
any convex function f: C — R and z, y € C we have

(4.1) ﬁ min {1 - g, ¢}

1—2¢q

g/o f((l—t)a:ﬂy)dt—f(%)

max {1 - ¢q,q}

[/f 1—tw+ty)dt—; 1_qf((l—s)x—i—sy)ds}

1
=209
1 1 l—q
X[/o f((l—t)x+ty)dt—1_2q/ f((l—s)w—ksy)ds}

or, equivalently

(4.2) 2‘1(1—_"{/ F((1—1) x+ty)dt—f<mﬂ

max {1 — ¢, q} 2
1—q

/f 1—tx+ty)dt—% FU(1=8) 2 + sy) ds

N S )

for any g € (0,1), ¢ # 3.
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Proof. If we take in (2.2) p = 1, then we have

(4.3) %q)min{lfq,q}[(lfq)f(w)ﬂf(y)*f((lfq):qu)}

2q (1
f @)+ f () T4y
< LBZIW) . (232)

<

=g (1= 0} (-9 @)+ af () = £ (1= )2+ )

for any x, y € C and g € (0,1).
If we replace « by (1 —t)x + ty and y by tz + (1 — t) y in (4.3), then we get

(4.4)

(1 g )

x[(1=q) f(L=t)z+ty) +qf (tz+ (1 -1)y)
—f(A=@[1=t)z+yt] +qlte+ (1 —t)y])]
f(A=t)a+ty)+ ftz+(1—-1)y) _f<x+y)}

<

2 2
< mmaXﬂ*%Q}

x[(1=q) f(A—t)z+ty) +qf (tz+(1—1)y)
(1= [(1 =t)z+yt] +qlte+ (1 1) y])]

for any x, y € C,t €[0,1] and ¢ € (0,1).
If we take the integral over ¢t € [0,1] in (4.4) and take into account that

/f((l—t)x+ty)dt:/f(ta:—i—(l—t)y)dt
0 0

(4.5) mmin{l—q,q} [/0 P =)o+ ty) dt

-/ f((l—q)[(1—t)x+ty]+q[tm+(1—t)y])dt]
s/o f((l—t)x+ty>dt—f(”““;y)

<

1 1
2¢(1—q) max {1 — ¢, q} {/0 F(l—t)z+ty)dt

-/ f((l—q)[(1—t)x+ty]+q[tx+(1—t)y])dt]

orany z,y € C and g € (0,1).

Observe that for any z, y € C, t € [0,1] and ¢ € (0,1) we have
1-q[A-t)z+ty]+qltz+ (1-1t)y
=[0-gQ-t)+glz+[1-qt+(1—-1)qdy

and by putting s := (1 —¢)t+ (1 —t) ¢, for ¢ # % we have
(1= (A =t)+qtle+[1-q)t+ (1 -t)gly=(1—s)z+sy.
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If ¢ # 3, then s is a change of variable, ds = (1 — 2¢) dt and we have for any z,
y € C that

1
/0f<<1fq>[<1ft>x+ty1+q[m+<17t>yndt

1
T 1-2g

1—q
/ f(1=9)z+sy)ds.
q
On making use of (4.5) we get the desired result (4.1). O

Remark 3. If we take g = ; in (4.2), then we get

(4.6) ;Uolf((1—t)x+ty)dt—f(x;yﬂ
</1f((1—t)w+ty)dt—2 " et sy ds
0 1/4

gg[/01f<<1—t>x+ty>dt—f(x2“’)]

for any x, y € C.

Let (X,]|-]|) be a real or complex normed linear space and r > 1. Then by (4.2)
we have the inequalities

2q(1—q)
4. _ (1-1%) t dt —
o) max {1 —q,q} U 12 =8+t H H }
1—q
<[ ||<1—t>x+tyurdt—,—/ (1~ )+ syl ds
2q(1
<7 1-1t) t dt —
~ min{l —q,q} [/ 12 =8+t H H }

for any z, y € X.

Remark 4. If the function f is defined on the real interval I and a, b € I, a #b
then by (4.2) and (3.2) we have

2¢(1—q) 1 b a+b

(4.8) max{l—q,q} lb—a/ f(u)duf( 2 >
1 ga+(1—q)b

172(]) (bfa) /1 q)a+qgb f(v> v

2q(1—q) 1 L (atb

Srnilrl{l—q,q} [b—a/af(u)du f< 2 )

Jor any q € (0,1), ¢ # 1.
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If we take the convex function f: R — (0,00), f (x) = exp (az), with « # 0, in
(4.8) then we have from (4.8) (for a = z, b = y) that

2¢(1-4q)
max {1 —q,q} [Eo (2,y) — exp (@A (z,y))]

< Ea (.’IJ, y) - Ea (Alfq (%y) ) Aq (-’E,y))
2¢(1—q)
———[E - A
S {1 —g.q! [Ea (2,y) —exp (aA (z,y))]
for any z,y € R, a # 0 and ¢ € (0,1).

Now, if we take in (4.9) x =Ina and y = Inb for a, b > 0, then we get
2¢(1—q)
max {1 — ¢, q}
< L (aa’ ba) - L ( ?—q (a7 b) ) G? (a’7 b))

2¢(1—q)
~ min{l —¢q,q}
for any o # 0 and ¢ € (0,1).

If we take o = 1 in (4.10), then we get
2q(1—q)
max {1 — ¢, q}
<L (av b) —L (Glfq (aa b) ) Gq (a‘v b))

2¢(1—q)
~ min {1 —4q, q}
for any for a, b> 0 and ¢ € (0,1).
If we take in (4.8) f(z) = —Inz, then we obtain

(4.9)

(4.10) L (a®,b%) — G* (a, b)]

[L (aav ba) -G (a’ﬂ b)] .

(4.11) [L (a,b) — G (a,b)]

[L (a’ b) -G (a7 b)] )

29(1—q) 2q(1—q)
(412) (A@b 1A (@0), A1y (a,b) _ (Alad)
I(a,b) 1(a,b)

for any for a, b > 0 and ¢ € (0,1).

5. APPLICATIONS FOR YOUNG’S OPERATOR INEQUALITIES

Throughout this section A, B are positive invertible operators on a complex
Hilbert space (H, (-,-)). We use the following notations for operators

AV, B :=(1-v)A+vB,
the weighted operator arithmetic mean and

Aty B = A1/2( 1/2BA—1/2) A2,
3

the weighted operator geometric mean. When v = < we write AVB and AB for
brevity, respectively.

The famous Young inequality for scalars says that if a, b > 0 and v € [0, 1], then
(5.1) a7y < (1—-v)a+uvb

with equality if and only if @ = b. The inequality (5.1) is also called v-weighted
arithmetic-geometric mean inequality.



14 S.S. DRAGOMIRY2

We recall that Specht’s ratio is defined by [42]

1
Lﬁ if h € (0,1)U(1,OO)7
eln(hﬁ>

lifh=1.

(5.2) S (h):=

It is well known that lim,— S (h) =1, S(h) = S () > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).

The following inequality provides a refinement and a multiplicative reverse for
Young’s inequality
(5.3) S ((%) ) A" < (1-v)at+vb< S (%) al=vp,
where a, b >0, v € [0,1], r = min {1 — v, v}.

The second inequality in (5.3) is due to Tominaga [43] while the first one is due
to Furuichi [21].

We consider the Kantorovich’s constant defined by

(h+1)?
4h
The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any

h>0and K (h) = K () for any h > 0.
The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

(5.5) K" (%) a7 < (1-v)a+vb< KB (%) a7y

(5.4) K (h) =

, h>0.

where a, b > 0, v € [0,1], r = min {1 — v,v} and R = max {1l —v,v}.

The first inequality in (5.5) was obtained by Zou et al. in [44] while the second
by Liao et al. [31].

In [12] we proved the following reverses of Young’s inequality

(5.6) 0<(1-v)a+vb—a" " <v(l—v)(a—b)(Ina—Inb)
and
(5.7) 1< % < exp {41/ (1-v) (K (%) - 1)} ,

for any a, b > 0 and v € [0, 1], where K is Kantorovich’s constant defined by (5.4).
From (3.13) we have the additive inequality

v(l—v)

5.8 2
(5-8) v2—v+1

(A (.b) — L(a,b)] < 4, (a,) — Gy (a.b)
< 2[A(avb) *L(aab)]a
for any a, b > 0 and v € [0, 1] and from (3.17) we have the multiplicative inequalities
v(1—v)
oo (Gen) T <gen=(6hn)
for any a, b > 0 and v € [0,1].
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We consider the functions L : (0,00) — (0, 00) defined by

L(z,1) ifx#1 =Llifx#1
L(x):= =
lifz#1 lifz #1
and I : (0,00) — (0,00) defined by
I(z,1)ifz#1 @ifx#l
I(z):= =
lifz #1 1if o # 1.

These functions are continuous on (0, c0) .
If A, B are positive invertible operators on a complex Hilbert space (H, (-,-)),
then by making use of continuous functional calculus, we can consider the operators

AbpB = AVAL (ATV2BATY) 412
and
Ay B = AVL (ATV2BATI) 412,
Since, by the well known inequalities for means we have
G(z,1) <L(z,1)<I(z,1)<A(x,1)
for any = > 0, we conclude that the following operator inequalities also hold
(5.10) AfB < Ab; B < Ab;B < AVB
for any A, B positive invertible operators.

Proposition 1. For for any A, B positive invertible operators we have
v(l—v)
v2—v+1
for any v € [0,1].

(5.11) 2 [AVB — Ab;B] < AV, B — A#, B < 2[AVB — Ab, B]

Proof. From the inequality (5.8) we have for any = > 0 that
z+1

1-— 1
(5.12) 2:2(#1)1 [m;— —L(x)}gl—u—i—z/x—x”SQ{ —L(x)]
or any v € [0,1].

Using the functional calculus for the positive operator X we have

v(l—v) {X—FlH

(5.13) 2

- LX) <(1-v)1 X - XV
A [T e r 0| < a -

for any v € [0,1].
Now, if we take X = A~1/2BA~/2 in (5.13), then we get

v(l-v) {Al/zBAm + 1y _r (AI/QBAI/Q)}

14 2
(5.14) v2—v+1 2

3(14401H4%VA*V23Af1ﬂ47(A*V?BA*U2)”
—1/2 —1/2
§2[A BA~Y? 41y

5 —1164‘”2BA‘1M)},
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for any v € [0,1].
By multiplying both sides of (5.14) with A'/? we deduce the desired result (5.11).

U
We consider the functions Y, F : (0,00) — (0,00) by
gl il £
t+1 2 Tnt
(5.15) T () = % L) =
0Oift=1

and

(5.16) F(t)::<“\/?>2: (%) ift£1
lift=1.

After conducting some numerical experiments, we can consider the following
conjecture for which we do not have yet an analytic proof:

Conjecture 1. The functions T and F are strictly decreasing on (0,1), strictly
increasing on (1,00) and strictly convex on (0,00). The global minimum for Y is 0
reached for t =1 and the global minimum of F is 1 reached for t = 1.

Finally, we have the following result.

Proposition 2. Let A, B positive invertible operators such that

(5.17) mA<B<MA
for some constants m, M with M > m > 0. Then we have
1—
(5.18) 2M inf T(t)A<AV,B— A, B<2 sup T(1)A
vé — v+ 1 te[m,M)] te[m, M)
and
VV2(i;:»)l
(5.19) ( inf F(t)> Af,B< AV,B < sup F (¢t)Af,B.
te[m,M] te[m,M]

Proof. From the inequality on (5.12) we have
v(l—v) wf |2 +1
V2 —v+1temm| 2

(5.20) 2 —L(x)} <l-v+ve—2z”

1
<2 sup {H — L(x)}
te[m,M]

for any = € [m, M].
If the condition (5.17) holds, then by multiplying both sides with A=/2 we get
mly < AY2BA~Y2 < 15 M. Then by (5.20) we have

v(l—v)
v2 — v+ 1 te[m,M]
<(1-v)ly +vA-Y2BA-1/2 _ (A*l/QBA*/?)V

<2 sup Y (t)
te[m,M]

(5.21) 2 T (t)

for any v € [0,1].
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By multiplying both sides of this inequality with A'/? we deduce the desired
result (5.18).
From the inequality (5.9) we have

v(l—v) A, (:E, 1)
(F (z)) -+ < G, (1) <F (),
for any z > 0 and for any v € [0,1].
This implies that
VU2(i_V:)1
( inf F (t)) Gy (x,1) <A, (z,1) < sup F (t)Gy(z,1),
te[m,M] te[m,M]

for any = € [m, M| and for any v € [0,1].
Now, on making use of a similar argument as above, we get the desired result
(5.19). 0

Remark 5. If the above conjecture is true, then the bounds in Proposition 2 have
a simpler form by taking into account that

T (M) if M <1

inf Y(#)=4q 0ifm<1<M
t€[m.Mj T (m) if 1 <m,
T(m) if M <1
sup YT (t) =4 max{Y(m), YT (M)} ifm<1<M
t€{m, M] Y (M) if 1 <m,
F (M) if M <1
inf F{#)=<¢ 1ifm<1<M
te[m,M] F(m) Zfl <m,
and
F(m) f M <1
sup F (t) =< max{F (m),F (M)} fm<1<M
telm,M] F (M) if1<m.
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