
SEVERAL APPLICATIONS OF YOUNG-TYPE AND HOLDER’S

INEQUALITIES

LOREDANA CIURDARIU

Abstract. The aim of this paper is to present several applications of several

new Young-type and Holder’s inequalities given by Alzer, H., Fonseca, C. M.

and Kovacec, A. to isotonic linear functional, power series and inner product.

1. Introduction

The famous Young’s inequality, as a classical result, state that:

aνb1−ν < νa+ (1− ν)b,

when a and b are positive numbers, a 6= b and ν ∈ (0, 1).

In these years, there are many interesting generalizations of this well-known
inequality and its reverse, see for example [11, 12, 9, 8, 1] many others and references
therein.

As in [1], we consider Aν(a, b) = νa + (1 − ν)b, and Gν(a, b) = aνb1−ν . The
following result, given in [8] is a refinement of the left-hand side of a refinement of
the inequality of Young proved in 2010 and 2011 by Kittaneh and Manasrah, [11],
[12].

Proposition 1. For all a, b > 0 we have

3ν
(
A 1

3
(a, b)−G 1

3 (a,b)

)
≤ Aν(a, b)−Gν(a, b)

if 0 < ν ≤ 1
3 , and

3ν(1− ν)
(
A 2

3
(a, b)−G 2

3 (a,b)

)
≤ Aν(a, b)−Gν(a, b)

if 1
3 ≤ ν < 1.

More recently, in [1] are given new results which extend many generalizations of
Young’s inequality given before. We recall these results below in order to use them
in the next sections.
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Theorem 1. Let λ, ν and τ be real numbers with λ ≥ 1 and 0 < ν < τ < 1. Then(ν
τ

)λ
<
Aν(a, b)λ −Gν(a, b)λ

Aτ (a, b)λ −Gτ (a, b)λ
<

(
1− ν
1− τ

)λ
,

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.

Theorem 2. Let ν ∈ (0, 1.) For all real numbers a, b with 0 < a < b we have

ν(1− ν)

2
a log2

(
b

a

)
< Aν(a, b)−Gν(a, b) <

ν(1− ν)

2
b log2

(
b

a

)
and

exp

(
ν(1− ν)

2

(
1− a

b

)2)
<
Aν(a, b)

Gν(a, b)
< exp

(
ν(1− ν)

2

(
1− b

a

)2
)
.

In each inequality, the factor ν(1−ν)
2 is the best possible.

2. The Young-type and Holder’s inequalities for isotonic linear
functional

The following important definition is given in [2], [6], [3] and it is necessary to
recall it here.

Definition 1. Let E be a nonempty set and L be a class of real-valued functions
f : E → R having the following properties:

(L1) If f, g ∈ L and a, b ∈ R, then (af + bg) ∈ L.
(L2) If f(t) = 1 for all t ∈ E, then f ∈ L.
An isotonic linear functional is a functional A : L → R having the following

properties:
(A1) If f, g ∈ L and a, b ∈ R, then A(af + bg) = aA(f) + bA(g).
(A2) If f ∈ L and f(t) ≥ 0 for all t ∈ E, then A(f) ≥ 0.
The mapping A is said to be normalised if
(A3) A(1) = 1.

Lemma 1. ([10], Corollary 3.3) If f is ∆- integrable on [a, b) then for an arbitrary
positive number α the function |f |α is ∆-integrable on [a, b).

Lemma 2. ([10], Theorem 3.6) Let f and g be ∆-integrable functions on [a, b).
then their product fg is ∆-integrable on [a, b).
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The following results are applications of recent Young-type inequalities given in
[1] in the case if isotonic linear functionals and also Holder-type inequalities in the
same case using methods presented in [7],[6].

Also, are presented as particular cases these inequalities for the cases of the time
scale Cauchy delta, Cauchy navbla, α- diamond, multiple Riemann, and multiple
Lebesque integrals.

Theorem 3. L satisfy conditions L1, L2 and A satisfy A1, A2 on the set E. If

fp, gq, fg, fp log2
(
gq

fp

A(fp)
A(gq)

)
, gq log2

(
gq

fp

A(fp)
A(gq)

)
∈ L, A(fp) > 0, A(gq) > 0, f

and g are positive functions and 0 < fp

A(fp) <
gq

A(gq) then:

1

2pq

1

A(fp)
A

[
fp log2

(
gq

fp
A(fp)

A(gq)

)]
<

< 1− A(fg)

A
1
p (fp)A

1
q (gq)

<

<
1

2pq

1

A(gq)
A

[
gq log2

(
gq

fp
A(fp)

A(gq)

)]
and

A

(
fg exp

1

2pq

(
1− fp

gq
A(gq)

A(fp)

)2
)
<

< A
1
p (fp)A

1
q (gq) <

< A

(
fg exp

1

2pq

(
1− gq

fp
A(fp)

A(gq)

)2
)
,

where p > 1 and 1
p + 1

q = 1, if in this second case, instead of fp log2
(
gq

fp

A(fp)
A(gq)

)
,

gq log2
(
gq

fp

A(fp)
A(gq)

)
∈ L we have fg exp 1

2pq

(
1− fp

gq
A(gq)
A(fp)

)2
, fg exp 1

2pq

(
1− gq

fp

A(fp)
A(gq)

)2
∈

L.

Proof. We take into account first inequality from Theorem 2,

ν(1− ν)

2
a log2

(
b

a

)
< Aν(a, b)−Gν(a, b) <

ν(1− ν)

2
b log2

(
b

a

)
where we replace a by fp(x)

A(fp) and b by gq(x)
A(gq) and ν = 1

p .

Then we obtain:

1

pq

fp(x)

A(fp)
log2

(
gq(x)

fp(x)

A(fp)

A(gq)

)
<

1

p

fp(x)

A(fp)
+

1

q

gq(x)

A(gq)
− fg(x)

A
1
p (fp)A

1
q (gq) <

<
1

pq

gq(x)

A(gq)
log2

(
gq(x)

fp(x)

A(fp)

A(gq)

)
for any x ∈ E.

Now we take the functional A in previous inequality and we get the desired
inequality.

For the second inequality the same method will be used.
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Theorem 4. If L satisfy conditions L1, L2 and A satisfy A1, A2 on the set E. If
fp, gq, fg, fpτ , gq(1−τ) ∈ L, A(fp) > 0, A(gq) > 0, pτ > 1, τ < 1, 1

p + 1
q = 1 and

f and g are positive functions then:

1

pτ

[
1− A(fpτ )A(gq(1−τ))

Aτ (fp)A1−τ (gq)

]
< 1− A(fg)

A
1
p (fp)A

1
q (gq)

<

<
1

q(1− τ)

[
1− A(fpτ )A(gq(1−τ))

Aτ (fp)A1−τ (gq)

]
.

Moreover, if A,B : L → R are two normalised isotonic functionals such that the

conditions fpτgq(1−τ), fp(1−τ)gqτ , f
p
q g

q
p ∈ L appear instead of fpτ , gq(1−τ) ∈ L

then we have the following inequality:

1

pτ
[τA(fp)B(gq) + (1− τ)A(gq)B(fp)−A(fpτgq(1−τ))B(fp(1−τ)gqτ )] <

<
1

p
A(fp)B(gq) +

1

q
A(gq)B(fp)−A(fg)B(f

p
q g

q
p ) <

<
1

pτ
[τA(fp)B(gq) + (1− τ)A(gq)B(fp)−A(fpτgq(1−τ))B(fp(1−τ)gqτ )].

A particular case will be obtained when, A = B,

1

pτ
[A(fp)A(gq)−A(fpτgq(1−τ))A(fp(1−τ)gqτ )] <

< A(fp)A(gq)−A(fg)A(f
p
q g

q
p ) <

<
1

pτ
[A(fp)A(gq)−A(fpτgq(1−τ))A(fp(1−τ)gqτ )].

Proof. If we use in inequality from Theorem 1, a = fp(x)
gq(x) and b = fp(y)

gq(y) then we get

ν

τ

[
τ
fp(x)

gq(x)
+ (1− τ)

fp(y)

gq(y)
− fpτ (x)

gqτ (x)

fp(1−τ)(y)

gq(1−τ)(y)

]
<

< ν
fp(x)

gq(x)
+ (1− ν)

fp(y)

gq(y)
− fpν(x)

gqν(x)

fp(1−ν)(y)

gq(1−ν)(y)
<

<
1− ν
1− τ

[
τ
fp(x)

gq(x)
+ (1− τ)

fp(y)

gq(y)
− fpτ (x)

gqτ (x)

fp(1−τ)(y)

gq(1−τ)(y)

]
,

for any x, y ∈ E.
We multiply last inequality by gq(x)gq(y) > 0 and we get

ν

τ

[
τfp(x)gq(y) + (1− τ)fp(y)gq(x)− fpτ (x)

gqτ (x)

fp(1−τ)(y)

gq(1−τ)(y)
gq(x)gq(y)

]
<

< νfp(x)gq(y) + (1− ν)fp(y)gq(x)− fpν(x)

gqν(x)

fp(1−ν)(y)

gq(1−ν)(y)
gq(x)gq(y) <

<
1− ν
1− τ

[
τfp(x)gq(y) + (1− τ)fp(y)gq(x)− fpτ (x)

gqτ (x)

fp(1−τ)(y)

gq(1−τ)(y)
gq(x)gq(y)

]
,

for any x, y ∈ E.
Fix y ∈ E as in [7] and we have in the order of L that

ν

τ

[
τfpgq(y) + (1− τ)fp(y)gq − fpτfp(1−τ)(y)gq(1−τ)gqτ (y)

]
<
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< νfpgq(y) + (1− ν)fp(y)gq − fpνfp(1−ν)(y)gq(1−ν)gqν(y) <

<
1− ν
1− τ

[
τfpgq(y) + (1− τ)fp(y)gq − fpτfp(1−τ)(y)gq(1−τ)gqτ (y)

]
,

If we take now the functional A in previous inequality, we have,

1

pτ

[
τA(fp)gq(y) + (1− τ)fp(y)A(gq)−A(fpτgq(1−τ))fp(1−τ)(y)gqτ (y)

]
<

<
1

p
A(fp)gq(y) +

1

q
fp(y)A(gq)−A(fg)f

p
q (y)g

q
p (y) <

<
1

q(1− τ)

[
τA(fp)gq(y) + (1− τ)fp(y)A(gq)−A(fpτgq(1−τ))fp(1−τ)(y)gqτ (y)

]
,

for any y ∈ E. Then we write this inequality in the order of L and then we take
the functional B in this inequality obtaining the desired result.

Theorem 5. Let pτ > 1, τ < 1 with p > 0, τ > 0 and 1
p + 1

q = 1. If L satisfy condi-

tions L1, L2 and A satisfy A1, A2 on the set E. If fp, gq, fg, fpτgq(1−τ), f
pk
n gq(1−

k
n ) ∈

L, k = 0, n, A(fp) > 0, A(gq) > 0 and f and g are positive functions then:

1

(pτ)n

[
A

((
τ

f
p
n

A
1
n (fp)

+ (1− τ)
g

q
n

A
1
n (gq)

)n)
− A(fpτgq(1−τ))

Aτ (fp)A1−τ (gq)

]
<

< A

[(
1

p

f
p
n

A
1
n (fp)

+
1

q

g
q
n

A
1
n (gq)

)n]
− A(fg)

A
1
p (fp)A

1
q (gq)

<

<
1

(q(1− τ))n

[
A

((
τ

f
p
n

A
1
n (fp)

+ (1− τ)
g

q
n

A
1
n (gq)

)n)
− A(fpτgq(1−τ))

Aτ (fp)A1−τ (gq)

]
or

1

(pτ)n

[
n∑
k=0

(
n
k

)
τk(1− τ)n−k

A
k
n (fp)A1− k

n (gq)
A
(
f

pk
n gq(1−

k
n )
)
− A(fpτgq(1−τ))

Aτ (fp)A1−τ (gq)

]
<

<

n∑
k=0

(
n
k

)
1

pkqn−k
A(f

pk
n gq(1−

k
n ))

A
k
n (fp)A1− k

n (gq)
− A(fg)

A
1
p (fp)A

1
q (gq)

<

<
1

(q(1− τ))n

[
n∑
k=0

(
n
k

)
τk(1− τ)n−k

A
k
n (fp)A1− k

n (gq)
A
(
f

pk
n gq(1−

k
n )
)
− A(fpτgq(1−τ))

Aτ (fp)A1−τ (gq)

]
Proof. The proof will be as in Theorem 3 and Theorem 4.
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Theorem 6. Let pτ > 1, τ < 1 with p > 0, τ > 0 and 1
p + 1

q = 1. If L satisfy

conditions L1, L2 and A satisfy A1, A2 on the set E. If fp, gq, fg, fpτgq(1−τ),

fp(1−
k
n )gq

k
n , fp(1−τ)gqτ , f

pk
n gq(1−

k
n ) ∈ L, k = 0, n, A(fp) > 0, A(gq) > 0 and f

and g are positive functions then we have:(ν
τ

)n
[

n∑
k=0

(
n
k

)
τn−k(1−τ)kA(fp(1−

k
n )gq

k
n )B(fp

k
n gq(1−

k
n ))−A(fpτgq(1−τ))B(fp(1−τ)gqτ )] <

<

n∑
k=0

(
n
k

)
1

pn−kgk
A(fp(1−

k
n )gq

k
n )B(fp

k
n gq(1−

k
n ))−A(fg)B(f

p
q g

q
p ) <

<

(
1− ν
1− τ

)n
[

n∑
k=0

(
n
k

)
τn−k(1− τ)kA(fp(1−

k
n )gq

k
n )B(fp

k
n gq(1−

k
n ))−

−A(fpτgq(1−τ))B(fp(1−τ)gqτ )]

In [8] Feng improved the left-hand side of the Kittaneh-Manasrah inequality
[11, 12].

Proposition 2. If L satisfy conditions L1, L2 and A satisfy A1, A2 on the set E
and if fp, gq, fg ∈ L, A(fp) > 0, A(gq) > 0, f and g are positive functions and
1
p + 1

q = 1 then:

(i) If p ≥ 3 and f
p
3 g

2q
3 ∈ L

3

p

(
1− A(f

p
3 g

2
3 q)

A
1
3 (fp)A

2
3 (gq)

)
≤ 1− A(fg)

A
1
p (fp)A

1
q (gq)

.

(ii) If 1 < p ≤ 3
2 and f

2p
3 g

q
3 ∈ L

3

q

(
1− A(f2

p
3 g

q
3 )

A
2
3 (fp)A

1
3 (gq)

)
≤ 1− A(fg)

A
1
p (fp)A

1
q (gq)

.

(iii) If p > 3 and f
p
3 g

2q
3 , f

2p
3 g

q
3 , f

p
q g

q
p ∈ L then we have:(

2

p
− 1

q

)
A(gq)B(fp) ≤ 3

p
A(f

p
3 g

2q
3 )B(f

2p
3 g

q
3 )−A(fg)B(f

p
q g

q
p ).

Moreover, if A = B then previous inequality becomes:(
2

p
− 1

q

)
A(gq)A(fp) ≤ 3

p
A(f

p
3 g

2q
3 )A(f

2p
3 g

q
3 )−A(fg)A(f

p
q g

q
p )

(iv) If 1 < p ≤ 3
2 and g

q
3 f

2p
3 , g

2q
3 f

p
3 , f

p
q g

q
p ∈ L then we have:(

2

q
− 1

p

)
B(gq)A(fp) ≤ 3

q
A(g

q
3 f

2p
3 )B(g

2q
3 f

p
3 )−A(fg)B(f

p
q g

q
p ).

Moreover, if A = B then previous inequality becomes:(
2

q
− 1

p

)
A(gq)A(fp) ≤ 3

q
A(g

q
3 f

2p
3 )A(g

2q
3 f

p
3 )−A(fg)A(f

p
q g

q
p ).

Consequence 1. Theorem 4, 5 and Proposition 2 can be rewritten for the time
scale Cauchy delta, Cauchy nabla, α-diamond, multiple Riemann, and multiple
Lebesque integrals.
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Remark 1. For example, first inequality of Theorem 4 can be rewritten like below:
(i) Let f, g ∈ Crd([a, b],R) be positive functions,

1

pτ

1−
∫ b
a
fpτ (x)∆x

∫ b
a
gq(1−τ)(x)∆x(∫ b

a
fp(x)∆x

)τ (∫ b
a
gq(x)∆x

)1−τ
 < 1−

∫ b
a
f(x)g(x)∆x(∫ b

a
fp(x)∆x

) 1
p
(∫ b

a
gq(x)∆x

) 1
q

<

<
1

q(1− τ)

1−
∫ b
a
fpτ (x)∆x

∫ b
a
gq(1−τ)(x)∆x(∫ b

a
fp(x)∆x

)τ (∫ b
a
gq(x)∆x

)1−τ
 ,

where p, τ and q as in Theorem 4.
(ii) Let f, g ∈ Cld([a, b],R) be positive functions,

1

pτ

1−
∫ b
a
fpτ (x)∇x

∫ b
a
gq(1−τ)(x)∇x(∫ b

a
fp(x)∇x

)τ (∫ b
a
gq(x)∇x

)1−τ
 < 1−

∫ b
a
f(x)g(x)∇x(∫ b

a
fp(x)∇x

) 1
p
(∫ b

a
gq(x)∇x

) 1
q

<

<
1

q(1− τ)

1−
∫ b
a
fpτ (x)∇x

∫ b
a
gq(1−τ)(x)∇x(∫ b

a
fp(x)∇x

)τ (∫ b
a
gq(x)∇x

)1−τ
 ,

where p, τ and q as in Theorem 4.
(iii) Let f, g : [a, b]→ R be �α-integrable and positive functions

1

pτ

1−
∫ b
a
fpτ (x)) �α x

∫ b
a
gq(1−τ)(x)) �α x(∫ b

a
fp(x)) �α x

)τ (∫ b
a
gq(x)) �α x

)1−τ
 <

< 1−
∫ b
a
f(x)g(x)) �α x(∫ b

a
fp(x)) �α x

) 1
p
(∫ b

a
gq(x)) �α x

) 1
q

<

<
1

q(1− τ)

1−
∫ b
a
fpτ (x)) �α x

∫ b
a
gq(1−τ)(x)) �α x(∫ b

a
fp(x)) �α x

)τ (∫ b
a
gq(x)) �α x

)1−τ
 ,

where p, τ and q as in Theorem 4.

3. The Young-type inequalities for inner product

First, as in [6], it is necessary to recall that for selfadjoint operators A,B ∈
B(H) we write A ≤ B (or B ≥ A) if < Ax, x >≤< Bx, x > for every vector
x ∈ H. We will consider for beginning A as being a selfadjoint linear operator on a
complex Hilbert space (H;< ., . >) . The Gelfand map establishes a ∗- isometrically
isomorphism Φ between the set C(Sp(A)) of all continuous functions defined on the
spectrum of A, denoted Sp(A), and the C∗- algebra C∗(A) generated by A and the
identity operator 1H on H as follows: For any f, f ∈ C(Sp(A)) and for any α, β ∈ C
we have

(i) Φ(αf + βg) = αΦ(f) + βΦ(g);
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(ii) Φ(fg) = Φ(f)Φ(g) and Φ(f) = Φ(f∗);
(iii) ||Φ(f)|| = ||f || := supt∈Sp(A) |f(t)|;
(iv) Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t for t ∈ Sp(A.)
Using this notation, as in [6] for example, we define

f(A) := Φ(f) for all f ∈ C(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A. It is
known that if A is a selfadjoint operator and f is a real valued continuous function
on Sp(A), then f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0, i.e. f(A) is
a positive operator on H. In addition, if and f and g are real valued functions on
Sp(A) then the following property holds:

(1) f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A)

in the operator order of B(H).

Using the definition from [6], we say that the functions f, g : [a, b] → R are
syncronous (asyncronous) on the interval [a, b] if they satisfy the following condition:

(f(t)− f(s))(g(t)− g(s)) ≥ (≤)0

for each t, s ∈ [a, b].

Consequence 2. Let A ∈ B(H) and B ∈ B(H) be two selfadjoint operators on H
and ν ∈ (0, 1).

(i) If 0 < ν ≤ 1
3 then we have

3ν

[
1

3
< Ax, x >< y, y > +

2

3
< x, x >< By, y > − < A

1
3x, x >< B

2
3 y, y >

]
≤

≤ ν < Ax, x >< y, y > +(1− ν) < x, x >< By, y > − < Aνx, x >< B1−νy, y >

(ii) If 3
2 ≤ ν < 1 then we obtain

3(1−ν)

[
2

3
< Ax, x >< y, y > +

1

3
< x, x >< By, y > − < A

2
3x, x >< B

1
3 y, y >

]
≤

≤ ν < Ax, x >< y, y > +(1− ν) < x, x >< By, y > − < Aνx, x >< B1−νy, y >

(iii) If λ = 1 and 0 < ν < τ < 1 then we have

ν

τ
[τ < Ax, x >< y, y > +(1− τ) < x, x >< By, y > − < Aτx, x >< B1−τy, y >] <

< ν < Ax, x >< y, y > +(1− ν) < x, x >< By, y > − < Aνx, x >< B1−νy, y ><

<
1− ν
1− τ

[τ < Ax, x >< y, y > +(1−τ) < x, x >< By, y > − < Aτx, x >< B1−τy, y >]

for each x, y ∈ H.
(iv) Moreover, when B ∈ B∗(K) is an selfadjoint operator on pseudo-Hilbert

space K, see [4] and [5] , instead of a selfadjoint operator on H and λ = 1 and
0 < ν < τ < 1 then we have

ν

τ
[τ < Ax, x > [y, y] + (1− τ) < x, x > [By, y]− < Aτx, x > [B1−τy, y]] <

< ν < Ax, x > [y, y] + (1− ν) < x, x > [By, y]− < Aνx, x > [B1−νy, y] <
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<
1− ν
1− τ

[τ < Ax, x > [y, y] + (1− τ) < x, x > [By, y]− < Aτx, x[< B1−τy, y]]

for each x ∈ H and y ∈ K.

Proof. The demonstration will be as in [6] and we prove only (i).
We fix a and apply the property (1) for the first inequality from Proposition 1,

obtaining:

3ν[
1

3
A+

2

3
Ib−A 1

3 b
2
3 ] ≤ νA+ (1− ν)Ib−Aνb(1−ν)

for each b ∈ R. Then we obtain for each x ∈ H the following inequality:

3ν[
1

3
< Ax, x > +

2

3
b < x, x > − < A

1
3x, x > b

2
3 ] ≤

≤ ν < Ax, x > +(1− ν)b < x, x > − < Aνx, x > b1−ν

and now we will apply again the property (1), this time for b and we get

3ν[
1

3
< Ax, x > I +

2

3
B < x, x > − < A

1
3x, x > B

2
3 ] ≤

≤ ν < Ax, x > I + (1− ν)B < x, x > − < Aνx, x > B1−ν

which is equivalent to:

3ν[
1

3
< Ax, x >< y, y > +

2

3
< By, y >< x, x > − < A

1
3x, x >< B

2
3 y, y >] ≤

≤ ν < Ax, x >< y, y > +(1− ν) < By, y >< x, x > − < Aνx, x >< B1−νy, y > .

Remark 2. Let A ∈ B(H) and B ∈ B(H) be two selfadjoint operators on H and
ν ∈ (0, 1).

(i) If we consider in Proposition 2 the elements x, y ∈ H with ||x|| = 1 and
||y|| = 1 then we obtain the following inequalities:

ν(1− ν)

2
[< Ax, x >< log2By, y > + < A log2Ax, x > −

−2 < A logAx, x >< logBy, y >] <

< ν < Ax, x > +(1− ν) < By, y > − < Aνx, x >< B1−νy, y ><

<
ν(1− ν)

2
[< B log2By, y > + < log2Ax, x >< By, y > −

−2 < logAx, x >< B logBy, y >],

(ii) If we consider in Consequence 2 the elements x, y ∈ H with ||x|| = 1 and
||y|| = 1 then we obtain the following inequalities:

(a) If p ≥ 3 then

3ν

[
1

3
< Ax, x > +

2

3
< By, y > − < A

1
3x, x >< B

2
3 y, y >

]
≤

≤ ν < Ax, x > +(1− ν) < By, y > − < Aνx, x >< B1−νy, y > .

(b) If 1 < p ≤ 3
2 then

3(1− ν)

[
2

3
< Ax, x > +

1

3
< By, y > − < A

2
3x, x >< B

1
3 y, y >

]
≤

≤ ν < Ax, x > +(1− ν) < By, y > − < Aνx, x >< B1−νy, y > .
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(c) If λ = 1 and 0 < ν < τ < 1 then

ν

τ
[τ < Ax, x > +(1− τ) < By, y > − < Aτx, x >< B1−τy, y >] <

< ν < Ax, x > +(1− ν) < By, y > − < Aνx, x >< B1−νy, y ><

<
1− ν
1− τ

[τ < Ax, x > +(1− τ) < By, y > − < Aτx, x >< B1−τy, y >].
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